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Complete Statistics
9000000000

Last Lecture

® What is a complete statistic?
® Why it is called as "complete statistic”?

® Can the same statistic be both complete and incomplete statistics,
depending on the parameter space?

® What is the relationship between complete and sufficient statistics?

@ Is a minimal sufficient statistic always complete?
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Complete Statistics

= Let 7 = {f1(t]0),0 € 2} be a family of pdfs or pmfs for a statistic
T(X).
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Complete Statistics

= Let 7 = {f1(t]0),0 € 2} be a family of pdfs or pmfs for a statistic
T(X).

= The family of probability distributions is called complete if

= E[g(T)]0] = 0 for all 8 implies Pr[g(7) = 0[0] = 1 for all 6.
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= Let 7 = {f1(t]0),0 € 2} be a family of pdfs or pmfs for a statistic
T(X).

= The family of probability distributions is called complete if

= E[g(T)]0] = 0 for all 8 implies Pr[g(7) = 0[0] = 1 for all 6.
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Complete Statistics

= Let 7 = {f1(t]0),0 € 2} be a family of pdfs or pmfs for a statistic
T(X).

= The family of probability distributions is called complete if

= E[g(T)]0] = 0 for all 8 implies Pr[g(7) = 0[0] = 1 for all 6.

= In other words, g(T) = 0 almost surely.

= Equivalently, 7(X) is called a complete statistic
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Example - Poisson distribution

When parameter space is limited - NOT complete

= Suppose T = {fT D fr(tA) = Ati?} for t€ {0,1,2,---}. Let
A € Q= {1,2}. This family is NOT complete
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Complete Statistics
[e]e] lelelelelele]e]

Example - Poisson distribution

When parameter space is limited - NOT complete

= Suppose T = {fT D fr(tA) = Ati?} for t€ {0,1,2,---}. Let
A € Q= {1,2}. This family is NOT complete

With full parameter space - complete

. Xy, Xy BS Poisson(\A), A > 0.
= T(X) =37, X, is a complete statistic.

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 4/21



Complete Statistics
[e]e]e] lelelelele]e]

Example from Stigler (1972) Am. Stat.

Problem

Let X is a uniform random sample from {1,--- 0} where 6 € Q) = N.
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Example from Stigler (1972) Am. Stat.

Problem

Let X is a uniform random sample from {1,---,60} where § € Q2 = N. Is
T(X) = X a complete statistic?

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 5/21



Complete Statistics
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Example from Stigler (1972) Am. Stat.

Let X is a uniform random sample from {1,---,60} where § € Q2 = N. Is
T(X) = X a complete statistic?

Solution

Consider a function g(7T) such that E[g(T)|0] = 0 for all § € N.
Note that fy(z) = 1(z € {1,---,0}) = LI,(2).

| A

v
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Complete Statistics
[e]e]e] lelelelele]e]

Example from Stigler (1972) Am. Stat.

Problem

Let X is a uniform random sample from {1,---,60} where § € Q2 = N. Is
T(X) = X a complete statistic?

Solution

Consider a function g(7T) such that E[g(T)|0] = 0 for all § € N.
1y
?

| A

Note that fy(z) = 1(z € {1,---,0}) = LI,(2).
0 1 1 0
Elg(T)6) = Elg(X)6] =) g9@) =7 > (@) =0

v
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Complete Statistics
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Example from Stigler (1972) Am. Stat.

Problem

Let X is a uniform random sample from {1,---,60} where § € Q2 = N. Is

T(X) = X a complete statistic?

Consider a function g(7T) such that E[g(T)|0] = 0 for all § € N.
1y
?

