Biostatistics 602 - Statistical Inference Lecture 15 Bayes Estimator

Hyun Min Kang

March 12th, 2013

Recap •000

> Can Cramer-Rao bound be used to find the best unbiased estimator for any distribution?

> Can Cramer-Rao bound be used to find the best unbiased estimator for any distribution? If not, in which cases?

2 / 26

- Can Cramer-Rao bound be used to find the best unbiased estimator for any distribution? If not, in which cases?
- When Cramer-Rao bound is attainable, can Cramer-Rao bound be used for find best unbiased estimator for any $\tau(\theta)$? If not, what is the restriction on $\tau(\theta)$?

- Can Cramer-Rao bound be used to find the best unbiased estimator for any distribution? If not, in which cases?
- When Cramer-Rao bound is attainable, can Cramer-Rao bound be used for find best unbiased estimator for any $\tau(\theta)$? If not, what is the restriction on $\tau(\theta)$?
- What is another way to find the best unbiased estimator?

- Can Cramer-Rao bound be used to find the best unbiased estimator for any distribution? If not, in which cases?
- When Cramer-Rao bound is attainable, can Cramer-Rao bound be used for find best unbiased estimator for any $\tau(\theta)$? If not, what is the restriction on $\tau(\theta)$?
- What is another way to find the best unbiased estimator?
- Describe two strategies to obtain the best unbiased estimators for $\tau(\theta)$, using complete sufficient statistics.

Theorem 7.3.23

Recap 0000

> Let T be a complete sufficient statistic for parameter θ . Let $\phi(T)$ be any estimator based on T. Then $\phi(T)$ is the unique best unbiased estimator of its expected value.

Finding UMUVE - Method 1

Use Cramer-Rao bound to find the best unbiased estimator for $\tau(\theta)$.

1 If "regularity conditions" are satisfied, then we have a Cramer-Rao bound for unbiased estimators of $\tau(\theta)$.

Finding UMUVE - Method 1

Recap 0000

- If "regularity conditions" are satisfied, then we have a Cramer-Rao bound for unbiased estimators of $\tau(\theta)$.
 - It helps to confirm an estimator is the best unbiased estimator of $\tau(\theta)$ if it happens to attain the CR-bound.

Finding UMUVE - Method 1

- If "regularity conditions" are satisfied, then we have a Cramer-Rao bound for unbiased estimators of $\tau(\theta)$.
 - It helps to confirm an estimator is the best unbiased estimator of $\tau(\theta)$ if it happens to attain the CR-bound.
 - If an unbiased estimator of $\tau(\theta)$ has variance greater than the CR-bound, it does NOT mean that it is not the best unbiased estimator.

Finding UMUVE - Method 1

- **1** If "regularity conditions" are satisfied, then we have a Cramer-Rao bound for unbiased estimators of $\tau(\theta)$.
 - It helps to confirm an estimator is the best unbiased estimator of $\tau(\theta)$ if it happens to attain the CR-bound.
 - If an unbiased estimator of $\tau(\theta)$ has variance greater than the CR-bound, it does NOT mean that it is not the best unbiased estimator.
- **2** When "regularity conditions" are not satisfied, $\frac{[\tau'(\theta)]^2}{I_n(\theta)}$ is no longer a valid lower bound.

Finding UMUVE - Method 1

- If "regularity conditions" are satisfied, then we have a Cramer-Rao bound for unbiased estimators of $\tau(\theta)$.
 - It helps to confirm an estimator is the best unbiased estimator of $\tau(\theta)$ if it happens to attain the CR-bound.
 - If an unbiased estimator of $\tau(\theta)$ has variance greater than the CR-bound, it does NOT mean that it is not the best unbiased estimator.
- 2 When "regularity conditions" are not satisfied, $\frac{[\tau'(\theta)]^2}{I_n(\theta)}$ is no longer a valid lower bound.
 - There may be unbiased estimators of $\tau(\theta)$ that have variance smaller than $\frac{[\tau'(\theta)]^2}{I(\theta)}$.

Finding UMVUE - Method 2

Use complete sufficient statistic to find the best unbiased estimator for $\tau(\theta).$

1 Find complete sufficient statistic T for θ .

Finding UMVUE - Method 2

- **1** Find complete sufficient statistic T for θ .
- 2 Obtain $\phi(T)$, an unbiased estimator of $\tau(\theta)$ using either of the following two ways

Finding UMVUE - Method 2

- **1** Find complete sufficient statistic T for θ .
- 2 Obtain $\phi(T)$, an unbiased estimator of $\tau(\theta)$ using either of the following two ways
 - Guess a function $\phi(T)$ such that $E[\phi(T)] = \tau(\theta)$.

