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..1 What is a complete statistic?

..2 Why it is called as ”complete statistic”?

..3 Can the same statistic be both complete and incomplete statistics,
depending on the parameter space?

..4 What is the relationship between complete and sufficient statistics?
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Complete Statistics

.Definition..

......

• Let T = {fT(t|θ), θ ∈ Ω} be a family of pdfs or pmfs for a statistic
T(X).

• The family of probability distributions is called complete if
• E[g(T)|θ] = 0 for all θ implies Pr[g(T) = 0|θ] = 1 for all θ.

• In other words, g(T) = 0 almost surely.
• Equivalently, T(X) is called a complete statistic
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Example - Poisson distribution

.When parameter space is limited - NOT complete..

......

• Suppose T =
{

fT : fT(t|λ) = λte−λ

t!

}
for t ∈ {0, 1, 2, · · · }. Let

λ ∈ Ω = {1, 2}. This family is NOT complete

.With full parameter space - complete..

......

• X1, · · · ,Xn
i.i.d.∼ Poisson(λ), λ > 0.

• T(X) =
∑n

i=1 Xi is a complete statistic.
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Example from Stigler (1972) Am. Stat.
.Problem..

......
Let X is a uniform random sample from {1, · · · , θ} where θ ∈ Ω = N.

Is
T(X) = X a complete statistic?

.Solution..

......

Consider a function g(T) such that E[g(T)|θ] = 0 for all θ ∈ N.
Note that fX(x) = 1

θ I(x ∈ {1, · · · , θ}) = 1
θ INθ

(x).

E[g(T)|θ] = E[g(X)|θ] =
θ∑

x=1

1

θ
g(x) = 1

θ

θ∑
x=1

g(x) = 0

θ∑
x=1

g(x) = 0
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Solution (cont’d)

for all θ ∈ N, which implies
• if θ = 1,

∑θ
x=1 g(x) = g(1) = 0

• if θ = 2,
∑θ

x=1 g(x) = g(1) + g(2) = g(2) = 0.

•
...

• if θ = k,
∑θ

x=1 g(x) = g(1) + · · ·+ g(k − 1) = g(k) = 0.
Therefore, g(x) = 0 for all x ∈ N, and T(X) = X is a complete statistic for
θ ∈ Ω = N.
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Is the previous example barely complete?
.Modified Problem..

......
Let X is a uniform random sample from {1, · · · , θ} where
θ ∈ Ω = N− {n}.

Is T(X) = X a complete statistic?
.Solution..

......

Define a nonzero g(x) as follows

g(x) =


1 x = n
−1 x = n + 1
0 otherwise

E[g(T)|θ] =
1

θ

θ∑
x=1

g(x) =
{

0 θ ̸= n
1
θ θ = n

Because Ω does not include n, g(x) = 0 for all θ ∈ Ω = N− {n}, and
T(X) = X is not a complete statistic.
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Last Lecture : Ancillary and Complete Statistics

.Problem..

......

• Let X1, · · · ,Xn
i.i.d.∼ Uniform(θ, θ + 1), θ ∈ R.

• Is T(X) = (X(1),X(n)) a complete statistic?

.A Simple Proof..

......

• We know that R = X(n) − X(1) is an ancillary statistic, which do not
depend on θ.

• Define g(T) = X(n) − X(1) − E(R). Note that E(R) is constant to θ.
• Then E[g(T)|θ] = E(R)− E(R) = 0, so T is not a complete statistic.
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Basu’s Theorem

.
Summary

Useful Fact 1 : Ancillary and Complete Statistics

.Fact..

......
For a statistic T(X), If a non-constant function of T, say r(T) is ancillary,
then T(X) cannot be complete

.Proof..

......

Define g(T) = r(T)− E[r(T)], which does not depend on the parameter θ
because r(T) is ancillary. Then E[g(T)|θ] = 0 for a non-zero function
g(T), and T(X) is not a complete statistic.
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Summary

Useful Fact 2 : Arbitrary Function of Complete Statistics

.Fact..