Note that fy(z) = 1(z € {1,---,0}) = LI,(2).
0 1 1 0
BTl = Blo(0lo) =" 59(5) =5 > gla) =0

=il =1

0
Y g@) = 0
=1
Hyun Min Kang Biostatistics 602 - Lecture 07
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Solution (cont'd)

for all 8 € N, which implies
- ifO=1,30 g(x) = g(1) =0
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Solution (cont'd)

for all 8 € N, which implies
= if0=1,30_ ga) = g(1) =
= if0=2, 37, g(z) = g(1) + g(2) = g(2) = 0.
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Complete Statistics
[e]e]e]e] Telelele]e]

Solution (cont'd)

for all 8 € N, which implies
= if0=1,30_ ga) = g(1) =
= if0=2, 37, g(z) = g(1) + g(2) = g(2) = 0.

= if 0=k >0, g(x) = g(1) + -+ g(k— 1) = g(k) = 0.
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Complete Statistics
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Solution (cont'd)

for all 8 € N, which implies
= ifO=1,320_, g(2) = g(1) =
= if0=2, 50 gx) = g(1) + 9(2) = g(2) = 0.
= 0=k X0 g(z) = g(1)+ -+ g(k—1) = g(k) = 0.

Therefore, g(xz) =0 for all z € N, and T(X) = X is a complete statistic for
0cQ=N.
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Is the previous example barely complete?

Modified Problem

Let X is a uniform random sample from {1,--- , 60} where
0ecQ=N-—{n}.
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Is the previous example barely complete?

Modified Problem

Let X is a uniform random sample from {1,--- , 60} where
0 € Q=N-—{n}. Is T(X) = X a complete statistic?

Solution

| \

Define a nonzero g(z) as follows

1 T="n
g(x) = -1 z=n+1
0 otherwise
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Complete Statistics

Summar
[e]e]e]ele] lelele]e] O

Is the previous example barely complete?

Modified Problem

Let X is a uniform random sample from {1,--- , 60} where
0 € Q=N-—{n}. Is T(X) = X a complete statistic?

Define a nonzero g(z) as follows

1 T="n
g(x) = -1 z=n+1
0 otherwise

0
sl = 50 ={ 9 57"
=1l

0=n

I~ O

Hyun Min Kang
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Complete Statistics

Summar
[e]e]e]ele] lelele]e] O

Is the previous example barely complete?

Modified Problem

Let X is a uniform random sample from {1,--- , 60} where
0 € Q=N-—{n}. Is T(X) = X a complete statistic?

Define a nonzero g(z) as follows

1 T="n
g(x) = -1 z=n+1
0 otherwise

0
Aol = jXa@0={ % o7n
=1l

Because 2 does not include n, g(z) =0 for all # € Q = N — {n}, and
T(X) = X is not a complete statistic.

Biostatistics 602 - Lecture 07
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Last Lecture : Ancillary and Complete Statistics

Problem

- Let X1, , X, A% Uniform(9,0 + 1), 6 € R.
= Is T(X) = (X(1), X(n)) a complete statistic?
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Last Lecture : Ancillary and Complete Statistics

Problem

- Let X1, , X, A% Uniform(9,0 + 1), 6 € R.
= Is T(X) = (X(1), X(n)) a complete statistic?

v

A Simple Proof

= We know that R = X(,,) — X(1) is an ancillary statistic, which do not
depend on 6.
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Last Lecture : Ancillary and Complete Statistics

Problem

- Let X1, , X, A% Uniform(9,0 + 1), 6 € R.
= Is T(X) = (X(1), X(n)) a complete statistic?

v

A Simple Proof

= We know that R = X(,,) — X(1) is an ancillary statistic, which do not
depend on 6.

= Define g(T) = X(,;) — X1y — E(R). Note that E(R) is constant to 0.
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Last Lecture : Ancillary and Complete Statistics

Problem

- Let X1, , X, A% Uniform(9,0 + 1), 6 € R.
= Is T(X) = (X(1), X(n)) a complete statistic?

v

A Simple Proof

= We know that R = X(,,) — X(1) is an ancillary statistic, which do not
depend on 6.

