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Last Lecture

= Can Cramer-Rao bound be used to find the best unbiased estimator
for any distribution?
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Recap
@000

Last Lecture

= Can Cramer-Rao bound be used to find the best unbiased estimator
for any distribution? If not, in which cases?

= When Cramer-Rao bound is attainable, can Cramer-Rao bound be
used for find best unbiased estimator for any 7(6)? If not, what is the
restriction on 7(6)?

= What is another way to find the best unbiased estimator?

= Describe two strategies to obtain the best unbiased estimators for
7(6), using complete sufficient statistics.
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Recap
[e] lele}

Recap - The power of complete sufficient statistics

Theorem 7.3.23

Let T be a complete sufficient statistic for parameter 6. Let ¢(T) be any

estimator based on 7. Then ¢(T) is the unique best unbiased estimator of
its expected value.
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Recap
[e]e] e}

Finding UMUVE - Method 1

Use Cramer-Rao bound to find the best unbiased estimator for 7(6). ]

@ If "regularity conditions” are satisfied, then we have a Cramer-Rao
bound for unbiased estimators of 7(0).

Hyun Min Kang Biostatistics 602 - Lecture 15 March 12th, 2013 4 /26



Recap
[e]e] e}

Finding UMUVE - Method 1

Use Cramer-Rao bound to find the best unbiased estimator for 7(6). ]

@ If "regularity conditions” are satisfied, then we have a Cramer-Rao
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Finding UMUVE - Method 1

Use Cramer-Rao bound to find the best unbiased estimator for 7(6). ]

@ If "regularity conditions” are satisfied, then we have a Cramer-Rao
bound for unbiased estimators of 7(0).
= It helps to confirm an estimator is the best unbiased estimator of 7(6)
if it happens to attain the CR-bound.
= If an unbiased estimator of 7(6) has variance greater than the
CR-bound, it does NOT mean that it is not the best unbiased

estimator.
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Recap
[e]e] e}

Finding UMUVE - Method 1

Use Cramer-Rao bound to find the best unbiased estimator for 7(6). ]

@ If "regularity conditions” are satisfied, then we have a Cramer-Rao
bound for unbiased estimators of 7(0).
= It helps to confirm an estimator is the best unbiased estimator of 7(6)
if it happens to attain the CR-bound.
= If an unbiased estimator of 7(6) has variance greater than the
CR-bound, it does NOT mean that it is not the best unbiased
estimator.

® When "regularity conditions” are not satisfied, [Tfln(g,)r is no longer a

valid lower bound.

Hyun Min Kang Biostatistics 602 - Lecture 15 March 12th, 2013 4 /26



Recap
[e]e] e}

Finding UMUVE - Method 1

Use Cramer-Rao bound to find the best unbiased estimator for 7(6). ]

@ If "regularity conditions” are satisfied, then we have a Cramer-Rao
bound for unbiased estimators of 7(0).
= It helps to confirm an estimator is the best unbiased estimator of 7(6)
if it happens to attain the CR-bound.
= If an unbiased estimator of 7(6) has variance greater than the
CR-bound, it does NOT mean that it is not the best unbiased
estimator.

® When "regularity conditions” are not satisfied, [Tfln(g,)r is no longer a

valid lower bound.

= There may be unbiased estimators of 7(6) that have variance smaller

T, 7] 2
than [In(((;)] .
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Finding UMVUE - Method 2

7(6).

Use complete sufficient statistic to find the best unbiased estimator for }
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Finding UMVUE - Method 2

7(6).

Use complete sufficient statistic to find the best unbiased estimator for }

® Find complete sufficient statistic 7T for 6.

@® Obtain ¢(T), an unbiased estimator of 7(6) using either of the
following two ways

= Guess a function ¢(T) such that E[¢(T)] = 7(9).
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Recap
[e]e]e] }

Finding UMVUE - Method 2

7(6).

Use complete sufficient statistic to find the best unbiased estimator for }

® Find complete sufficient statistic 7T for 6.