......
If T(X) is a complete statistic, then a function of T, say T∗ = r(T) is also
complete.

.Proof..

......

E[g(T∗)|θ] = E[g ◦ r(T)|θ]

Assume that E[g(T∗)|θ] = 0 for all θ, then E[g ◦ r(T)|θ] = 0 holds for all θ
too. Because T(X) is a complete statistic, Pr[g ◦ r(T) = 0] = 1, ∀θ ∈ Ω.
Therefore Pr[g(T∗) = 0] = 1, and T∗ is a complete statistic.

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 10 / 21



. . . . . .

. . . . . . . . . .
Complete Statistics

. . . . . . . . .
Basu’s Theorem

.
Summary

Useful Fact 2 : Arbitrary Function of Complete Statistics

.Fact..

......
If T(X) is a complete statistic, then a function of T, say T∗ = r(T) is also
complete.

.Proof..

......

E[g(T∗)|θ] = E[g ◦ r(T)|θ]

Assume that E[g(T∗)|θ] = 0 for all θ, then E[g ◦ r(T)|θ] = 0 holds for all θ
too. Because T(X) is a complete statistic, Pr[g ◦ r(T) = 0] = 1, ∀θ ∈ Ω.
Therefore Pr[g(T∗) = 0] = 1, and T∗ is a complete statistic.

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 10 / 21



. . . . . .

. . . . . . . . . .
Complete Statistics

. . . . . . . . .
Basu’s Theorem

.
Summary

Useful Fact 2 : Arbitrary Function of Complete Statistics

.Fact..

......
If T(X) is a complete statistic, then a function of T, say T∗ = r(T) is also
complete.

.Proof..

......

E[g(T∗)|θ] = E[g ◦ r(T)|θ]

Assume that E[g(T∗)|θ] = 0 for all θ,

then E[g ◦ r(T)|θ] = 0 holds for all θ
too. Because T(X) is a complete statistic, Pr[g ◦ r(T) = 0] = 1, ∀θ ∈ Ω.
Therefore Pr[g(T∗) = 0] = 1, and T∗ is a complete statistic.

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 10 / 21



. . . . . .

. . . . . . . . . .
Complete Statistics

. . . . . . . . .
Basu’s Theorem

.
Summary

Useful Fact 2 : Arbitrary Function of Complete Statistics

.Fact..

......
If T(X) is a complete statistic, then a function of T, say T∗ = r(T) is also
complete.

.Proof..

......

E[g(T∗)|θ] = E[g ◦ r(T)|θ]

Assume that E[g(T∗)|θ] = 0 for all θ, then E[g ◦ r(T)|θ] = 0 holds for all θ
too.

Because T(X) is a complete statistic, Pr[g ◦ r(T) = 0] = 1, ∀θ ∈ Ω.
Therefore Pr[g(T∗) = 0] = 1, and T∗ is a complete statistic.

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 10 / 21



. . . . . .

. . . . . . . . . .
Complete Statistics

. . . . . . . . .
Basu’s Theorem

.
Summary

Useful Fact 2 : Arbitrary Function of Complete Statistics

.Fact..

......
If T(X) is a complete statistic, then a function of T, say T∗ = r(T) is also
complete.

.Proof..

......

E[g(T∗)|θ] = E[g ◦ r(T)|θ]

Assume that E[g(T∗)|θ] = 0 for all θ, then E[g ◦ r(T)|θ] = 0 holds for all θ
too. Because T(X) is a complete statistic,

Pr[g ◦ r(T) = 0] = 1, ∀θ ∈ Ω.
Therefore Pr[g(T∗) = 0] = 1, and T∗ is a complete statistic.

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 10 / 21



. . . . . .

. . . . . . . . . .
Complete Statistics

. . . . . . . . .
Basu’s Theorem

.
Summary

Useful Fact 2 : Arbitrary Function of Complete Statistics

.Fact..

......
If T(X) is a complete statistic, then a function of T, say T∗ = r(T) is also
complete.