Finding UMVUE - Method 2

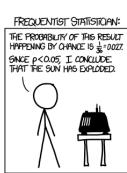
- **1** Find complete sufficient statistic T for θ .
- 2 Obtain $\phi(T)$, an unbiased estimator of $\tau(\theta)$ using either of the following two ways
 - Guess a function $\phi(T)$ such that $E[\phi(T)] = \tau(\theta)$.
 - Guess an unbiased estimator $h(\mathbf{X})$ of $\tau(\theta)$. Construct $\phi(T) = \mathrm{E}[h(\mathbf{X})|T]$, then $\mathrm{E}[\phi(T)] = \mathrm{E}[h(\mathbf{X})] = \tau(\theta)$.

Frequentists vs. Bayesians

A biased view in favor of Bayesians at http://xkcd.com/1132/

DID THE SUN JUST EXPLODE? (IT'S NIGHT, SO WE'RE NOT SURE.)





Frequentist's Framework

$$\mathcal{P} = \{ \mathbf{X} \sim f_{\mathbf{X}}(\mathbf{x}|\theta), \theta \in \Omega \}$$

Frequentist's Framework

$$\mathcal{P} = \{ \mathbf{X} \sim f_{\mathbf{X}}(\mathbf{x}|\theta), \theta \in \Omega \}$$

Bayesian Statistic

• Parameter θ is considered as a random quantity

Frequentist's Framework

$$\mathcal{P} = \{ \mathbf{X} \sim f_{\mathbf{X}}(\mathbf{x}|\theta), \theta \in \Omega \}$$

Bayesian Statistic

- Parameter θ is considered as a random quantity
- Distribution of θ can be described by probability distribution, referred to as *prior* distribution

Frequentist's Framework

$$\mathcal{P} = \{ \mathbf{X} \sim f_{\mathbf{X}}(\mathbf{x}|\theta), \theta \in \Omega \}$$

Bayesian Statistic

- Parameter θ is considered as a random quantity
- Distribution of θ can be described by probability distribution, referred to as *prior* distribution
- A sample is taken from a population indexed by θ , and the prior distribution is updated using information from the sample to get posterior distribution of θ given the sample.

Bayesian Framework

• Prior distribution of θ : $\theta \sim \pi(\theta)$.

- Prior distribution of θ : $\theta \sim \pi(\theta)$.
- Sample distribution of **X** given θ .

$$\mathbf{X}|\theta \sim f(\mathbf{x}|\theta)$$

- Prior distribution of θ : $\theta \sim \pi(\theta)$.
- Sample distribution of **X** given θ .

$$\mathbf{X}|\theta \sim f(\mathbf{x}|\theta)$$

• Joint distribution ${\bf X}$ and θ

$$f(\mathbf{x}, \theta) = \pi(\theta) f(\mathbf{x}|\theta)$$

- Prior distribution of θ : $\theta \sim \pi(\theta)$.
- Sample distribution of X given θ .

$$\mathbf{X}|\theta \sim f(\mathbf{x}|\theta)$$

• Joint distribution ${\bf X}$ and θ

$$\mathit{f}(\mathbf{x},\theta) = \pi(\theta)\mathit{f}(\mathbf{x}|\theta)$$

Marginal distribution of X.

$$m(\mathbf{x}) = \int_{\theta \in \Omega} f(\mathbf{x}, \theta) d\theta = \int_{\theta \in \Omega} f(\mathbf{x}|\theta) \pi(\theta) d\theta$$

Bayesian Framework

- Prior distribution of θ : $\theta \sim \pi(\theta)$.
- Sample distribution of **X** given θ .

$$\mathbf{X}|\theta \sim f(\mathbf{x}|\theta)$$

• Joint distribution **X** and θ

$$f(\mathbf{x}, \theta) = \pi(\theta) f(\mathbf{x}|\theta)$$

Marginal distribution of X.

$$m(\mathbf{x}) = \int_{\theta \in \Omega} f(\mathbf{x}, \theta) d\theta = \int_{\theta \in \Omega} f(\mathbf{x}|\theta) \pi(\theta) d\theta$$

• Posterior distribution of θ (conditional distribution of θ given **X**)

$$\pi(\theta|\mathbf{x}) = \frac{f(\mathbf{x},\theta)}{m(\mathbf{x})} = \frac{f(\mathbf{x}|\theta)\pi(\theta)}{m(\mathbf{x})}$$
 (Bayes' Rule)

◆ロト ◆御 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ②

Burglary (θ)	$\Pr(Alarm Burglary) = \Pr(X=1 \theta)$
True $(\theta = 1)$	0.95
False $(\theta = 0)$	0.01

Suppose that Burglary is an unobserved parameter ($\theta \in \{0,1\}$), and Alarm is an observed outcome ($X = \{0,1\}$).

Burglary (θ)	$\Pr(Alarm Burglary) = \Pr(X=1 \theta)$
True $(\theta = 1)$	0.95
False $(\theta = 0)$	0.01

Suppose that Burglary is an unobserved parameter ($\theta \in \{0,1\}$), and Alarm is an observed outcome $(X = \{0, 1\})$.

