Biostatistics 602 - Statistical Inference Lecture 11 **Evaluation of Point Estimators**

Hyun Min Kang

February 14th, 2013

Biostatistics 602 - Lecture 11 February 14th, 2013

Last Lecture

00000

Hyun Min Kang

- 1 What is a maximum likelihood estimator (MLE)?
- 2 How can you find an MLE?
- 3 Does an ML estimate always fall into a valid parameter space?
- 4 If you know MLE of θ , can you also know MLE of $\tau(\theta)$?

Some News

- Homework 3 is posted.
 - Due is Tuesday, February 26th.
- Next Thursday (Feb 21) is the midterm day.
 - We will start sharply at 1:10pm.
 - It would be better to solve homework 3 yourself to get prepared.

Biostatistics 602 - Lecture 11

- The exam is closed book, covering all the material from Lecture 1 to
- Last year's midterm is posted on the web page.

Recap - Maximum Likelihood Estimator

Definition

00000

Hyun Min Kang

- For a given sample point $\mathbf{x} = (x_1, \dots, x_n)$,
- let $\hat{\theta}(\mathbf{x})$ be the value such that
- $L(\theta|\mathbf{x})$ attains its maximum.
- More formally, $L(\hat{\theta}(\mathbf{x})|\mathbf{x}) \geq L(\theta|\mathbf{x}) \ \forall \theta \in \Omega$ where $\hat{\theta}(\mathbf{x}) \in \Omega$.
- $\hat{\theta}(\mathbf{x})$ is called the maximum likelihood estimate of θ based on data \mathbf{x} ,
- and $\hat{\theta}(\mathbf{X})$ is the maximum likelihood estimator (MLE) of θ .

February 14th, 2013 Hyun Min Kang Biostatistics 602 - Lecture 11 Hyun Min Kang Biostatistics 602 - Lecture 11 February 14th, 2013

Recap - Invariance Property of MLE

Question

If $\hat{\theta}$ is the MLE of θ , what is the MLE of $\tau(\theta)$?

Example

 $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \text{Bernoulli}(p) \text{ where } 0$

- **1)** What is the MLE of p?
- 2 What is the MLE of odds, defined by $\eta = p/(1-p)$?

Getting MLE of $\eta = \frac{p}{1-p}$ from \hat{p}

$$L^*(\eta|\mathbf{x}) = \frac{\eta^{\sum x_i}}{(1+\eta)^n}$$

- From MLE of \hat{p} , we know $L^*(\eta|\mathbf{x})$ is maximized when $p = \eta/(1+\eta) = \hat{p}.$
- Equivalently, $L^*(\eta|\mathbf{x})$ is maximized when $\eta = \hat{p}/(1-\hat{p}) = \tau(\hat{p})$, because τ is a one-to-one function.
- Therefore $\hat{\eta} = \tau(\hat{p})$.

Hyun Min Kang

Hyun Min Kang Biostatistics 602 - Lecture 11 February 14th 2013

Biostatistics 602 - Lecture 11

Invariance Property of MLE

Fact

Denote the MLE of θ by $\hat{\theta}$. If $\tau(\theta)$ is an one-to-one function of θ , then MLE of $\tau(\theta)$ is $\tau(\hat{\theta})$.

Proof

The likelihood function in terms of $\tau(\theta) = \eta$ is

$$\begin{array}{lcl} L^*(\tau(\theta)|\mathbf{x}) & = & \displaystyle \prod_{i=1}^n f_X(x_i|\theta) = \prod_{i=1}^n f(x_i|\tau^{-1}(\eta)) \\ \\ & = & L(\tau^{-1}(\eta)|\mathbf{x}) \end{array}$$

We know this function is maximized when $\tau^{-1}(\eta) = \hat{\theta}$, or equivalently, when $\eta = \tau(\hat{\theta})$. Therefore, MLE of $\eta = \tau(\theta)$ is $\tau(\hat{\theta})$.

