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Some News

Biostatistics 602 - Statistical Inference

Lecture 11 = Homework 3 is posted.
= Due is Tuesday, February 26th.

= Next Thursday (Feb 21) is the midterm day.
= We will start sharply at 1:10pm.

Evaluation of Point Estimators

Hyun Min Kang = |t would be better to solve homework 3 yourself to get prepared.
= The exam is closed book, covering all the material from Lecture 1 to
12.

February 14th, 2013 = Last year's midterm is posted on the web page.

Hyun Min Kang Biostatistics 602 - Lecture 11 February 14th, 2013 1/33 Hyun Min Kang Biostatistics 602 - Lecture 11 February 14th, 2013 2 /33

Recap Recap
00000 00@00

Last Lecture Recap - Maximum Likelihood Estimator

= For a given sample point x = (21, -+ , z,),

= let A(x) be the value such that

= L(f|x) attains its maximum.

= More formally, L(A(x)|x) > L(6|x) V6 € Q where 6(x) € Q.

. é(x) is called the maximum likelihood estimate of 6 based on data x,
= and 6(X) is the maximum likelihood estimator (MLE) of 0.

® What is a maximum likelihood estimator (MLE)?

® How can you find an MLE?

© Does an ML estimate always fall into a valid parameter space?
O If you know MLE of 6, can you also know MLE of 7(6)?
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Recap - Invariance Property of MLE

If § is the MLE of 6, what is the MLE of 7(6)?

X, , X, = Bernoulli(p) where 0 < p < 1.
® What is the MLE of p?
® What is the MLE of odds, defined by n = p/(1 — p)?
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Invariance Property of MLE

Denote the MLE of 6 by 0. If 7(6) is an one-to-one function of 6, then
MLE of 7(0) is 7(0).

The likelihood function in terms of 7(0) =7 is

(@)% = []sx(@l6) =[] Azlr=" )
=1 =1
= L' (n)lx)

We know this function is maximized when 7=1(n) = 0, or equivalently,
when 1 = 7(0). Therefore, MLE of n = 7(0) is 7(0).

A\
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Recap
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Getting MLE of n = %} from p

N T

L' (nlx) = atnr

= From MLE of p, we know L*(n|x) is maximized when
p=n/(1+n)=p.

= Equivalently, L*(n|x) is maximized when n = p/(1 — p) = 7(p),
because 7 is a one-to-one function.

= Therefore 7 = 7(p).
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Induced Likelihood Function

= Let L(f|x) be the likelihood function for a given data z1,--- , zy,

= and let n = 7(6) be a (possibly not a one-to-one) function of 6.

We define the induced likelihood function L* by

L*(njx) = sup L(f]x)

oer—1(n)

where 771(n) = {0 : 7(8) =n, 0 € Q}.
= The value of 1 that maximize L*(n|x) is called the MLE of n = 7(0).

v
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Invariance Property of MLE Properties of MLE

Theorem 7.2.10

If 6 is the MLE of 6, then the MLE of n = 7(6) is 7(f), where 7(6) is any
function of 6.

- @ Optimal in some sense : We will study this later
Proof - Using Induced Likelihood Function ® By definition, MLE will always fall into the range of the parameter
space.
L*(nx) = SUPL (nx) =sup sup L(6]x) © Not always easy to obtain; may be hard to find the global maximum.

n oer—1(n)
@ Heavily depends on the underlying distributional assumptions (i.e. not

= sgp L(0|x) = L(9|X) robust).

L(fx) = sup  L(6]x) = L*[r(6)[x]
0er—1(r(09))

Hence, L*(|x) = L*[7(A)|x] and 7(f) is the MLE of 7(6).

A
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Method of Evaluating Estimators How important is unbiased?

Definition : Unbiasedness

Suppose 0 is an estimator for 6, then theAbias of 0 is defined as
Bias(0) = E(0) —

1.2

1.0

0.8

If the bias is equal to 0, then 0 is an unbiased estimator for 6.

Xi,--+, X, are iid samples from a distribution with mean p. Let
X= ,1‘12?:1 X; is an estimator of p. The bias is
Bias() = E(X)—u

Density

0.4 0.6
L

0.2

0.0

1 n 1 n -1.0 -0.5 00 05 1.0
) E(ﬁZXZ)_“:;ZE<X0—M=M—M=0
i=1 i=1
_ . 91 (blue) is unbiased but has a chance to be very far away from 6 = 0.
Therefore X is an unbiased estimator for . = 0y (red) is biased but more likely to be closer to the true 6 than 0;.
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Mean Squared Error

Evaluation
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Example

Mean Squared Error (MSE) of an estimator 0 is defined as
MSE(§) = E[(f — 6)]?