@® Obtain ¢(T), an unbiased estimator of 7(6) using either of the
following two ways

= Guess a function ¢(T) such that E[¢(T)] = 7(6).
= Guess an unbiased estimator i(X) of 7(#). Construct

¢(T) = E[MX)|T], then E[¢(T)] = E[A(X)] = 7(0).
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Bayesian Statistics
000000

Frequentists vs. Bayesians

A biased view in favor of Bayesians at http://xkcd.com/1132/

DID‘IHE&NJUSI‘E)@LDDE.?
(ITS NISHT, 50 WERE NOT SURE,)

THIS NEUTRINO DETECTOR MEASURES
WHETHER THE SUN HAS GONE NOVA.

THEN, ITROLS TWo DICE. IF THEY
BOTH COME UP Si, ITLES TO US.
OTHERWISE, I TELLS THE TRUH.

LETS TRY.

CETECIOR! HAS THE

swa:wsm?

Al

FREQUENTIST STRTSTICIAN: BAYESIAN STRATISTICOAN:
THE PROBABIITY OF THIS RESUT

HAPPENING BY CHANCE 15 220027 BET YOU $50
SACE <005, T CNGLIE T HASNT.
WFE HAS EXPLODED. )

e

O
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Bayesian Statistics
0Oe00000

Bayesian Statistic

Frequentist's Framework

P = {X~ (x|0),0 € Q}
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Frequentist's Framework

P = {X~ (x|0),0 € Q}

| \

Bayesian Statistic

= Parameter 6 is considered as a random quantity
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Bayesian Statistic

Frequentist's Framework
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| \

Bayesian Statistic
= Parameter 6 is considered as a random quantity

= Distribution of 6 can be described by probability distribution, referred
to as prior distribution
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Bayesian Statistics
0Oe00000

Bayesian Statistic

Frequentist's Framework

P = {X~ (x|0),0 € Q}

Bayesian Statistic
= Parameter 6 is considered as a random quantity
= Distribution of 6 can be described by probability distribution, referred
to as prior distribution

= A sample is taken from a population indexed by 6, and the prior
distribution is updated using information from the sample to get
posterior distribution of @ given the sample.

| \
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Bayesian Statistics
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Bayesian Framework

= Prior distribution of § : 0 ~ 7(0).
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= Prior distribution of 6 : 6 ~ 7(0).
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Bayesian Statistics
[e]e] le]ele]e]

Bayesian Framework

= Prior distribution of 6 : 6 ~ 7(0).
= Sample distribution of X given 6.
X0 ~ f(x|6)

= Joint distribution X and 6

f(x,0) = 7(0)f(x|6)

= Marginal distribution of X.

m(x) = fx,0)d0 = | f(x|0)r(0)do
0eQ 0eQ
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Bayesian Statistics
[e]e] le]ele]e]

Bayesian Framework

= Prior distribution of 6 : 6 ~ 7(0).
= Sample distribution of X given 6.
X0 ~ f(x|6)

= Joint distribution X and 6

f(x,0) = 7(0)f(x|6)

= Marginal distribution of X.

m(x) = fx,0)d0 = | f(x|0)r(0)do
0eQ 0eQ

= Posterior distribution of § (conditional distribution of 6 given X)
m(f]x) = fx.6) _ fix|0)m(6) (Bayes’ Rule)
m(x) m(x)
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Bayesian Statistics
[ee]e] lele]e]

EE

Burglary (0) | Pr(Alarm|Burglary) = Pr(X = 1/|0)
True (0 =1) 0.95
False (6 = 0) 0.01

Suppose that Burglary is an unobserved parameter (6 € {0,1}), and Alarm
is an observed outcome (X = {0,1}).
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Burglary (0) | Pr(Alarm|Burglary) = Pr(X = 1/|0)
True (0 =1) 0.95
False (6 = 0) 0.01

Suppose that Burglary is an unobserved parameter (6 € {0,1}), and Alarm
is an observed outcome (X = {0,1}).
= Under Frequentist's Framework,
= |f there was no burglary, there is 1% of chance of alarm ringing.
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EE

Burglary (0) | Pr(Alarm|Burglary) = Pr(X = 1/|0)
True (0 =1) 0.95
False (6 = 0) 0.01