- Under Frequentist's Framework,
 - If there was no burglary, there is 1% of chance of alarm ringing.

Burglary (θ)	$\Pr(Alarm Burglary) = \Pr(X=1 \theta)$
True $(\theta = 1)$	0.95
False $(\theta = 0)$	0.01

Suppose that Burglary is an unobserved parameter ($\theta \in \{0, 1\}$), and Alarm is an observed outcome ($X = \{0, 1\}$).

- Under Frequentist's Framework,
 - If there was no burglary, there is 1% of chance of alarm ringing.
 - If there was a burglary, there is 95% of chance of alarm ringing.

Burglary (θ)	$\Pr(Alarm Burglary) = \Pr(X=1 \theta)$
True $(\theta = 1)$	0.95
False $(\theta = 0)$	0.01

Suppose that Burglary is an unobserved parameter ($\theta \in \{0,1\}$), and Alarm is an observed outcome ($X = \{0,1\}$).

- Under Frequentist's Framework,
 - If there was no burglary, there is 1% of chance of alarm ringing.
 - If there was a burglary, there is 95% of chance of alarm ringing.
 - One can come up with an estimator on θ , such as MLE

Burglary (θ)	$\Pr(Alarm Burglary) = \Pr(X=1 \theta)$
True $(\theta = 1)$	0.95
False $(\theta = 0)$	0.01

Suppose that Burglary is an unobserved parameter ($\theta \in \{0, 1\}$), and Alarm is an observed outcome ($X = \{0, 1\}$).

- Under Frequentist's Framework,
 - If there was no burglary, there is 1% of chance of alarm ringing.
 - If there was a burglary, there is 95% of chance of alarm ringing.
 - One can come up with an estimator on θ , such as MLE
 - However, given that alarm already rang, one cannot calculate the probability of burglary.

Leveraging Prior Information

Suppose that we know that the chance of Burglary per household per night is 10^{-7} .

$$\Pr(\theta = 1|X = 1) = \Pr(X = 1|\theta = 1) \frac{\Pr(\theta = 1)}{\Pr(X = 1)}$$
 (Bayes' rule)

Leveraging Prior Information

Suppose that we know that the chance of Burglary per household per night is 10^{-7} .

$$\Pr(\theta = 1|X = 1) = \Pr(X = 1|\theta = 1) \frac{\Pr(\theta = 1)}{\Pr(X = 1)}$$
 (Bayes' rule)

$$= \Pr(X = 1 | \theta = 1) \frac{\Pr(\theta = 1)}{\Pr(\theta = 1, X = 1) + \Pr(\theta = 0, X = 1)}$$

Leveraging Prior Information

Suppose that we know that the chance of Burglary per household per night is 10^{-7} .

$$\Pr(\theta = 1|X = 1) = \Pr(X = 1|\theta = 1) \frac{\Pr(\theta = 1)}{\Pr(X = 1)}$$
(Bayes' rule)
= $\Pr(X = 1|\theta = 1) \frac{\Pr(\theta = 1)}{\Pr(\theta = 1, X = 1) + \Pr(\theta = 0, X = 1)}$
= $\frac{\Pr(X = 1|\theta = 1) \Pr(\theta = 1)}{\Pr(X = 1|\theta = 1) \Pr(\theta = 1) + \Pr(X = 1|\theta = 0) \Pr(\theta = 0)}$

Leveraging Prior Information

Suppose that we know that the chance of Burglary per household per night is 10^{-7} .

$$\Pr(\theta = 1|X = 1) = \Pr(X = 1|\theta = 1) \frac{\Pr(\theta = 1)}{\Pr(X = 1)}$$
 (Bayes' rule)

$$= \Pr(X = 1|\theta = 1) \frac{\Pr(\theta = 1)}{\Pr(\theta = 1, X = 1) + \Pr(\theta = 0, X = 1)}$$

$$= \frac{\Pr(X = 1|\theta = 1) \Pr(\theta = 1)}{\Pr(X = 1|\theta = 1) \Pr(\theta = 1) + \Pr(X = 1|\theta = 0) \Pr(\theta = 0)}$$

$$= \frac{0.95 \times 10^{-7}}{0.95 \times 10^{-7} + 0.01 \times (1 - 10^{-7})} \approx 9.5 \times 10^{-6}$$

Inference Under Bayesian's Framework

Leveraging Prior Information

Suppose that we know that the chance of Burglary per household per night is 10^{-7} .

$$\Pr(\theta = 1|X = 1) = \Pr(X = 1|\theta = 1) \frac{\Pr(\theta = 1)}{\Pr(X = 1)}$$
 (Bayes' rule)

$$= \Pr(X = 1|\theta = 1) \frac{\Pr(\theta = 1)}{\Pr(\theta = 1, X = 1) + \Pr(\theta = 0, X = 1)}$$

$$= \frac{\Pr(X = 1|\theta = 1) \Pr(\theta = 1)}{\Pr(X = 1|\theta = 1) \Pr(\theta = 1) + \Pr(X = 1|\theta = 0) \Pr(\theta = 0)}$$

$$= \frac{0.95 \times 10^{-7}}{0.95 \times 10^{-7} + 0.01 \times (1 - 10^{-7})} \approx 9.5 \times 10^{-6}$$

So, even if alarm rang, one can conclude that the burglary is unlikely to happen.