Induced Likelihood Function

Definition

- Let $L(\theta|\mathbf{x})$ be the likelihood function for a given data x_1, \dots, x_n
- and let $\eta = \tau(\theta)$ be a (possibly not a one-to-one) function of θ .

We define the *induced likelihood function* L^* by

$$L^*(\eta|\mathbf{x}) = \sup_{\theta \in \tau^{-1}(\eta)} L(\theta|\mathbf{x})$$

where $\tau^{-1}(\eta) = \{\theta : \tau(\theta) = \eta, \ \theta \in \Omega\}.$

• The value of η that maximize $L^*(\eta|\mathbf{x})$ is called the MLE of $\eta = \tau(\theta)$.

Hyun Min Kang Biostatistics 602 - Lecture 11 February 14th, 2013

Hyun Min Kang

Biostatistics 602 - Lecture 11

February 14th, 2013

Recap

MLE

Evaluatio

Cramer-Rao

Summary

Invariance Property of MLE

Theorem 7.2.10

If θ is the MLE of $\hat{\theta}$, then the MLE of $\eta=\tau(\theta)$ is $\tau(\hat{\theta})$, where $\tau(\theta)$ is any function of θ .

Proof - Using Induced Likelihood Function

$$L^*(\hat{\eta}|\mathbf{x}) = \sup_{\eta} L^*(\eta|\mathbf{x}) = \sup_{\eta} \sup_{\theta \in \tau^{-1}(\eta)} L(\theta|\mathbf{x})$$
$$= \sup_{\theta} L(\theta|\mathbf{x}) = L(\hat{\theta}|\mathbf{x})$$
$$L(\hat{\theta}|\mathbf{x}) = \sup_{\theta \in \tau^{-1}(\tau(\hat{\theta}))} L(\theta|\mathbf{x}) = L^*[\tau(\hat{\theta})|\mathbf{x}]$$

Hence, $L^*(\hat{\eta}|\mathbf{x}) = L^*[\tau(\hat{\theta})|\mathbf{x}]$ and $\tau(\hat{\theta})$ is the MLE of $\tau(\theta)$.

Properties of MLE

- 1 Optimal in some sense : We will study this later
- 2 By definition, MLE will always fall into the range of the parameter space.
- 3 Not always easy to obtain; may be hard to find the global maximum.
- 4 Heavily depends on the underlying distributional assumptions (i.e. not robust).

Method of Evaluating Estimators

Definition: Unbiasedness

Hyun Min Kang

Suppose $\hat{\theta}$ is an estimator for θ , then the bias of θ is defined as $\mathrm{Bias}(\theta) = E(\hat{\theta}) - \theta$

If the bias is equal to 0, then $\hat{\theta}$ is an unbiased estimator for θ .

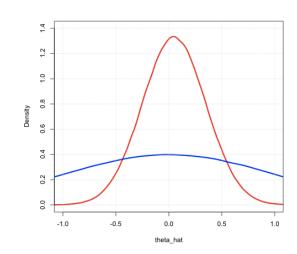
Example

 X_1,\cdots,X_n are iid samples from a distribution with mean μ . Let $\overline{X}=\frac{1}{n}\sum_{i=1}^n X_i$ is an estimator of μ . The bias is $\mathrm{Bias}(\mu) = E(\overline{X}) - \mu$

$$= E(X_i) - \mu = E(X_i) - \mu = \frac{1}{n} \sum_{i=1}^{n} E(X_i) - \mu = \mu - \mu = 0$$

Therefore \overline{X} is an unbiased estimator for μ .

How important is unbiased?



- $\hat{\theta}_1$ (blue) is unbiased but has a chance to be very far away from $\theta=0$.
- $\hat{\theta}_2$ (red) is biased but more likely to be closer to the true θ than $\hat{\theta}_1$.