Property of MSE

A ~

MSE(f) = E[(0 — EO + E) — 0)]?
— E[( — FO)?] + E|(EH — 0)°] + 2E[(0 — E)]E[(EH — 6)]
— E[(0 — E§)?| + (EH — 0) + 2(Ef — EH)E|(Ef — 0)]
= Var() + Bias?(6)
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Uniformly Minimum Variance Unbiased Estimator

W*(X) is the best unbiased estimator, or uniformly minimum variance
unbiased estimator (UMVUE) of 7(0) if,
® E[W*(X)|0] = 7(0) for all 6 (unbiased)

@® and Var|WW*(X)|0] < Var[W(X)|6] for all 8, where W is any other
unbiased estimator of 7(6) (minimum variance).

y

How to find the Best Unbiased Estimator

= Find the lower bound of variances of any unbiased estimator of 7(0),
say B(0).

= If W* is an unbiased estimator of 7(#) and satisfies
Var[ W*(X)|0] = B(6), then W* is the best unbiased estimator.

Hyun Min Kang Biostatistics 602 - Lecture 11

February 14th, 2013

15 / 33

- Xy, X 28 N (1)

" p = L, H2 = X.
MSE(i) =
MSE(is) = B

o —p)? = (1-p)?
— — 1
X —p)? = Var(X) = -
n
= Suppose that the true © = 1, then MSE(u;) = 0 < MSE(u2), and no
estimator can beat py in terms of MSE when true = 1.

= Therefore, we cannot find an estimator that is uniformly the best in
terms of MSE across all 8 € €2 among all estimators

= Restrict the class of estimators, and find the "best” estimator within
the small class.
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Cramer-Rao inequality

Theorem 7.3.9 : Cramer-Rao Theorem
Let X1, -, X, be a sample with joint pdf/pmf of fx(x|#). Suppose W(X)
is an estimator satisfying

@ E[W(X)|0] = T1(6), VO € Q.

® Var| W(X)|6] < oo.
For h(x) = 1 and h(x) = W(x), if the differentiation and integrations are
interchangeable, i.e.

d d
SE(I0] =

3 h(x) f (x|0) dx = / h(x)%fx(xle)dx

TeX

Then, a lower bound of Var[W(X)|6] is

@O
ar[ (X
Var[W(X)] > E [{% logfx(x|9)}2]
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Proving Cramer-Rao Theorem (1/4) Proving Cramer-Rao Theorem (2/4)

By Cauchy-Schwarz inequality,
[Cov(X, Y)J* < Var(X)Var(Y) E { 9 10g fX(X|9)] _ / [ 5 1o fx(x|6)] he(x19) dx
Replacing X and Y, 9 0
_ / ang(x‘ )fX(X|9)dX
0 2 0 x€X fx(x|9)
{Cov{ W(X), 50 long(X|9)}] < Var[W(X)]Var L‘?_ logfx(X|9)] f (x16)dx
N a6\
ar > Var [ % log fx(X[6)] = = / Ix (x|0)dx (by assumption)
xeX
Using Var(X) = EX? — (EX)?, _ dd9 _0
Var | L log f(X[0)| = B alf(X|9)2 61f(X\0)2 Var [ 2 tog s xl)] = B[ 2 10gpxi0))
ar 89 0g Jx - 89 0g Jx 60 0g Jx ar 89 ngX( ’ ) - 89 ngX( | )
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Proving Cramer-Rao Theorem (3/4) Proving Cramer-Rao Theorem (4/4)

From the previous results

COV[W(X%%logfx(XI@)] Var {gelogfx(xw)] = E {8010gfx(X|0)}2]
— B|W0- g logi(X0)] ~ ELX)] £ [aaelogfx(X!@)] Cov [ W), 1o x(Xi0)| = +(0)
=7 [W(X) ' ‘;99 long(X|9)] N xeX W(x)—logfx(x|0)f(x|0)dx Therefore, Cramer—Rjoelower bound is
- [ W(x)%%”f(xwmxz [ Wi x0) a 2
- d% [ WOOR(8)  (by assumption) Var[W(X)l- = [COVE/Z(E@: f?gi(g(i(\(e))(]wm

_d a0 B 7 (0)
= PR = g7(0) =7(0) E[{Z1og fx(X]0)}?]
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Cramer-Rao bound in iid case