Hyun Min Kang Biostatistics 602 - Lecture 15 March 12th, 2013 10 / 26

What if the prior information is misleading?

Over-fitting to Prior Information

Suppose that, in fact, a thief found a security breach in my place and planning to break-in either tonight or tomorrow night for sure (with the same probability). Then the correct prior $Pr(\theta = 1) = 0.5$.

What if the prior information is misleading?

Over-fitting to Prior Information

Suppose that, in fact, a thief found a security breach in my place and planning to break-in either tonight or tomorrow night for sure (with the same probability). Then the correct prior $Pr(\theta = 1) = 0.5$.

$$\Pr(\theta = 1|X = 1)$$

$$= \frac{\Pr(X = 1|\theta = 1)\Pr(\theta = 1)}{\Pr(X = 1|\theta = 1)\Pr(\theta = 1) + \Pr(X = 1|\theta = 0)\Pr(\theta = 0)}$$

$$= \frac{0.95 \times 0.5}{0.95 \times 0.5 + 0.01 \times (1 - 0.5)} \approx 0.99$$

11 / 26

What if the prior information is misleading?

Over-fitting to Prior Information

Suppose that, in fact, a thief found a security breach in my place and planning to break-in either tonight or tomorrow night for sure (with the same probability). Then the correct prior $Pr(\theta = 1) = 0.5$.

$$\Pr(\theta = 1|X = 1)$$

$$= \frac{\Pr(X = 1|\theta = 1)\Pr(\theta = 1)}{\Pr(X = 1|\theta = 1)\Pr(\theta = 1) + \Pr(X = 1|\theta = 0)\Pr(\theta = 0)}$$

$$= \frac{0.95 \times 0.5}{0.95 \times 0.5 + 0.01 \times (1 - 0.5)} \approx 0.99$$

However, if we relied on the inference based on the incorrect prior, we may end up concluding that there are > 99.9% chance that this is a false alarm, and ignore it, resulting an exchange of one night of good sleep with quite a bit of fortune.

Advantages over Frequentist's Framework

• Allows making inference on the distribution of θ given data.

Advantages over Frequentist's Framework

- Allows making inference on the distribution of θ given data.
- Available information about θ can be utilized.

Advantages over Frequentist's Framework

- Allows making inference on the distribution of θ given data.
- Available information about θ can be utilized.
- Uncertainty and information can be quantified probabilistically.

Advantages over Frequentist's Framework

- Allows making inference on the distribution of θ given data.
- Available information about θ can be utilized.
- Uncertainty and information can be quantified probabilistically.

Drawbacks of Bayesian Inference

Misleading prior can result in misleading inference.

Advantages over Frequentist's Framework

- Allows making inference on the distribution of θ given data.
- Available information about θ can be utilized.
- Uncertainty and information can be quantified probabilistically.

Drawbacks of Bayesian Inference

- Misleading prior can result in misleading inference.
- Bayesian inference is often (but not always) prone to be "subjective"
 - See: Larry Wasserman "Frequentist Bayes is Objective" (2006) Bayesian Analysis 3:451-456.

Advantages over Frequentist's Framework

- Allows making inference on the distribution of θ given data.
- Available information about θ can be utilized.
- Uncertainty and information can be quantified probabilistically.

Drawbacks of Bayesian Inference

- Misleading prior can result in misleading inference.
- Bayesian inference is often (but not always) prone to be "subjective"
 - See: Larry Wasserman "Frequentist Bayes is Objective" (2006) Bayesian Analysis 3:451-456.
- Bayesian inference could be sometimes unnecessarily complicated to interpret, compared to Frequentist's inference.

4 D > 4 D > 4 E

Bayes Estimator

Definition

Bayes Estimator of θ is defined as the posterior mean of θ .

Bayes Estimator

Definition

Bayes Estimator of θ is defined as the posterior mean of θ .

$$E(\theta|\mathbf{x}) = \int_{\theta \in \Omega} \theta \pi(\theta|\mathbf{x}) d\theta$$

Bayes Estimator

Definition

Bayes Estimator of θ is defined as the posterior mean of θ .

$$E(\theta|\mathbf{x}) = \int_{\theta \in \Omega} \theta \pi(\theta|\mathbf{x}) d\theta$$

Example Problem

 $X_1, \cdots, X_n \overset{\text{i.i.d.}}{\sim} \operatorname{Bernoulli}(p)$ where $0 \leq p \leq 1$. Assume that the prior distribution of p is $\operatorname{Beta}(\alpha, \beta)$. Find the posterior distribution of p and the Bayes estimator of p, assuming α and β are known.

