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Bayes Estimator based on absolute error loss

Suppose that L(6, ) = |6 — 6|. The posterior expected loss is

B[L(0,0(x))] = /|9 3(x) | (0]x) do

— B0 —0X =]
7 o] R

:/ —(9—9)ﬂ(¢9|x)d9+[ (6 — B)m(6]x)db
— 00 0

0 ; g >
G EIL0:009)) = / _m(Ex)do — /9 m(f]x)do =

Therefore, 0 is posterior median.
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Last Lecture

= What is a Bayes Risk?

= What is the Bayes rule Estimator minimizing squared error loss?
= What is the Bayes rule Estimator minimizing absolte error loss?
= What are the tools for proving a point estimator is consistent?

= Can a biased estimator be consistent?
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Asymptotic Evaluation of Point Estimators

When the sample size n approaches infinity, the behaviors of an estimator
are unknown as its asymptotic properties.

Definition - Consistency

Let W,, = W,(Xy, -, X,) = W,(X) be a sequence of estimators for
7(0). We say W, is consistent for estimating 7(0) if W, Py 7(6) under
Py for every 6 € Q).

W, —> 7(0) (converges in probability to 7(6)) means that, given any
e > 0.
lim Pr(|W, —7(0)|>¢€¢) = 0

n—o0

li)m Pr(|W,—7(0)] <¢) = 1

When |W,, — 7(0)| < € can also be represented that W, is close to 7(9).
Consistency implies that the probability of W,, close to 7(f) approaches to

1 as n goes to oo.
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Tools for proving consistency

= Use definition (complicated)

= Chebychev's Inequality

Pr(|W, —7(0)] >€) = Pr((W,—7(0))?>é)

MSE(W,) _ Bias®(W,) + Var(W,)
62 - 62

Need to show that both Bias(W),) and Var(W),) converges to zero
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Theorem for consistency

Theorem 10.1.3

If W, is a sequence of estimators of 7(0) satisfying
= lim,_~ Bias(W,) = 0.
= lim,,_~o Var(W,) =0.

for all 6, then W, is consistent for 7(6)
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Weak Law of Large Numbers

Let Xq,--
Var(X) = 02 < co. Then X,, converges in probability to .
ie. X, —> p.

-, X, be iid random variables with E(X) = u and
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Consistent sequence of estimators

Theorem 10.1.5

Let W, is a consistent sequence of estimators of 7(). Let a,, b, be
sequences of constants satisfying

(1] hmn—>oo ap, =1

Then U, = a, W, + b, is also a consistent sequence of estimators of 7(0).

Continuous Map Theorem

| A\

If W, is consistent for # and g is a continuous function, then g( W,,) is
consistent for g(6).
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Example - Exponential Family

Problem

Suppose Xi,---, X, e Exponential(3).
@ Propose a consistent estimator of the median.

@® Propose a consistent estimator of Pr(X < ¢) where ¢ is constant.
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Consistent estimator of Pr(X < ¢) - Alternative Method

Define Y; = I(X; < ¢). Then Y; g Bernoulli(p) where p = Pr(X < ¢).

1 & 1 &
Y = E;Yi:7—121()(2-gc)

=1

is consistent for p by Law of Large Numbers.
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Consistent estimator of Pr(X < ¢)

°1
Pr(X<¢ = /—e_"”/ﬂd:p
0o B
= 1—¢ /P

As X is consistent for 3, 1 — e~/# is continuous function of .
By continuous mapping Theorem, g(X) = 1 — e~ %% is consistent for
Pr(X<c¢)=1-e 8 = g(p)
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Asymptotic Normality
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Consistency of MLEs

Theorem 10.1.6 - Consistency of MLEs

Suppose X; = f(z]6). Let 6 be the MLE of 6, and 7(6) be a continuous
function of 6. Then under "regularity conditions” on f(z]@), the MLE of

~

7(0) (i.e. 7(0)) is consistent for 7().
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Central Limit Theorem

Central Limit Theorem

Definition: Asymptotic Normality

A statistic (or an estimator) W, (X) is asymptotically normal if
V(W —7(6)) = N (0, 4(0))

for all 6 .
where — stands for "converge in distribution”
= 7(0) : "asymptotic mean”

= v(f) : "asymptotic variance”

We denote W,, ~ AN <T(9), ”—ne)>
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Example - Estimator of Pr(X < ¢)

Assume X; 24 f(7]6) with finite mean () and variance o2(6).

S Vr(X-p0) -S> N(©,0%(0))

v

Theorem 5.5.17 - Slutsky’s Theorem

If X, —d> X Y, —P> a, where a is a constant,
0V, X, aX
@ X, +Y, % Xtq

o
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Asymptotic Normality
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Define Y; = I(X; < ¢). Then Y; e Bernoulli(p) where p = Pr(X < ¢).