.Proof..

......

E[g(T∗)|θ] = E[g ◦ r(T)|θ]

Assume that E[g(T∗)|θ] = 0 for all θ, then E[g ◦ r(T)|θ] = 0 holds for all θ
too. Because T(X) is a complete statistic, Pr[g ◦ r(T) = 0] = 1, ∀θ ∈ Ω.
Therefore Pr[g(T∗) = 0] = 1, and T∗ is a complete statistic.

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 10 / 21



. . . . . .

. . . . . . . . . .
Complete Statistics

. . . . . . . . .
Basu’s Theorem

.
Summary

Theorem 6.2.28 - Lehman and Schefle (1950)

.The textbook version..

......
If a minimal sufficient statistic exists, then any complete statistic is also a
minimal sufficient statistic.

.Paraphrased version..

......Any complete, and sufficient statistic is also a minimal sufficient statistic

.The converse is NOT true..

......
A minimal sufficient statistic is not necessarily complete. (Recall the
example in the last lecture).
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Complete Statistics

. . . . . . . . .
Basu’s Theorem

.
Summary

Basu’s Theorem

.Theorem 6.2.24..

......
If T(X) is a complete sufficient statistic, then T(X) is independent of
every ancillary statistic.

.Proof strategy - for discrete case..

......

Suppose that S(X) is an ancillary statistic. We want to show that

Pr(S(X) = s|T(X) = t) = Pr(S(X) = s), ∀t ∈ T

Alternatively, we can show that

Pr(T(X) = t|S(X) = s) = Pr(T(X) = t)
Pr(T(X) = t ∧ S(X) = s) = Pr(T(X) = t)Pr(S(X) = s)
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Complete Statistics

. . . . . . . . .
Basu’s Theorem

.
Summary

Proof of Basu’s Theorem

• As S(X) is ancillary, by definition, it does not depend on θ.

• As T(X) is sufficient, by definition, fX(X|T(X)) is independent of θ.
• Because S(X) is a function of X, Pr(S(X)|T(X)) is also independent

of θ.
• We need to show that

Pr(S(X) = s|T(X) = t) = Pr(S(X) = s), ∀t ∈ T .
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Summary

Proof of Basu’s Theorem (cont’d)

Pr(S(X) = s|θ) =
∑
t∈T

Pr(S(X) = s|T(X) = t)Pr(T(X) = t|θ) (1)

Pr(S(X) = s|θ) = Pr(S(X) = s)
∑
t∈T

Pr(T(X) = t|θ) (2)

=
∑
t∈T

Pr(S(X) = s)Pr(T(X) = t|θ) (3)

Define g(t) = Pr(S(X) = s|T(X) = t)− Pr(S(X) = s). Taking (1)-(3),∑
t∈T

[Pr(S(X) = s|T(X) = t)− Pr(S(X) = s)]Pr(T(X) = t|θ) = 0∑
t∈T

g(t)Pr(T(X) = t|θ) = E[g(T(X))|θ] = 0

T(X) is complete, so g(t) = 0 almost surely for all possible t ∈ T .
Therefore, S(X) is independent of T(X).
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Complete Statistics

. . . . . . . . .
Basu’s Theorem

.
Summary

Application of Basu’s Theorem

.Problem..

......

• X1, · · · ,Xn
i.i.d.∼ Uniform(0, θ).

• Calculate E
[X(1)

X(n)

]
and E

[X(1)+X(2)

X(n)

]
.A strategy for the solution..

......

• We know that X(n) is sufficient statistic.
• We know that X(n) is complete, too.
• We can easily show that X(1)/X(n) is an ancillary statistic.
• Then we can leverage Basu’s Theorem for the calculation.

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 15 / 21



. . . . . .

. . . . . . . . . .
Complete Statistics

. . . . . . . . .
Basu’s Theorem

.
Summary

Application of Basu’s Theorem

.Problem..

......

• X1, · · · ,Xn
i.i.d.∼ Uniform(0, θ).