Solution (1/4)

Prior distribution of p is

$$\pi(p) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} p^{\alpha - 1} (1 - p)^{\beta - 1}$$

Solution (1/4)

Prior distribution of p is

$$\pi(p) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} p^{\alpha - 1} (1 - p)^{\beta - 1}$$

Sampling distribution of X given p is

$$f_{\mathbf{X}}(\mathbf{x}|p) = \prod_{i=1}^{n} \left\{ p^{x_i} (1-p)^{1-x_i} \right\}$$

Solution (1/4)

Prior distribution of p is

$$\pi(p) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} p^{\alpha - 1} (1 - p)^{\beta - 1}$$

Sampling distribution of X given p is

$$f_{\mathbf{X}}(\mathbf{x}|p) = \prod_{i=1}^{n} \left\{ p^{x_i} (1-p)^{1-x_i} \right\}$$

Joint distribution of X and p is

$$f_{\mathbf{X}}(\mathbf{x}, p) = f_{\mathbf{X}}(\mathbf{x}|p)\pi(p)$$

$$= \prod_{i=1}^{n} \left\{ p^{x_i} (1-p)^{1-x_i} \right\} \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} p^{\alpha-1} (1-p)^{\beta-1}$$

Solution (2/4)

$$m(\mathbf{x}) = \int f(\mathbf{x}, p) dp = \int_0^1 \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} p^{\sum_{i=1}^n x_i + \alpha - 1} (1 - p)^{n - \sum_{i=1}^n x_i + \beta - 1} dp$$

$$m(\mathbf{x}) = \int f(\mathbf{x}, p) dp = \int_0^1 \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} p^{\sum_{i=1}^n x_i + \alpha - 1} (1 - p)^{n - \sum_{i=1}^n x_i + \beta - 1} dp$$

$$= \int_0^1 \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \frac{\Gamma(\sum x_i + \alpha)\Gamma(n - \sum x_i + \beta)}{\Gamma(\alpha + \beta + n)}$$

$$\times \frac{\Gamma(\sum x_i + \alpha + n - \sum x_i + \beta)}{\Gamma(\sum x_i + \alpha)\Gamma(n - \sum x_i + \beta)} p^{\sum x_i + \alpha - 1} (1 - p)^{n - \sum x_i + \beta - 1} dp$$

Solution (2/4)

$$m(\mathbf{x}) = \int f(\mathbf{x}, p) dp = \int_0^1 \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} p^{\sum_{i=1}^n x_i + \alpha - 1} (1 - p)^{n - \sum_{i=1}^n x_i + \beta - 1} dp$$

$$= \int_0^1 \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \frac{\Gamma(\sum x_i + \alpha)\Gamma(n - \sum x_i + \beta)}{\Gamma(\alpha + \beta + n)}$$

$$\times \frac{\Gamma(\sum x_i + \alpha + n - \sum x_i + \beta)}{\Gamma(\sum x_i + \alpha)\Gamma(n - \sum x_i + \beta)} p^{\sum x_i + \alpha - 1} (1 - p)^{n - \sum x_i + \beta - 1} dp$$

$$= \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \frac{\Gamma(\sum_{i=1}^n x_i + \alpha)\Gamma(n - \sum_{i=1}^n x_i + \beta)}{\Gamma(\alpha + \beta + n)}$$

$$\times \int_0^1 f_{\text{Beta}(\sum x_i + \alpha, n - \sum x_i + \beta)}(p) dp$$

Solution (2/4)

$$m(\mathbf{x}) = \int f(\mathbf{x}, p) dp = \int_0^1 \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} p^{\sum_{i=1}^n x_i + \alpha - 1} (1 - p)^{n - \sum_{i=1}^n x_i + \beta - 1} dp$$

$$= \int_0^1 \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \frac{\Gamma(\sum x_i + \alpha)\Gamma(n - \sum x_i + \beta)}{\Gamma(\alpha + \beta + n)}$$

$$\times \frac{\Gamma(\sum x_i + \alpha + n - \sum x_i + \beta)}{\Gamma(\sum x_i + \alpha)\Gamma(n - \sum x_i + \beta)} p^{\sum x_i + \alpha - 1} (1 - p)^{n - \sum x_i + \beta - 1} dp$$

$$= \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \frac{\Gamma(\sum_{i=1}^n x_i + \alpha)\Gamma(n - \sum_{i=1}^n x_i + \beta)}{\Gamma(\alpha + \beta + n)}$$

$$\times \int_0^1 f_{\text{Beta}(\sum x_i + \alpha, n - \sum x_i + \beta)} (p) dp$$

$$= \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \frac{\Gamma(\sum_{i=1}^n x_i + \alpha)\Gamma(n - \sum_{i=1}^n x_i + \beta)}{\Gamma(\alpha + \beta + n)}$$