1 & 1 &
Y = ;L;Yi:;LZI(Xigc)

=1

is consistent for p. Therefore,

% - (X;<c¢) ~ AN E(Y),V&l;l(Y))
=1
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Let Xi,---, X, be iid samples with finite mean x and variance 0. Define
1 n
2 T2
1=

By Central Limit Theorem,

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 16 / 33




Asymptotic Normality
0000080000000 0

Asymptotic Normality
000000@0000000

Delta Method

Example (cont'd)

o V(X —p)
Sn o

We showed previously $2 Ly 52 = Sy, o= o/Sn s,
Therefore, By Slutsky’s Theorem %n_“) N N(0,1).
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Delta Method - Example

X1, , X i Bernoulli(p) where p # % we want to know the
asymptotic distribution of X(1 — X). By central limit Theorem,
Vil —p) a, N(0,1)
p(1—p)

< X,

v (ne)

Define ¢g(y) = y(1 — y), then 7((1 - 7) = 9(7()
Jw=W-y)=1-2
By Delta Method,

o0 =X1-3) ~ A (sl )

Hyun Min Kang
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AN (p<1 ), (12

1—p)

n

)

March 19th, 2013

17 / 33

19 /33

Theorem 5.5.24 - Delta Method

Assume W, ~ AN (9, L?) If a function ¢ satisfies ¢'(0) # 0, then

o(W) ~ AN (gw), WW@)

n
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Asymptotic Normality

Given a statistic W,(X), for example X, s%, e %

V(W —7(8)) —%> N(0,1(8))
=W, ~ AN (7(9),

for all
v(6)
n

Tools to show asymptotic normality
® Central Limit Theorem
@® Slutsky Theorem
© Delta Method (Theorem 5.5.24)
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Using Central Limit Theorem

where () = E(X), and 02(6) = Var(X).

define Y; = Xf then

1= o 1 — -
WX = L Y=Y
=1 =1
~ AN(EY,VM(Y))
n
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Using Delta Method (Theorem 5.5.24)

Assume W,, ~ AN (9, %9)) If a function g satisfies ¢'(6) # 0, then

o(W) ~ AN (g<9>, [g'w)]?@)

n
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For example, in order to get the asymptotic distribution of -~ > ", Xz,

PWER
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Using Slutsky Theorem

When X, —%> X, Y, -2+ a, then
o v, X, % ax
®X,+V, % Xta
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Xl?"'7Xni.i’_'\d’.N(Mvo-2) p#0

Find the asymptotic distribution of MLE of .

(Solution

@ It can be easily shown that MLE of u is X.
@® By the invariance property of MLE, MLE of 2 is X
© By central limit theorem, we know that

2
T(NAN(M,%)
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Solution (cont'd) Asymptotic Relative Efficiency (ARE)

If both estimators are consistent and asymptotic normal, we can compare
their asymptotic variance.

Definition 10.1.16 : Asymptotic Relatve Efficiency

Defi = 7, and ly Delta Method.
© [2Eine g v g?(ny) ap_p y2ye a ietho If two estimators W,, and V,, satisfy
= d
= 02 V[ W, —1(0)] == N(0,0%)
~ AN <g(u), [9 ()] ;) V[V, — 7(0)] =2 N(0,0%)
2
~ AN (/ﬂ, (2u)20—) The asymptotic relative efficiency (ARE) of V,, with respect to W, is
n o2
ARE(V,, W,,) = =&
v O-V

If ARE(V,, W,,) > 1 for every 6 € ), then V,, is asymptotically more
efficient than W,,.
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Solution - Asymptotic Distribution of V,

Va(X) = e %, by CLT,

Let X; = Poisson(\). consider estimating X ~ AN (EX, VarX/n) ~ AN (A, \/n)

Pr(X=0)=¢*
Define g(y) = e Y, then V,, = g(X) and ¢(y) = —e Y. By Delta Method
Our estimators are

1 < X A
Wo = =~ IX;=0) Va=e ¥ ~ AN (g(A),[g’(Wg)
=1
Vo, = % ~ ,AN(@A 62)\i>
n

Determine which one is more asymptotically efficient estimator.
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Solution - Calculating ARE

Solution - Asymptotic Distribution of W,

Define Z; = I(X; = 0)

1 — _ A B e\ /n
1=
Z; ~ Bernoulli(E(Z)) T S
i\ Ml —e?)
E(Z) = Pr(X=0)=e A\
Var(2) = e_)‘(l — e_>‘) B W
A
By CLT, - 2 3
- (L+rA+E+5+) -1
Wn =12, ~ AN(E(Z),Var(2)/n) < 1  (VA>0)
AN (e e (1— ) B )
’ n Therefore W, = 1 3~ I(X; = 0) is less efficient than V,, (MLE), and ARE
attains maximum at A = 0.
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Asymptotic Efficiency Asymptotic Efficiency of MLEs

Definition : Asympotic Efficiency for iid samples Theorem 10.1.12

A sequence of estimators W), is asymptotically efficient for 7(0) if for all Let Xj,---, X, be iid samples from f(z|0). Let 6 denote the MLE of 6.
0 e, o Under same regularity conditions, # is consistent and asymptotically
(W, — 7(6)) 4 N <0, [T]EZ;] ) normal for 6, i.e.

V(0 — ) 4 N <0, %) for every 6 € Q2

/ 2
— W, ~ AN <T(0), [7;00)] >
i) And if 7(0) is continuous and differentiable in 6, then

) ) : ) [ (6)]
Iy = FE {%logf(X\H)} ]9] Vol —0) — ./\/(0, 0
2 5 [ (©)”
= -E [% logf(X|9)|9} (if interchageability holds —=7(0) ~ AN (7(6)7 n1(0)
() . _ _ . Again, note that the asymptotic variance of T(é) is Cramer-Rao lower
Note: 7775~ is the C-R bound for unbiased estimators of 7(6). bound for unbiased estimators of 7(0).
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Summary

= Central Limit Theorem

Slutsky Theorem
Delta Method
Asymptotic Relative Efficiency

Hypothesis Testing
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