= Define g(T) = X(,;) — X1y — E(R). Note that E(R) is constant to 0.
= Then E[g(T)|0] = E(R) — E(R) =0, so T is not a complete statistic.

v
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Useful Fact 1 : Ancillary and Complete Statistics

For a statistic T(X), If a non-constant function of 7' say r(T) is ancillary,
then T(X) cannot be complete
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Complete Statistics
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Useful Fact 1 : Ancillary and Complete Statistics

Fact

For a statistic T(X), If a non-constant function of 7' say r(T) is ancillary,
then T(X) cannot be complete

Proof

Define g(T) = r(T) — E[r(T)], which does not depend on the parameter
because r(T) is ancillary.

| A\
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Complete Statistics

0000000800

Useful Fact 1 : Ancillary and Complete Statistics

For a statistic T(X), If a non-constant function of 7' say r(T) is ancillary,
then T(X) cannot be complete

| A\

Proof
Define g(T) = r(T) — E[r(T)], which does not depend on the parameter
because r(T) is ancillary. Then E[g(T)|0] = 0 for a non-zero function
g(T), and T(X) is not a complete statistic.
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Useful Fact 2 : Arbitrary Function of Complete Statistics

If T(X) is a complete statistic, then a function of T, say 7% = r(T) is also
complete.
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Complete Statistics
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Useful Fact 2 : Arbitrary Function of Complete Statistics

If T(X) is a complete statistic, then a function of T, say 7% = r(T) is also
complete.

Proof

Elg(T)|0] = Elgo r(T)|6]
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Useful Fact 2 : Arbitrary Function of Complete Statistics

If T(X) is a complete statistic, then a function of T, say 7% = r(T) is also
complete.

Elg(T")|6] = Elgo n(T)|0]
Assume that E[g(T*)|6] = 0 for all 6,
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Useful Fact 2 : Arbitrary Function of Complete Statistics

If T(X) is a complete statistic, then a function of T, say 7% = r(T) is also
complete.

Elg(T)|0] = Elgo r(T)|6]

Assume that E[g(T)|6] = 0 for all 8, then E[go (T)|6] = 0 holds for all 6
too.
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Useful Fact 2 : Arbitrary Function of Complete Statistics

If T(X) is a complete statistic, then a function of T, say 7% = r(T) is also
complete.

Elg(T)|0] = Elgo r(T)|6]

Assume that E[g(T)|6] = 0 for all 8, then E[go (T)|6] = 0 holds for all 6
too. Because T(X) is a complete statistic,
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Complete Statistics
0000000080

Useful Fact 2 : Arbitrary Function of Complete Statistics

If T(X) is a complete statistic, then a function of T, say 7% = r(T) is also
complete.

Elg(T")|6] = Elgo n(T)|0]

Assume that E[g(T)|6] = 0 for all 8, then E[go (T)|6] = 0 holds for all 6
too. Because T(X) is a complete statistic, Pr[go r(T) = 0] =1, V0 € Q.
Therefore Pr[g(T*) = 0] = 1, and T* is a complete statistic.
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Theorem 6.2.28 - Lehman and Schefle (1950)

The textbook version

If a minimal sufficient statistic exists, then any complete statistic is also a
minimal sufficient statistic.
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Theorem 6.2.28 - Lehman and Schefle (1950)

The textbook version

If a minimal sufficient statistic exists, then any complete statistic is also a
minimal sufficient statistic.

Paraphrased version

Any complete, and sufficient statistic is also a minimal sufficient statistic
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Theorem 6.2.28 - Lehman and Schefle (1950)

The textbook version
If a minimal sufficient statistic exists, then any complete statistic is also a
minimal sufficient statistic.

Paraphrased version

Any complete, and sufficient statistic is also a minimal sufficient statistic

The converse is NOT true

A minimal sufficient statistic is not necessarily complete. (Recall the
example in the last lecture).
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Basu's Theorem

Theorem 6.2.24

If T(X) is a complete sufficient statistic, then T(X) is independent of
every ancillary statistic.
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Basu's Theorem

Theorem 6.2.24

If T(X) is a complete sufficient statistic, then T(X) is independent of
every ancillary statistic.