The posterior distribution of $\theta|\mathbf{x}$:

$$\pi(\theta|\mathbf{x}) = \frac{f(\mathbf{x}, p)}{m(\mathbf{x})}$$

The posterior distribution of $\theta | \mathbf{x}$:

$$\pi(\theta|\mathbf{x}) = \frac{f(\mathbf{x}, p)}{m(\mathbf{x})}$$

$$= \frac{\left[\frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} p^{\sum x_i + \alpha - 1} (1 - p)^{n - \sum x_i + \beta - 1}\right]}{\left[\frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \frac{\Gamma(\sum x_i + \alpha)\Gamma(n - \sum x_i + \beta)}{\Gamma(\alpha + \beta + n)}\right]}$$

Solution (3/4)

The posterior distribution of $\theta | \mathbf{x} :$

$$\pi(\theta|\mathbf{x}) = \frac{f(\mathbf{x}, p)}{m(\mathbf{x})}$$

$$= \frac{\left[\frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} p^{\sum x_i + \alpha - 1} (1 - p)^{n - \sum x_i + \beta - 1}\right]}{\left[\frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \frac{\Gamma(\sum x_i + \alpha)\Gamma(n - \sum x_i + \beta)}{\Gamma(\alpha + \beta + n)}\right]}$$

$$= \frac{\Gamma(\alpha + \beta + n)}{\Gamma(\sum x_i + \alpha)\Gamma(n - \sum x_i + \beta)} p^{\sum x_i + \alpha - 1} (1 - p)^{n - \sum x_i + \beta - 1}$$

The Bayes estimator of p is

$$\hat{p} = \frac{\sum_{i=1}^{n} x_i + \alpha}{\sum_{i=1}^{n} x_i + \alpha + n - \sum_{i=1}^{n} x_i + \beta} = \frac{\sum_{i=1}^{n} x_i + \alpha}{\alpha + \beta + n}$$

The Bayes estimator of p is

$$\hat{p} = \frac{\sum_{i=1}^{n} x_i + \alpha}{\sum_{i=1}^{n} x_i + \alpha + n - \sum_{i=1}^{n} x_i + \beta} = \frac{\sum_{i=1}^{n} x_i + \alpha}{\alpha + \beta + n}$$
$$= \frac{\sum_{i=1}^{n} x_i}{n} \frac{n}{\alpha + \beta + n} + \frac{\alpha}{\alpha + \beta} \frac{\alpha + \beta}{\alpha + \beta + n}$$

Solution (4/4)

The Bayes estimator of p is

$$\hat{p} = \frac{\sum_{i=1}^{n} x_i + \alpha}{\sum_{i=1}^{n} x_i + \alpha + n - \sum_{i=1}^{n} x_i + \beta} = \frac{\sum_{i=1}^{n} x_i + \alpha}{\alpha + \beta + n}$$

$$= \frac{\sum_{i=1}^{n} x_i}{n} \frac{n}{\alpha + \beta + n} + \frac{\alpha}{\alpha + \beta} \frac{\alpha + \beta}{\alpha + \beta + n}$$

$$= [Guess about p from data] \cdot weight_1$$

$$+ [Guess about p from prior] \cdot weight_2$$

Solution (4/4)

The Bayes estimator of p is

$$\hat{p} = \frac{\sum_{i=1}^{n} x_i + \alpha}{\sum_{i=1}^{n} x_i + \alpha + n - \sum_{i=1}^{n} x_i + \beta} = \frac{\sum_{i=1}^{n} x_i + \alpha}{\alpha + \beta + n}$$

$$= \frac{\sum_{i=1}^{n} x_i}{n} \frac{n}{\alpha + \beta + n} + \frac{\alpha}{\alpha + \beta} \frac{\alpha + \beta}{\alpha + \beta + n}$$

$$= [Guess about p from data] \cdot weight_1$$

$$+ [Guess about p from prior] \cdot weight_2$$

As n increase, weight $1 = \frac{n}{\alpha + \beta + n} = \frac{1}{\alpha + \beta + 1}$ becomes bigger and bigger and approaches to 1. In other words, influence of data is increasing, and the influence of prior knowledge is decreasing.

Is the Bayes estimator unbiased?

$$E\left[\frac{\sum_{i=1}^{n}+\alpha}{\alpha+\beta+n}\right]=\frac{np+\alpha}{\alpha+\beta+n}\neq p$$

Unless $\frac{\alpha}{\alpha+\beta}=p$.

Is the Bayes estimator unbiased?

$$E\left[\frac{\sum_{i=1}^{n} + \alpha}{\alpha + \beta + n}\right] = \frac{np + \alpha}{\alpha + \beta + n} \neq p$$

Unless $\frac{\alpha}{\alpha+\beta}=p$.