Hyun Min Kang Biostatistics 602 - Lecture 11 February 14th, 2013 11 / 33 Hyun Min Kang Biostatistics 602 - Lecture 11 February 14th, 2013 12

Evaluation Evaluation

Mean Squared Error

Definition

Mean Squared Error (MSE) of an estimator $\hat{\theta}$ is defined as $MSE(\hat{\theta}) = E[(\hat{\theta} - \theta)]^2$

Property of MSE

$$MSE(\hat{\theta}) = E[(\hat{\theta} - E\hat{\theta} + E\hat{\theta} - \theta)]^{2}$$

$$= E[(\hat{\theta} - E\hat{\theta})^{2}] + E[(E\hat{\theta} - \theta)^{2}] + 2E[(\hat{\theta} - E\hat{\theta})]E[(E\hat{\theta} - \theta)]$$

$$= E[(\hat{\theta} - E\hat{\theta})^{2}] + (E\hat{\theta} - \theta)^{2} + 2(E\hat{\theta} - E\hat{\theta})E[(E\hat{\theta} - \theta)]$$

$$= Var(\hat{\theta}) + Bias^{2}(\theta)$$

Hyun Min Kang

Biostatistics 602 - Lecture 11

Uniformly Minimum Variance Unbiased Estimator

Definition

 $W^*(\mathbf{X})$ is the best unbiased estimator, or uniformly minimum variance unbiased estimator (UMVUE) of $\tau(\theta)$ if,

- **1** $E[W^*(\mathbf{X})|\theta] = \tau(\theta)$ for all θ (unbiased)
- 2 and $Var[W^*(\mathbf{X})|\theta] \leq Var[W(\mathbf{X})|\theta]$ for all θ , where W is any other unbiased estimator of $\tau(\theta)$ (minimum variance).

How to find the Best Unbiased Estimator

- Find the lower bound of variances of any unbiased estimator of $\tau(\theta)$, say $B(\theta)$.
- If W^* is an unbiased estimator of $\tau(\theta)$ and satisfies $\operatorname{Var}[W^*(\mathbf{X})|\theta] = B(\theta)$, then W^* is the best unbiased estimator.

Example

- $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mu, 1)$
- $\mu_1 = 1$, $\mu_2 = \overline{X}$.

$$MSE(\hat{\mu}_1) = E(\hat{\mu}_1 - \mu)^2 = (1 - \mu)^2$$

$$MSE(\hat{\mu}_2) = E(\overline{X} - \mu)^2 = Var(\overline{X}) = \frac{1}{n}$$

- Suppose that the true $\mu = 1$, then $MSE(\mu_1) = 0 < MSE(\mu_2)$, and no estimator can beat μ_1 in terms of MSE when true $\mu = 1$.
- Therefore, we cannot find an estimator that is uniformly the best in terms of MSE across all $\theta \in \Omega$ among all estimators
- Restrict the class of estimators, and find the "best" estimator within the small class.

Biostatistics 602 - Lecture 11

Cramer-Rao inequality

Hyun Min Kang

Theorem 7.3.9: Cramer-Rao Theorem

Let X_1, \dots, X_n be a sample with joint pdf/pmf of $f_{\mathbf{X}}(\mathbf{x}|\theta)$. Suppose $W(\mathbf{X})$ is an estimator satisfying

- $\mathbf{1}$ $E[W(\mathbf{X})|\theta] = \tau(\theta), \forall \theta \in \Omega.$
- 2 $\operatorname{Var}[W(\mathbf{X})|\theta] < \infty$.