• Calculate E
[X(1)

X(n)

]
and E

[X(1)+X(2)

X(n)

]

.A strategy for the solution..

......

• We know that X(n) is sufficient statistic.
• We know that X(n) is complete, too.
• We can easily show that X(1)/X(n) is an ancillary statistic.
• Then we can leverage Basu’s Theorem for the calculation.

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 15 / 21



. . . . . .

. . . . . . . . . .
Complete Statistics

. . . . . . . . .
Basu’s Theorem

.
Summary

Application of Basu’s Theorem

.Problem..

......

• X1, · · · ,Xn
i.i.d.∼ Uniform(0, θ).

• Calculate E
[X(1)

X(n)

]
and E

[X(1)+X(2)

X(n)

]
.A strategy for the solution..

......

• We know that X(n) is sufficient statistic.

• We know that X(n) is complete, too.
• We can easily show that X(1)/X(n) is an ancillary statistic.
• Then we can leverage Basu’s Theorem for the calculation.

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 15 / 21



. . . . . .

. . . . . . . . . .
Complete Statistics

. . . . . . . . .
Basu’s Theorem

.
Summary

Application of Basu’s Theorem

.Problem..

......

• X1, · · · ,Xn
i.i.d.∼ Uniform(0, θ).

• Calculate E
[X(1)

X(n)

]
and E

[X(1)+X(2)

X(n)

]
.A strategy for the solution..

......

• We know that X(n) is sufficient statistic.
• We know that X(n) is complete, too.

• We can easily show that X(1)/X(n) is an ancillary statistic.
• Then we can leverage Basu’s Theorem for the calculation.

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 15 / 21



. . . . . .

. . . . . . . . . .
Complete Statistics

. . . . . . . . .
Basu’s Theorem

.
Summary

Application of Basu’s Theorem

.Problem..

......

• X1, · · · ,Xn
i.i.d.∼ Uniform(0, θ).

• Calculate E
[X(1)

X(n)

]
and E

[X(1)+X(2)

X(n)

]
.A strategy for the solution..

......

• We know that X(n) is sufficient statistic.
• We know that X(n) is complete, too.
• We can easily show that X(1)/X(n) is an ancillary statistic.

• Then we can leverage Basu’s Theorem for the calculation.

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 15 / 21



. . . . . .

. . . . . . . . . .
Complete Statistics

. . . . . . . . .
Basu’s Theorem

.
Summary

Application of Basu’s Theorem

.Problem..

......

• X1, · · · ,Xn
i.i.d.∼ Uniform(0, θ).

• Calculate E
[X(1)

X(n)

]
and E

[X(1)+X(2)

X(n)

]
.A strategy for the solution..

......

• We know that X(n) is sufficient statistic.
• We know that X(n) is complete, too.
• We can easily show that X(1)/X(n) is an ancillary statistic.
• Then we can leverage Basu’s Theorem for the calculation.

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 15 / 21



. . . . . .
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Complete Statistics

. . . . . . . . .
Basu’s Theorem

.
Summary

Showing that X(1)/X(n) is Ancillary

fX(x|θ) =
1

θ
I(0 < x < θ)

Let y = x/θ, then |dx/dy| = θ, and Y ∼ Uniform(0, 1).

fY(y|θ) = I(0 < y < 1)

X(1)

X(n)
=

Y(1)

Y(n)

Because the distribution of Y1, · · · ,Yn does not depend on θ, X(1)/X(n) is
an ancillary statistic for θ.
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= n(n − 1)y(1− y)n−2I(0 < y < 1)

Y(2) ∼ Beta(2,n − 1)

E[Y(2)] =
2

n + 1

Therefore, E
[X(1)+X(2)

X(n)

]
=

E[Y(1)+Y(2)]

E[Y(n)]
=

E[Y(1)]+E[Y(2)]

E[Y(n)]
= 3

n
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Summary

.Today..

......

• More on complete statistics
• Basu’s Theorem

.Next Lecture..

......
• Exponential Family
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