Proof strategy - for discrete case

| A\

Suppose that S(X) is an ancillary statistic. We want to show that

Pr(S(X) = s|T(X) = t) = Pr(S(X) = s), Vte T

A\
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Basu's Theorem

Theorem 6.2.24

If T(X) is a complete sufficient statistic, then T(X) is independent of
every ancillary statistic.

Proof strategy - for discrete case

| A\

Suppose that S(X) is an ancillary statistic. We want to show that
Pr(S(X) = s|T(X) = t) = Pr(S(X) = s), Vte T
Alternatively, we can show that

Pr(T(X) = t|S(X) =s) = Pr(T(X) =1

A\
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Basu's Theorem

Theorem 6.2.24

If T(X) is a complete sufficient statistic, then T(X) is independent of
every ancillary statistic.

Proof strategy - for discrete case

Suppose that S(X) is an ancillary statistic. We want to show that
Pr(S(X) = s|T(X) = t) = Pr(S(X) = s), Vte T
Alternatively, we can show that

Pr(T(X) = t|S(X) =s) = Pr(T(X) =1

A\
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Proof of Basu's Theorem

= As S(X) is ancillary, by definition, it does not depend on 6.
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Proof of Basu's Theorem

= As S(X) is ancillary, by definition, it does not depend on 6.
= As T(X) is sufficient, by definition, fx(X|7T(X)) is independent of 6.
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Basu's Theorem
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Proof of Basu's Theorem

= As S(X) is ancillary, by definition, it does not depend on 6.
= As T(X) is sufficient, by definition, fx(X|7T(X)) is independent of 6.

= Because S(X) is a function of X, Pr(S(X)| T(X)) is also independent
of 0.
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Proof of Basu's Theorem

= As S(X) is ancillary, by definition, it does not depend on 6.
= As T(X) is sufficient, by definition, fx(X|7T(X)) is independent of 6.

= Because S(X) is a function of X, Pr(S(X)| T(X)) is also independent
of 0.

= We need to show that
Pr(S(X) = s|T(X) = t) = Pr(S(X) = s), Vte T.
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Proof of Basu's Theorem (cont'd)

Pr(S(X) = sl6) = > Pr(S(X) = s T(X) = §) Pr(T(X) = 6) (1)

teT
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Basu's Theorem
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Proof of Basu's Theorem (cont'd)

Pr(S(X) =) = Y Pr(S(X) = s|T(X) = ) Pr(T(X) = #0) (1)
teT
Pr(S(X) = s|) = =3) Y _Pr(T(X) = #[0) (2)
teT
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Basu's Theorem
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Proof of Basu's Theorem (cont'd)

Pr(S(X) =) = Y Pr(S(X) = s|T(X) = ) Pr(T(X) = #0) (1)
teT
Pr(S(X) = s|) = =3) Y _Pr(T(X) = #[0) (2)
teT
= > Pr(S(X) = s) Pr(T(X) = #[0)

teT
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Proof of Basu's Theorem (cont'd)

Pr(S(X)

Pr(S(X)

Define ¢(t)

=sl0) = ZPr

teT

= s/0)

= ZPr

teT

= Pr(S(X) = s|T(X) =

) = 5| T(X) = 1) Pr(T(X) = #|6) (1)
=3) Y _Pr(T(X) = #[0) (2)
teT

= s)Pr(T(X) = t|0) (3)

t) — Pr(S(X) = s).