For $h(\mathbf{x}) = 1$ and $h(\mathbf{x}) = W(\mathbf{x})$, if the differentiation and integrations are interchangeable, i.e.

$$\frac{d}{d\theta} E[h(\mathbf{x})|\theta] = \frac{d}{d\theta} \int_{x \in \mathcal{X}} h(\mathbf{x}) f_{\mathbf{X}}(\mathbf{x}|\theta) d\mathbf{x} = \int_{x \in \mathcal{X}} h(\mathbf{x}) \frac{\partial}{\partial \theta} f_{\mathbf{X}}(\mathbf{x}|\theta) d\mathbf{x}$$

Then, a lower bound of $Var[W(\mathbf{X})|\theta]$ is

$$\operatorname{Var}[W(\mathbf{X})] \ge \frac{\left[\tau'(\theta)\right]^2}{E\left[\left\{\frac{\partial}{\partial \theta} \log f_{\mathbf{X}}(\mathbf{x}|\theta)\right\}^2\right]}$$

Hyun Min Kang Biostatistics 602 - Lecture 11 February 14th, 2013 15 / 33 Hyun Min Kang Biostatistics 602 - Lecture 11 February 14th, 2013
 Recap
 MLE
 Evaluation
 Cramer-Rao
 Summary

 00000
 0000
 0 ● 000000000000000
 0

Proving Cramer-Rao Theorem (1/4)

By Cauchy-Schwarz inequality,

$$[Cov(X, Y)]^2 \le Var(X)Var(Y)$$

Replacing X and Y,

$$\left[\operatorname{Cov}\{W(\mathbf{X}), \frac{\partial}{\partial \theta} \log f_{\mathbf{X}}(\mathbf{X}|\theta)\}\right]^{2} \leq \operatorname{Var}[W(\mathbf{X})] \operatorname{Var}\left[\frac{\partial}{\partial \theta} \log f_{\mathbf{X}}(\mathbf{X}|\theta)\right] \\
\operatorname{Var}[W(\mathbf{X})] \geq \frac{\left[\operatorname{Cov}\{W(\mathbf{X}), \frac{\partial}{\partial \theta} \log f_{\mathbf{X}}(\mathbf{X}|\theta)\}\right]^{2}}{\operatorname{Var}\left[\frac{\partial}{\partial \theta} \log f_{\mathbf{X}}(\mathbf{X}|\theta)\right]}$$

Using $Var(X) = EX^2 - (EX)^2$,

$$\operatorname{Var}\left[\frac{\partial}{\partial \theta} \log f_{\mathbf{X}}(\mathbf{X}|\theta)\right] = E\left[\left\{\frac{\partial}{\partial \theta} \log f_{\mathbf{X}}(\mathbf{X}|\theta)\right\}^{2}\right] - E\left[\frac{\partial}{\partial \theta} \log f_{\mathbf{X}}(\mathbf{X}|\theta)\right]^{2}$$

Hyun Min Kang

ostatistics 602 - Lecture 1

February 14th, 2013

Ç....

Summa

Proving Cramer-Rao Theorem (3/4)

$$\operatorname{Cov}\left[W(\mathbf{X}), \frac{\partial}{\partial \theta} \log f_{\mathbf{X}}(\mathbf{X}|\theta)\right]$$

$$= E\left[W(\mathbf{X}) \cdot \frac{\partial}{\partial \theta} \log f_{\mathbf{X}}(\mathbf{X}|\theta)\right] - E\left[W(\mathbf{X})\right] E\left[\frac{\partial}{\partial \theta} \log f_{\mathbf{X}}(\mathbf{X}|\theta)\right]$$

$$= E\left[W(\mathbf{X}) \cdot \frac{\partial}{\partial \theta} \log f_{\mathbf{X}}(\mathbf{X}|\theta)\right] = \int_{\mathbf{x} \in \mathcal{X}} W(\mathbf{x}) \frac{\partial}{\partial \theta} \log f_{\mathbf{X}}(\mathbf{x}|\theta) f(\mathbf{x}|\theta) d\mathbf{x}$$

$$= \int_{\mathbf{x} \in \mathcal{X}} W(\mathbf{x}) \frac{\frac{\partial}{\partial \theta} f_{\mathbf{X}}(\mathbf{x}|\theta)}{f(\mathbf{x}|\theta)} f(\mathbf{x}|\theta) d\mathbf{x} = \int_{\mathbf{x} \in \mathcal{X}} W(\mathbf{x}) \frac{\partial}{\partial \theta} f_{\mathbf{X}}(\mathbf{x}|\theta)$$

$$= \frac{d}{d\theta} \int_{\mathbf{x} \in \mathcal{X}} W(\mathbf{x}) f_{\mathbf{X}}(\mathbf{x}|\theta) \quad \text{(by assumption)}$$

$$= \frac{d}{d\theta} E\left[W(\mathbf{X})\right] = \frac{d}{d\theta} \tau(\theta) = \tau'(\theta)$$