Suppose that Burglary is an unobserved parameter (6 € {0,1}), and Alarm
is an observed outcome (X = {0,1}).
= Under Frequentist's Framework,

= |f there was no burglary, there is 1% of chance of alarm ringing.
= |f there was a burglary, there is 95% of chance of alarm ringing.
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Bayesian Statistics
[ee]e] lele]e]

EE

Burglary (0)

Pr(Alarm|Burglary) = Pr(X = 1]0)

True (0 =1)
False (6 = 0)

0.95
0.01

Suppose that Burglary is an unobserved parameter (6 € {0,1}), and Alarm
is an observed outcome (X = {0,1}).
= Under Frequentist's Framework,

= |f there was no burglary, there is 1% of chance of alarm ringing.
= |f there was a burglary, there is 95% of chance of alarm ringing.
= One can come up with an estimator on 6, such as MLE
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Bayesian Statistics
[ee]e] lele]e]

EE

Burglary (0) | Pr(Alarm|Burglary) = Pr(X = 1/|0)
True (0 =1) 0.95
False (6 = 0) 0.01

Suppose that Burglary is an unobserved parameter (6 € {0,1}), and Alarm
is an observed outcome (X = {0,1}).
= Under Frequentist's Framework,
= |f there was no burglary, there is 1% of chance of alarm ringing.
= |f there was a burglary, there is 95% of chance of alarm ringing.
= One can come up with an estimator on 6, such as MLE
= However, given that alarm already rang, one cannot calculate the
probability of burglary.
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Bayesian Statistics
[ee]ele] Tele]

Inference Under Bayesian's Framework

Leveraging Prior Information

Suppose that we know that the chance of Burglary per household per
night is 1077,

Pr(6 =1)

Po(fl = 1[X = 1)1 = Pe(X = 1[0 =)= sy

(Bayes’ rule)
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Bayesian Statistics
[ee]ele] Tele]

Inference Under Bayesian's Framework

Leveraging Prior Information

Suppose that we know that the chance of Burglary per household per
night is 1077,

_ o i o\ Pr(@0=1) ,
Pr(d=1X=1)=Pr(X=1|0 = 1)Pr(X: 0 (Bayes’ rule)
B . Pr(6 =1)
= P == T X @ =0.X=1)
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Bayesian Statistics
[ee]ele] Tele]

Inference Under Bayesian's Framework

Leveraging Prior Information

Suppose that we know that the chance of Burglary per household per
night is 1077,

Pr(d=1|X=1)=Pr(X

=1l = 1)15;(()6(; )) (Bayes’ rule)
_ 19— Pr(6 =1)
= P == ) T X 1) 7 e -1
Pr(X=10=1)Pr(d =1)
Pr(X=16=1)Pr(0=1)+Pr(X=1|0 =
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Bayesian Statistics
[ee]ele] Tele]

Inference Under Bayesian's Framework

Leveraging Prior Information

Suppose that we know that the chance of Burglary per household per
night is 1077,

Pr(d=1X=1)=Pr(X=1|0 = 1)15;(()6(; )) (Bayes’ rule)
_ 19— Pr(6 =1)
= P == T X @ =0.X=1)
B Pr(X=10=1)Pr(d =1)
 Pr(X=10=1)Pr(@ =1)+Pr(X=1]¢ = 0) Pr(d = 0)

0.95 x 1077
~ 9.5 x 1076
0.95 x 10-7 +0.01 x (1 —1077)
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Bayesian Statistics
[ee]ele] Tele]

Inference Under Bayesian's Framework

Leveraging Prior Information

Suppose that we know that the chance of Burglary per household per
night is 1077,

Pr(d=1X=1)=Pr(X=1|0 = 1)15;(()6(; )) (Bayes’ rule)
_ 19— Pr(6 =1)
= P == T X @ =0.X=1)
B Pr(X=10=1)Pr(d =1)
 Pr(X=10=1)Pr(@ =1)+Pr(X=1]¢ = 0) Pr(d = 0)

0.95 x 107

— ~9.5x 1076
0.95 x 10-7 +0.01 x (1 —1077)

So, even if alarm rang, one can conclude that the burglary is unlikely to
happen.
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Bayesian Statistics
[ee]ele]e] o]

What if the prior information is misleading?