Biostatistics 602 - Lecture 07 January 29th, 2013



Pr(S(X) = sl6) = > Pr(S(X) = s T(X) = §) Pr(T(X) = 6) (1)

teT
Pr(S(X) = slf) = =8) > _Pr(T(X) = 1|0) @)
teT
= ) Pr(S(X) = s) Pr(T(X) = #/6) (3)
teT

Define g(t) = Pr(S(X) = s| T(X) = ¢) — Pr(S(X) = s). Taking (1)-(3),
3 [Pr(S(X) = s| T(X) = ) — Pr(S(X) = )] Pr(T(X) = #0) = 0

teT
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Pr(S(X) = sl6) = > Pr(S(X) = s T(X) = §) Pr(T(X) = 6) (1)

teT
Pr(S(X) = slf) = =8) > _Pr(T(X) = 1|0) @)
teT
= ) Pr(S(X) = s) Pr(T(X) = #/6) (3)
teT

Define g(t) = Pr(S(X) = s| T(X) = ¢) — Pr(S(X) = s). Taking (1)-(3),
3 [Pr(S(X) = s| T(X) = ) — Pr(S(X) = )] Pr(T(X) = #0) = 0

teT

> 9(®) Pr(T(X) = #0) = E[g(T(X))|6] = 0

teT
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Pr(S(X) = sl6) = > Pr(S(X) = s T(X) = §) Pr(T(X) = 6) (1)

teT
Pr(S(X) = slf) = =8) > _Pr(T(X) = 1|0) @)
teT
= ) Pr(S(X) = s) Pr(T(X) = #/6) (3)
teT

Define g(t) = Pr(S(X) = s| T(X) = ¢) — Pr(S(X) = s). Taking (1)-(3),
3 [Pr(S(X) = s| T(X) = ) — Pr(S(X) = )] Pr(T(X) = #0) = 0

teT
> 9(t) Pr(T(X) = 46) = E[g(T(X))|6] = 0
teT
T(X) is complete, so g(t) = 0 almost surely for all possible ¢ € T.
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Pr(S(X) = sl6) = > Pr(S(X) = s T(X) = §) Pr(T(X) = 6) (1)

teT
Pr(S(X) = slf) = =8) > _Pr(T(X) = 1|0) @)
teT
= ) Pr(S(X) = s) Pr(T(X) = #/6) (3)
teT

Define g(t) = Pr(S(X) = s| T(X) = ¢) — Pr(S(X) = s). Taking (1)-(3),
3 [Pr(S(X) = s| T(X) = ) — Pr(S(X) = )] Pr(T(X) = #0) = 0

teT

> 9(®) Pr(T(X) = #0) = E[g(T(X))|6] = 0

teT

T(X) is complete, so g(t) = 0 almost surely for all possible ¢ € T.
Therefore, S(X) is independent of T(X).
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Application of Basu's Theorem

Problem

. Xy, X, 29 Uniform(0, 6).
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Basu's Theorem
0O00@00000

Application of Basu's Theorem

Problem

- X1, Xo 28 Uniform(0, ).

= Calculate E[ (1)} and E[XO)J(F))(@)]
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Basu's Theorem
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Application of Basu's Theorem

Problem

. Xy, X, 29 Uniform(0, 6).

X Xy+X
= Calculate E{%} and E[M]
(n) (n)

A strategy for the solution

= We know that X(,, is sufficient statistic.

A,
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Application of Basu's Theorem

Problem

. Xy, X, 29 Uniform(0, 6).

X Xy+X
= Calculate E{%} and E[M]
(n) (n)

A strategy for the solution

= We know that X(,, is sufficient statistic.
= We know that X, is complete, too.

A,
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Basu's Theorem
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Application of Basu's Theorem

Problem

. Xy, X, 29 Uniform(0, 6).

X Xy+X
= Calculate E{%} and E[M]
(n) (n)

A strategy for the solution

= We know that X(,, is sufficient statistic.
= We know that X, is complete, too.
= We can easily show that X(;)/X(,) is an ancillary statistic.

A,
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X Xy+X
= Calculate E{%} and E[M]

X
A strategy for the solution

= We know that X(,, is sufficient statistic.

= We know that X, is complete, too.
= We can easily show that X(;)/X(,) is an ancillary statistic.

= Then we can leverage Basu's Theorem for the calculation.

A,

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013



Basu's Theorem
[e]e]ele] lelelele]

Showing that X(;)/X(, is Ancillary

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013 16 / 21



Basu's Theorem
[e]e]ele] lelelele]

Showing that X(;)/X(, is Ancillary

folalf) = %1(0 <z<0)

Let y = /0, then |dz/dy| = 6, and Y ~ Uniform(0, 1).