Proving Cramer-Rao Theorem (2/4)

$$E\left[\frac{\partial}{\partial \theta} \log f_{\mathbf{X}}(\mathbf{X}|\theta)\right] = \int_{\mathbf{x} \in \mathcal{X}} \left[\frac{\partial}{\partial \theta} \log f_{\mathbf{X}}(\mathbf{x}|\theta)\right] f_{\mathbf{X}}(\mathbf{x}|\theta) d\mathbf{x}$$

$$= \int_{\mathbf{x} \in \mathcal{X}} \frac{\frac{\partial}{\partial \theta} f_{\mathbf{X}}(\mathbf{x}|\theta)}{f_{\mathbf{X}}(\mathbf{x}|\theta)} f_{\mathbf{X}}(\mathbf{x}|\theta) d\mathbf{x}$$

$$= \int_{\mathbf{x} \in \mathcal{X}} \frac{\partial}{\partial \theta} f_{\mathbf{X}}(\mathbf{x}|\theta) d\mathbf{x}$$

$$= \frac{d}{d\theta} \int_{\mathbf{x} \in \mathcal{X}} f_{\mathbf{X}}(\mathbf{x}|\theta) d\mathbf{x} \qquad \text{(by assumption)}$$

$$= \frac{d}{d\theta} 1 = 0$$

$$\operatorname{Var}\left[\frac{\partial}{\partial \theta} \log f_{\mathbf{X}}(\mathbf{X}|\theta)\right] = E\left[\left\{\frac{\partial}{\partial \theta} \log f_{\mathbf{X}}(\mathbf{X}|\theta)\right\}^{2}\right]$$

Hyun Min Kang

Evaluation

February 14th, 201

Summai

000 000

OOOOO

0000•0000000000000

Proving Cramer-Rao Theorem (4/4)

From the previous results

$$\operatorname{Var}\left[\frac{\partial}{\partial \theta} \log f_{\mathbf{X}}(\mathbf{X}|\theta)\right] = E\left[\left\{\frac{\partial}{\partial \theta} \log f_{\mathbf{X}}(\mathbf{X}|\theta)\right\}^{2}\right]$$
$$\operatorname{Cov}\left[W(\mathbf{X}), \frac{\partial}{\partial \theta} \log f_{\mathbf{X}}(\mathbf{X}|\theta)\right] = \tau'(\theta)$$

Therefore, Cramer-Rao lower bound is

$$\operatorname{Var}[W(\mathbf{X})] \geq \frac{\left[\operatorname{Cov}\{W(\mathbf{X}), \frac{\partial}{\partial \theta} \log f_{\mathbf{X}}(\mathbf{X}|\theta)\}\right]^{2}}{\operatorname{Var}\left[\frac{\partial}{\partial \theta} \log f_{\mathbf{X}}(\mathbf{X}|\theta)\right]}$$
$$= \frac{\left[\tau'(\theta)\right]^{2}}{E\left[\left\{\frac{\partial}{\partial \theta} \log f_{\mathbf{X}}(\mathbf{X}|\theta)\right\}^{2}\right]}$$

Hyun Min Kang Biostatistics 602 - Lecture 11 February 14th, 2013 19 / 33 Hyun Min Kang Biostatistics 602 - Lecture 11 February 14th, 2013 20