Bias =
$$\frac{np + \alpha}{\alpha + \beta + n} - p = \frac{\alpha - (\alpha + \beta)p}{\alpha + \beta + n}$$

As n increases, the bias approaches to zero.

Sufficient statistic and posterior distribution

Posterior conditioning on sufficient statistics

If $T(\mathbf{X})$ is a sufficient statistic, then the posterior distribution of θ given \mathbf{X} is the same to the posterior distribution given $T(\mathbf{X})$.

Sufficient statistic and posterior distribution

Posterior conditioning on sufficient statistics

If $T(\mathbf{X})$ is a sufficient statistic, then the posterior distribution of θ given \mathbf{X} is the same to the posterior distribution given $T(\mathbf{X})$. In other words,

$$\pi(\theta|\mathbf{x}) = \pi(\theta|T(\mathbf{x}))$$

Conjugate family

Definition 7.2.15

Let \mathcal{F} denote the class of pdfs or pmfs for $f(x|\theta)$. A class Π of prior distributions is a conjugate family of \mathcal{F} , if the posterior distribution is the class Π for all $f \in \mathcal{F}$, and all priors in Π , and all $x \in \mathcal{X}$.

20 / 26

Example: Beta-Binomial conjugate

Let

• $X_1, \dots, X_n | p \sim \text{Binomial}(m, p)$

Example: Beta-Binomial conjugate

Let

- $X_1, \dots, X_n | p \sim \text{Binomial}(m, p)$
- $\pi(p) \sim \text{Beta}(\alpha, \beta)$

where m, α, β is known.

Example: Beta-Binomial conjugate

Let

- $X_1, \dots, X_n | p \sim \text{Binomial}(m, p)$
- $\pi(p) \sim \text{Beta}(\alpha, \beta)$

where m, α, β is known. The posterior distribution is

$$\pi(p|\mathbf{x}) \sim \text{Beta}\left(\sum_{i=1}^{n} x_i + \alpha, mn - \sum_{i=1}^{n} x_i + \beta\right)$$

Example: Gamma-Poisson conjugate

• $X_1, \dots, X_n | \lambda \sim \text{Poisson}(\lambda)$

- $X_1, \dots, X_n | \lambda \sim \text{Poisson}(\lambda)$
- $\pi(\lambda) \sim \text{Gamma}(\alpha, \beta)$

Example: Gamma-Poisson conjugate

- $X_1, \dots, X_n | \lambda \sim \text{Poisson}(\lambda)$
- $\pi(\lambda) \sim \text{Gamma}(\alpha, \beta)$
- Prior:

$$\pi(\lambda) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} \lambda^{\alpha - 1} e^{-\lambda/\beta}$$

Example: Gamma-Poisson conjugate

- $X_1, \dots, X_n | \lambda \sim \text{Poisson}(\lambda)$
- $\pi(\lambda) \sim \text{Gamma}(\alpha, \beta)$
- Prior:

$$\pi(\lambda) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} \lambda^{\alpha - 1} e^{-\lambda/\beta}$$

Sampling distribution

$$\mathbf{X}|\lambda \quad \stackrel{\text{i.i.d.}}{\sim} \quad \frac{e^{-\lambda}\lambda^x}{x!}$$

$$f_{\mathbf{X}}(\mathbf{x}|\lambda) \quad = \quad \prod_{i=1}^n \frac{e^{-\lambda}\lambda^{x_i}}{x_i!}$$

Joint distribution of **X** and λ .

$$f(\mathbf{x}|\lambda)\pi(\lambda) = \left[\prod_{i=1}^{n} \frac{e^{-\lambda} \lambda^{x_i}}{x_i!} \right] \frac{1}{\Gamma(\alpha)\beta^{\alpha}} \lambda^{\alpha-1} e^{-\lambda/\beta}$$
$$= e^{-n\lambda - \lambda/\beta} \lambda^{\sum x_i + \alpha - 1} \frac{1}{\prod_{i=1}^{n} x_i!} \frac{1}{\Gamma(\alpha)\beta^{\alpha}}$$

Joint distribution of **X** and λ .

$$f(\mathbf{x}|\lambda)\pi(\lambda) = \left[\prod_{i=1}^{n} \frac{e^{-\lambda}\lambda^{x_i}}{x_i!}\right] \frac{1}{\Gamma(\alpha)\beta^{\alpha}} \lambda^{\alpha-1} e^{-\lambda/\beta}$$
$$= e^{-n\lambda-\lambda/\beta} \lambda^{\sum x_i + \alpha - 1} \frac{1}{\prod_{i=1}^{n} x_i!} \frac{1}{\Gamma(\alpha)\beta^{\alpha}}$$