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013



Basu's Theorem
[e]e]ele] lelelele]

Showing that X(;)/X(, is Ancillary

1
fx(20) = 5[(0 <z<0)
Let y = /0, then |dz/dy| = 6, and Y ~ Uniform(0, 1).

fH(ylo) = 10<y<1)

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013



Basu's Theorem
[e]e]ele] lelelele]

Showing that X(;)/X(, is Ancillary

folalf) = %1(0 <z<0)

Let y = /0, then |dz/dy| = 6, and Y ~ Uniform(0, 1).

fy(wlo) = I[0<y<1)
Yo _ Yo
X(n) Yin)

Hyun Min Kang Biostatistics 602 - Lecture 07 January 29th, 2013



Basu's Theorem
[e]e]ele] lelelele]

Showing that X(;)/X(, is Ancillary

fx(2]0)

1
5I(O <z<0)

Let y = /0, then |dz/dy| = 6, and Y ~ Uniform(0, 1).

fy(lo) = 10<y<1)
Xy _ Yo
X(n) Y(n)
Because the distribution of Y7,---, Y, does not depend on 8, X(l)/X(
an ancillary statistic for 6.
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= By Basu's Theorem, X(;)/ Xy is independent of X(,,.
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Applying Basu's Theorem
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= If X and Y are independent, E(XY) = E(X)E(Y).
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= If X and Y are independent, E(XY) = E(X)E(Y).
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= By Basu's Theorem, X(;)/ Xy is independent of X(,,.
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Basu's Theorem
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Applying Basu's Theorem

= By Basu's Theorem, X(;)/ Xy is independent of X(,,.
= If X and Y are independent, E(XY) = E(X)E(Y).

X X
EXy) = E [X(R)Xm)] = [X(n) E[X(n)
X
i
X(n)
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Applying Basu's Theorem

= By Basu's Theorem, X(;)/ Xy is independent of X(,,.
= If X and Y are independent, E(XY) = E(X)E(Y).

X X
0 0
EXw) = E[X(R)Xm)] ZE[ }E[X(m]

Xn)
X, ElX,
5 [ (1)] [X(1)]
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Basu's Theorem
[ee]ele]e] lelele]

Applying Basu's Theorem

= By Basu's Theorem, X(;)/ Xy is independent of X(,,.
= If X and Y are independent, E(XY) = E(X)E(Y).

X X
M&M::E[OWM]ZE[m}H&M

X(n) X(n)
E[&n] _ X
Xin) E[X()]
_ E[HY(D]
© E9Y(,)]
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Applying Basu's Theorem

= By Basu's Theorem, X(;)/ Xy is independent of X(,,.
= If X and Y are independent, E(XY) = E(X)E(Y).

X X
E[Xq)] = E[X(R)Xm)] ZE[X(R) E[X(n)

5 [Xm] ElXw)

X(n)
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Y ~ Uniform(0,1)
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Fy(y = yl0<y<1l)+y=1)
n!
Fr W) Fr(y) [L = Fy(y)]" 10 < y<1)

(n—1)!
= n(l—yp"H0<y<1)
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Basu's Theorem
O0000000e

Obtaining E[Y (9]

Y ~ Uniform(0,1)

frly) = [0<y<1)
Fy(y = yl0<y<l)+Ly=1)
n!
froy W) = —55 1= Fy(m)]" 7 fy(y) [Fy(m)] 10 < y < 1)

(n—2)!
= nn—1)yl—y)" 2H0<y<1)
Y(Q) ~ Beta(2,n—1)

Xy+Xo E[Y(1)+Y(2)] E[Y(l)]-i-E[Y(Q)] 3
Therefore, |~ 2| — = =3
ererore, E[Y()] E[Y()] n
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Summary

= More on complete statistics

= Basu's Theorem
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