 Recap
 MLE
 Evaluation
 Cramer-Rao

 00000
 0000
 00000●000000

Cramer-Rao bound in iid case

Corollary 7.3.10

If X_1, \dots, X_n are iid samples from pdf/pmf $f_X(x|\theta)$, and the assumptions in the above Cramer-Rao theorem hold, then the lower-bound of $\mathrm{Var}[W(\mathbf{X})|\theta]$ becomes

$$\operatorname{Var}[W(\mathbf{X})] \geq \frac{\left[\tau'(\theta)\right]^2}{nE\left[\left\{\frac{\partial}{\partial \theta}\log f_X(X|\theta)\right\}^2\right]}$$

Proof

We need to show that

Hyun Min Kang

$$E\left[\left\{\frac{\partial}{\partial \theta} \log f_{\mathbf{X}}(\mathbf{X}|\theta)\right\}^{2}\right] = nE\left[\left\{\frac{\partial}{\partial \theta} \log f_{X}(X|\theta)\right\}^{2}\right]$$

ap MLE Evaluation **Cramer-Rao** Summa

Proving Corollary 7.3.10

Because X_1, \dots, X_n are independent,

$$E\left[\sum_{i \neq j} \frac{\partial}{\partial \theta} \log f_X(X_i|\theta) \frac{\partial}{\partial \theta} \log f_X(X_j|\theta)\right]$$
$$= \sum_{i \neq j} E\left[\frac{\partial}{\partial \theta} \log f_X(X_i|\theta)\right] E\left[\frac{\partial}{\partial \theta} \log f_X(X_j|\theta)\right] = 0$$

$$E\left[\left\{\frac{\partial}{\partial \theta} \log f_{\mathbf{X}}(\mathbf{X}|\theta)\right\}^{2}\right] = E\left[\sum_{i=1}^{n} \left\{\frac{\partial}{\partial \theta} \log f_{X}(X_{i}|\theta)\right\}^{2}\right]$$

$$= \sum_{i=1}^{n} E\left[\left\{\frac{\partial}{\partial \theta} \log f_{X}(X_{i}|\theta)\right\}^{2}\right]$$

$$= nE\left[\left\{\frac{\partial}{\partial \theta} \log f_{X}(X_{i}|\theta)\right\}^{2}\right]$$

Proving Corollary 7.3.10

$$E\left[\left\{\frac{\partial}{\partial \theta} \log f_{\mathbf{X}}(\mathbf{X}|\theta)\right\}^{2}\right] = E\left[\left\{\frac{\partial}{\partial \theta} \log \prod_{i=1}^{n} f_{X}(X_{i}|\theta)\right\}^{2}\right]$$

$$= E\left[\left\{\frac{\partial}{\partial \theta} \sum_{i=1}^{n} \log f_{X}(X_{i}|\theta)\right\}^{2}\right]$$

$$= E\left[\left\{\sum_{i=1}^{n} \frac{\partial}{\partial \theta} \log f_{X}(X_{i}|\theta)\right\}^{2}\right]$$

$$= E\left[\sum_{i=1}^{n} \left\{\frac{\partial}{\partial \theta} \log f_{X}(X_{i}|\theta)\right\}^{2} + \sum_{i \neq j} \frac{\partial}{\partial \theta} \log f_{X}(X_{i}|\theta)\frac{\partial}{\partial \theta} \log f_{X}(X_{j}|\theta)\right]$$

ecap MLE

Evaluation

Biostatistics 602 - Lecture 11

rebluary 14th, 2013

February 14th, 2013

24 / 33

Summar

Remark from Corollary 7.3.10

In iid case, Cramer-Rao lower bound for an unbiased estimator of θ is

$$\operatorname{Var}[W(\mathbf{X})] \geq \frac{1}{nE\left[\left\{\frac{\partial}{\partial \theta}\log f_X(X|\theta)\right\}^2\right]}$$

Because $\tau(\theta) = \theta$ and $\tau'(\theta) = 1$.