Marginal distribution

$$m(\mathbf{x}) = \int f(\mathbf{x}|\lambda)\pi(\lambda) d\lambda$$

• Posterior distribution (proportional to the joint distribution)

$$\pi(\lambda|\mathbf{x}) = \frac{f(\mathbf{x}|\lambda)\pi(\lambda)}{m(\mathbf{x})}$$

$$= e^{-n\lambda - \lambda/\beta} \lambda^{\sum x_i + \alpha - 1} \frac{1}{\Gamma(\sum x_i + \alpha) \left(\frac{1}{n + \frac{1}{\beta}}\right)^{\sum x_i + \alpha}}$$

Posterior distribution (proportional to the joint distribution)

$$\pi(\lambda|\mathbf{x}) = \frac{f(\mathbf{x}|\lambda)\pi(\lambda)}{m(\mathbf{x})}$$

$$= e^{-n\lambda - \lambda/\beta} \lambda^{\sum x_i + \alpha - 1} \frac{1}{\Gamma(\sum x_i + \alpha) \left(\frac{1}{n + \frac{1}{\beta}}\right)^{\sum x_i + \alpha}}$$

So, the posterior distribution is Gamma $\left(\sum x_i + \alpha, \left(n + \frac{1}{\beta}\right)^{-1}\right)$.

Conjugate Family 000000

Example: Normal Bayes Estimators

$$E[\theta|\mathbf{x}] = \frac{\tau^2}{\tau^2 + \sigma^2} x + \frac{\sigma^2}{\sigma^2 + \tau^2} \mu$$

$$E[\theta|\mathbf{x}] = \frac{\tau^2}{\tau^2 + \sigma^2} x + \frac{\sigma^2}{\sigma^2 + \tau^2} \mu$$
$$Var(\theta|x) = \frac{\sigma^2 \tau^2}{\sigma^2 + \tau^2}$$

Let $X \sim \mathcal{N}(\theta, \sigma^2)$ and suppose that the prior distribution of θ is $\mathcal{N}(\mu, \tau^2)$. Assuming that σ^2, μ^2, τ^2 are all known, the posterior distribution of θ also becomes normal, with mean and variance given by

$$\begin{split} \mathrm{E}[\boldsymbol{\theta}|\mathbf{x}] &= \frac{\tau^2}{\tau^2 + \sigma^2} x + \frac{\sigma^2}{\sigma^2 + \tau^2} \mu \\ \mathrm{Var}(\boldsymbol{\theta}|x) &= \frac{\sigma^2 \tau^2}{\sigma^2 + \tau^2} \end{split}$$

The normal family is its own conjugate family.

$$\begin{split} \mathrm{E}[\boldsymbol{\theta}|\mathbf{x}] &= \frac{\tau^2}{\tau^2 + \sigma^2} x + \frac{\sigma^2}{\sigma^2 + \tau^2} \mu \\ \mathrm{Var}(\boldsymbol{\theta}|x) &= \frac{\sigma^2 \tau^2}{\sigma^2 + \tau^2} \end{split}$$

- The normal family is its own conjugate family.
- The Bayes estimator for θ is a linear combination of the prior and sample means

$$E[\theta|\mathbf{x}] = \frac{\tau^2}{\tau^2 + \sigma^2} x + \frac{\sigma^2}{\sigma^2 + \tau^2} \mu$$
$$Var(\theta|x) = \frac{\sigma^2 \tau^2}{\sigma^2 + \tau^2}$$

- The normal family is its own conjugate family.
- The Bayes estimator for θ is a linear combination of the prior and sample means
- As the prior variance au^2 approaches to infinity, the Bayes estimator tends toward to sample mean

ecap Bayesian Stat

Let $X \sim \mathcal{N}(\theta, \sigma^2)$ and suppose that the prior distribution of θ is $\mathcal{N}(\mu, \tau^2)$. Assuming that σ^2, μ^2, τ^2 are all known, the posterior distribution of θ also becomes normal, with mean and variance given by

$$\begin{split} \mathrm{E}[\boldsymbol{\theta}|\mathbf{x}] &= \frac{\tau^2}{\tau^2 + \sigma^2} x + \frac{\sigma^2}{\sigma^2 + \tau^2} \mu \\ \mathrm{Var}(\boldsymbol{\theta}|x) &= \frac{\sigma^2 \tau^2}{\sigma^2 + \tau^2} \end{split}$$

- The normal family is its own conjugate family.
- The Bayes estimator for θ is a linear combination of the prior and sample means
- As the prior variance τ^2 approaches to infinity, the Bayes estimator tends toward to sample mean
 - As the prior information becomes more vague, the Bayes estimator tends to give more weight to the sample information

Hyun Min Kang Biostatistics 602 - Lecture 15 March 12th, 2013 25 / 26

Summary

Today

- Bayesian Statistics
- Bayes Estimator
- Conjugate family

Summary

Today

- Bayesian Statistics
- Bayes Estimator
- Conjugate family

Next Lecture

- Bayesian Risk Functions
- Consistency