Corollary 7.3.10

If Xq,---,
in the above Cramer-Rao theorem hold, then the lower-bound of

X, are iid samples from pdf/pmf fy(z|6), and the assumptions

Var[ W(X)|0] becomes
7(6)]?
Var[ W(X)] > 8[ (6) 5

nE[{Z; 108 fx(X16)}7] )

(Prof ]
We need to show that

) 2 B 2
p{ gossxio} | = ng|{ 5 ouse(xin)}
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Proving Corollary 7.3.10

Cramer-Rao
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Proving Corollary 7.3.10

E

{ Sy towsxio)} ] {aﬁlogﬂmx o) }

0
— log f (X|9}
Faars

{ long(X 10) }

B[S, { & log fx(X0)}” +

3 i i 108 Sy (Xi10)  Tog fx(X19)]

E
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Remark from Corollary 7.3.10

Because Xj, -, X, are independent,
5130 O to £ (X16) 5 log (X,16)
L pp XTI g Tl
]
=SB | Log fu(X10) | B |- log f(X,10)| =
- 89 Og X 89 Og X
]
D) 2 n 9 27
p({glossoxn} | = |3 {Grenoin)
n P 27
= 35| {greantin]
b 2
" {%logfx(XIH)}]
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In iid case, Cramer-Rao lower bound for an unbiased estimator of 8 is

1
E [{ 35 10g fx(X16)}?]

Var[ W(X)]

Because 7(6) = 0 and 7'(6) = 1.
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Score Function
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Fisher Information Number

Definition: Score or Score Function for X

S(X0) = ~-logf(XI6)
E[S(X|9)] = O
SuXIB) = o f(X)
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Simplified Fisher Information

Definition: Fisher Information Number

= o 00 |

(2 oo}

{2 long<X|e>}2] — ni(6)

10) = E = E[$%(X]9)]

L0 = E

= nkE

The bigger the information number, the more information we have about
0, the smaller bound on the variance of unbiased estimates.
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Example - Poisson Distribution

Lemma 7.3.11

If fx(z|6) satisfies the two interchangeability condltlons

d
< /Iexfx(xI@)dx = [ syhxtalt)as

d o2

0 ).y 80fX zf)dz = . fo(ﬂe)dx

which are true for exponential family, then

{% logfx(XIH)}2]

10) = E B | 08 (X0
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= Xy, ,Xni'i&da' Poisson(\)
s A =X
. )\2283(

- EM] = EX) =

Cramer-Rao lower bound is I;*(\) = [nI(\)] "

I\ = E

L 1ong<X|A>}2] B[ o ()]

82 f/\)\X 82
= {avlog e }: E{@)\Q( A+ Xlog A — logX‘.)}
X
- EH:ﬁEm:x
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Example - Poisson Distribution (cont’d)

Therefore, the Cramer-Rao lower bound is

1 A
X)| > = —
Var[ W(X)] > W) " 7
where W is any unbiased estimator.
. — X A
Var(A;) = Var(X) = Var(X) = —
n n

Therefore, A\; = X is the best unbiased estimator of \.

N A
Var(\ —
ar( 2)>n

(details is omitted), so g is not the best unbiased estimator.
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Example - Normal Distribution
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With and without Lemma 7.3.11

With Lemma 7.3.11

J(A):—E[W long(X|)\)] E[W( A+ Xlog A — 1ogX!)} —1

v

Without Lemma 7.3.11

) = E'{aaAlong(XW}Q {(%(—)\Jerog)\—log)ﬂ)}Q]

=F

X2 X Xx? E(X) EX?)
= FE {_HX} E{1—2A+V}—1—2 e
- E(X)  Var(X)+ [E(X)]* AA+A 1
= 1-2——+ 32 =l-234+——=+

A
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Applying Lemma 7.3.11

= Xy, Xy 1fl\(-izj\/'(,u, 0?), where o2 is known.

= The Cramer-Rao bound for p is [n(y)] ="

e
Ip) = —-FE _Wlogfx(X\u)]
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When can we interchange the order of differentiation and integration? l

Answer

= For exponential family, always yes.

= Not always yes for non-exponential family. Will have to check the
individual case.

v

X1, X 2% Uniform(0, 0)
0

& s [ 1w 2 s

v

Hyun Min Kang Biostatistics 602 - Lecture 11 February 14th, 2013 32/33




Summary

= Invariance Property
= Mean Squared Error
= Unbiased Estimator

= Cramer-Rao inequality

More on Cramer-Rao inequality
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