Hyun Min Kang Biostatistics 602 - Lecture 11 February 14th, 2013 23 / 33 Hyun Min Kang Biostatistics 602 - Lecture 11

Recap

MLE

Evaluation

Cramer-Rao

ummary

MLE

Evaluation

Cramer-Rao

Summary

Score Function

Definition: Score or Score Function for X

$$X_1, \dots, X_n \quad \stackrel{\text{i.i.d.}}{\sim} \quad f_X(x|\theta)$$

$$S(X|\theta) = \frac{\partial}{\partial \theta} \log f_X(X|\theta)$$

$$E[S(X|\theta)] = 0$$

$$S_n(X|\theta) = \frac{\partial}{\partial \theta} \log f_{\mathbf{X}}(\mathbf{X}|\theta)$$

Fisher Information Number

Definition: Fisher Information Number

$$I(\theta) = E\left[\left\{\frac{\partial}{\partial \theta} \log f_X(X|\theta)\right\}^2\right] = E\left[S^2(X|\theta)\right]$$

$$I_n(\theta) = E\left[\left\{\frac{\partial}{\partial \theta} \log f_{\mathbf{X}}(\mathbf{X}|\theta)\right\}^2\right]$$

$$= nE\left[\left\{\frac{\partial}{\partial \theta} \log f_X(X|\theta)\right\}^2\right] = nI(\theta)$$

The bigger the information number, the more information we have about θ , the smaller bound on the variance of unbiased estimates.

Hyun Min Kang

Biostatistics 602 - Lecture 11

February 14th, 2013

25

Evaluation

February 14th, 2013

Summary

Recap 00000 VILE 0000 Evaluation 00000 Summa

000 0

Cramer-Rao 0000000000000 Summary O

Simplified Fisher Information

Lemma 7.3.11

If $f_X(x|\theta)$ satisfies the two interchangeability conditions

$$\frac{d}{d\theta} \int_{x \in \mathcal{X}} f_X(x|\theta) dx = \int_{x \in \mathcal{X}} \frac{\partial}{\partial \theta} f_X(x|\theta) dx$$

$$\frac{d}{d\theta} \int_{x \in \mathcal{X}} \frac{\partial}{\partial \theta} f_X(x|\theta) dx = \int_{x \in \mathcal{X}} \frac{\partial^2}{\partial \theta^2} f_X(x|\theta) dx$$

which are true for exponential family, then

$$I(\theta) = E\left[\left\{\frac{\partial}{\partial \theta} \log f_X(X|\theta)\right\}^2\right] = -E\left[\frac{\partial^2}{\partial \theta^2} \log f_X(X|\theta)\right]$$

Example - Poisson Distribution

- $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \text{Poisson}(\lambda)$
- $\lambda_1 = \overline{X}$
- $\lambda_2 = s_{\mathbf{X}}^2$
- $E[\lambda_1] = E(\overline{X}) = \lambda$.

Cramer-Rao lower bound is $I_n^{-1}(\lambda) = [nI(\lambda)]^{-1}$.

$$I(\lambda) = E\left[\left\{\frac{\partial}{\partial \lambda} \log f_X(X|\lambda)\right\}^2\right] = -E\left[\frac{\partial^2}{\partial \lambda^2} \log f_X(X|\lambda)\right]$$

$$= -E\left[\frac{\partial^2}{\partial \lambda^2} \log \frac{e^{-\lambda} \lambda^X}{X!}\right] = -E\left[\frac{\partial^2}{\partial \lambda^2} \left(-\lambda + X \log \lambda - \log X!\right)\right]$$

$$= E\left[\frac{X}{\lambda^2}\right] = \frac{1}{\lambda^2} E(X) = \frac{1}{\lambda}$$

Example - Poisson Distribution (cont'd)

Therefore, the Cramer-Rao lower bound is

$$\operatorname{Var}[W(\mathbf{X})] \ge \frac{1}{nI(\lambda)} = \frac{\lambda}{n}$$

where W is any unbiased estimator.

$$\operatorname{Var}(\hat{\lambda}_1) = \operatorname{Var}(\overline{X}) = \frac{\operatorname{Var}(X)}{n} = \frac{\lambda}{n}$$

Therefore, $\lambda_1 = \overline{X}$ is the best unbiased estimator of λ .

$$\operatorname{Var}(\hat{\lambda}_2) > \frac{\lambda}{n}$$

(details is omitted), so $\hat{\lambda}_2$ is not the best unbiased estimator.