Over-fitting to Prior Information

Suppose that, in fact, a thief found a security breach in my place and
planning to break-in either tonight or tomorrow night for sure (with the
same probability). Then the correct prior Pr(6 = 1) = 0.5.

v
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Bayesian Statistics atol ami Summar
[ee]ele]e] o]

What if the prior information is misleading?

Over-fitting to Prior Information

Suppose that, in fact, a thief found a security breach in my place and
planning to break-in either tonight or tomorrow night for sure (with the
same probability). Then the correct prior Pr(6 = 1) = 0.5.
Pr(0 =1/X=1)
Pr(X=10=1)Pr(0=1)

Pr(X=16=1)Pr(d =1)+Pr(X=10 =0)Pr(6 =0)
0.95 x 0.5
T 0.95x0.5+0.01x(1-0.5) 0-99

v
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Bayesian Statistics s tol Conjugate Famil Summar
[ee]ele]e] o] O (o] )

What if the prior information is misleading?

Over-fitting to Prior Information

Suppose that, in fact, a thief found a security breach in my place and
planning to break-in either tonight or tomorrow night for sure (with the
same probability). Then the correct prior Pr(6 = 1) = 0.5.
Pr(0 =1/X=1)
Pr(X=10=1)Pr(0=1)
Pr(X=16=1)Pr(d =1)+Pr(X=10 =0)Pr(6 =0)
0.95 x 0.5

= ~ 0.99
0.95 x 0.5 4 0.01 x (1 —0.5)

However, if we relied on the inference based on the incorrect prior, we may
end up concluding that there are > 99.9% chance that this is a false
alarm, and ignore it, resulting an exchange of one night of good sleep with
quite a bit of fortune.

v
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Advantages and Drawbacks of Bayesian Inference

Advantages over Frequentist's Framework

= Allows making inference on the distribution of 6 given data.
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Advantages and Drawbacks of Bayesian Inference

Advantages over Frequentist's Framework
= Allows making inference on the distribution of 6 given data.

= Available information about @ can be utilized.
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Advantages and Drawbacks of Bayesian Inference

Advantages over Frequentist's Framework
= Allows making inference on the distribution of 6 given data.
= Available information about 6 can be utilized.

= Uncertainty and information can be quantified probabilistically.
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Bayesian Statistics
0O00000e

Advantages and Drawbacks of Bayesian Inference

Advantages over Frequentist's Framework

= Allows making inference on the distribution of 6 given data.

= Available information about @ can be utilized.

= Uncertainty and information can be quantified probabilistically.

Drawbacks of Bayesian Inference

= Misleading prior can result in misleading inference.

v
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Bayesian Statistics o c E Summar
0O00000e

Advantages and Drawbacks of Bayesian Inference

Advantages over Frequentist's Framework

= Allows making inference on the distribution of 6 given data.

= Available information about @ can be utilized.

= Uncertainty and information can be quantified probabilistically.

Drawbacks of Bayesian Inference

| A

= Misleading prior can result in misleading inference.
= Bayesian inference is often (but not always) prone to be "subjective”

= See : Larry Wasserman "Frequentist Bayes is Objective” (2006)
Bayesian Analysis 3:451-456.

v

Hyun Min Kang Biostatistics 602 - Lecture 15 March 12th, 2013 12 /26
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Advantages and Drawbacks of Bayesian Inference

Advantages over Frequentist's Framework

= Allows making inference on the distribution of 6 given data.

= Available information about @ can be utilized.

= Uncertainty and information can be quantified probabilistically.

| A

Drawbacks of Bayesian Inference
= Misleading prior can result in misleading inference.
= Bayesian inference is often (but not always) prone to be "subjective”
= See : Larry Wasserman "Frequentist Bayes is Objective” (2006)
Bayesian Analysis 3:451-456.