 Hyun Min Kang
 Biostatistics 602 - Lecture 11
 February 14th, 2013
 29 /

 Recap
 MLE
 Evaluation
 Cramer-Rao
 Summar

 0000
 0000
 0000000000000000000
 0

Example - Normal Distribution

- $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mu, \sigma^2)$, where σ^2 is known.
- The Cramer-Rao bound for μ is $[nI(\mu)]^{-1}$.

$$\begin{split} I(\mu) &= -E \left[\frac{\partial^2}{\partial \mu^2} \log f_X(X|\mu) \right] \\ &= -E \left[\frac{\partial^2}{\partial \mu^2} \log \left\{ \frac{1}{\sqrt{2\pi\sigma^2}} \exp \left(-\frac{(X-\mu)^2}{2\sigma^2} \right) \right\} \right] \\ &= -E \left[\frac{\partial^2}{\partial \mu^2} \left\{ -\frac{1}{2} \log(2\pi\sigma^2) - \frac{(X-\mu)^2}{2\sigma^2} \right\} \right] \\ &= -E \left[\frac{\partial}{\partial \mu} \left\{ \frac{2(X-\mu)}{2\sigma^2} \right\} \right] = \frac{1}{\sigma^2} \end{split}$$

With and without Lemma 7.3.11

With Lemma 7.3.11

$$I(\lambda) = -E\left[\frac{\partial^2}{\partial \lambda^2} \log f_X(X|\lambda)\right] = -E\left[\frac{\partial^2}{\partial \lambda^2} \left(-\lambda + X \log \lambda - \log X!\right)\right] = \frac{1}{\lambda}$$

Without Lemma 7.3.11

$$I(\lambda) = E\left[\left\{\frac{\partial}{\partial \lambda} \log f_X(X|\lambda)\right\}^2\right] = E\left[\left\{\frac{\partial}{\partial \lambda} \left(-\lambda + X \log \lambda - \log X!\right)\right\}^2\right]$$

$$= E\left[\left\{-1 + \frac{X}{\lambda}\right\}^2\right] = E\left[1 - 2\frac{X}{\lambda} + \frac{X^2}{\lambda^2}\right] = 1 - 2\frac{E(X)}{\lambda} + \frac{E(X^2)}{\lambda^2}$$

$$= 1 - 2\frac{E(X)}{\lambda} + \frac{\operatorname{Var}(X) + [E(X)]^2}{\lambda^2} = 1 - 2\frac{\lambda}{\lambda} + \frac{\lambda + \lambda^2}{\lambda^2} = \frac{1}{\lambda}$$

Recap MLE Evaluation Cramer-Rao Summary

Applying Lemma 7.3.11

Question

When can we interchange the order of differentiation and integration?

Answer

- For exponential family, always yes.
- Not always yes for non-exponential family. Will have to check the individual case.

Example

$$X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \text{Uniform}(0, \theta)$$

$$\frac{d}{d\theta} \int_0^\theta h(x) f_X(x|\theta) dx \neq \int_0^\theta h(x) \frac{\partial}{\partial \theta} f_X(x|\theta) dx$$

Hyun Min Kang Biostatistics 602 - Lecture 11 February 14th, 2013 31 / 33 Hyun Min Kang Biostatistics 602 - Lecture 11 February 14th, 2013 32 / 3

MLE 0000 Summary

Today

- Invariance Property
- Mean Squared Error
- Unbiased Estimator
- Cramer-Rao inequality

Next Lecture

• More on Cramer-Rao inequality

Hyun Min Kang

Biostatistics 602 - Lecture 11

February 14th, 2013 33 / 33