= Bayesian inference could be sometimes unnecessarily complicated to
interpret, compared to Frequentist's inference.

v
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Bayes Estimator
@®000000

Bayes Estimator

Definition
Bayes Estimator of 6 is defined as the posterior mean of 6.
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Bayes Estimator
@®000000

Bayes Estimator

Definition

Bayes Estimator of 6 is defined as the posterior mean of 6.
E(0|x) = / O (0|x)do
=)
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Bayes Estimator
@®000000

Bayes Estimator

Definition
Bayes Estimator of 6 is defined as the posterior mean of 6.
E(0|x) = / O (0|x)do
=)

Example Problem

X1, -, X, g Bernoulli(p) where 0 < p < 1. Assume that the prior
distribution of p is Beta(«, 3). Find the posterior distribution of p and the

Bayes estimator of p, assuming « and 3 are known.
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Bayes Estimator
0®00000

Solution (1/4)

Prior distribution of p is
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Bayes Estimator
0®00000

Solution (1/4)

Prior distribution of p is

r
") = et D
Sampling distribution of X given p is
fxxlp) =T {p"(1 = p)* "1}
i=1
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Bayes Estimator
0®00000

Solution (1/4)

Prior distribution of p is

Sampling distribution of X given p is

n

fxxlp) =T {p"(1 = p)* "1}

=1

Joint distribution of X and p is
K(x,p) = fx(xlp)w(p)

= ZHl {p%(1 - p)t=o) 5((2);(?) N1 — p)ft
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Bayes Estimator
00e0000

Solution (2/4)

The marginal distribution of X is

1 (6% n n
m(x) = / fix, p)dp _/0 5((04);(?) prim el — pyrm i Al gy
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Bayes Estimator
00e0000

Solution (2/4)

The marginal distribution of X is

mix _ (O‘_’_ﬁ) S aita—1lq _ \n—y o z+B—1
0 = [fonw= [ forl, (1-9) i
[ Kot st o= et 0
o T@(B)  Ta+i+n

P ozitatn—3a+0) soraiyq yn-Satp1
IS ot ol Sa g =T
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Bayes Estimator
00e0000

Solution (2/4)

The marginal distribution of X is

m(x) = Le+5) S wita—leq _ =i w1
0 = [fonp= [ Ot e T,
[ Kot st o= et 0
o T@(B)  Ta+i+n

F(le+a+n_le+ﬂ) > zita— _ o\ zi+B—
PO e ) Lot A

Dla+B) T i @i+ a)l(n— >0, 2+ B)

I'(a)T(B) MNa+ B+ n)

X A fBeta(Z zita,n—> ;+5) (p) dp
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Bayes Estimator
00e0000

Solution (2/4)

The marginal distribution of X is

m(X = Oé + ﬁ) Z?:l ri+a—1 . nfz;z:l zitB—1
() /f /) (@)’ (1-p) dp
G rey e

o e e
Dla+B) T i @i+ a)l(n— >0, 2+ B)
T(@)T(3) T(a+ B+ n)

1
X A fBeta(Z zita,n—> ;+5) (p) dp

Dla+B) P zi+a)l(n— 1L, 5+ B)
L(a)l(B) I'(a+pB+mn)
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Bayes Estimator
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Solution (3/4)

The posterior distribution of 0|x :

w(0]x) =
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Bayes Estimator
000000

Solution (3/4)

The posterior distribution of 0|x :

o - fxp)
wop) = Dok
F(a+16) Szita—1/1 _ \yn—>, z+L0-1
) T e
[F(a—i—ﬁ)I’(in—i—a)r(n—Zwi—i—,B)]
L(a)l'(B) I'(a+ B+ n)
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Bayes Estimator
000000

Solution (3/4)

The posterior distribution of 0|x :

f(x, p)
m(x)
[F(Wrﬁ) Pz o)l (n = Zwﬁ,@)]
L'(a)l(B) ['(a+ B+ n)
— [(a+B+n) Sebacl iy mS a1
N(Czit+a)l(n—yztp) (1-p)

w(0]x) =

Hyun Min Kang Biostatistics 602 - Lecture 15 March 12th, 2013 16 / 26



Bayes Estimator
0000e00

Solution (4/4)

The Bayes estimator of p is

. Srimta _ Yo mita
Y zita+n—>Y 1 x5+ a+B+n
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Bayes Estimator
0000e00

Solution (4/4)

The Bayes estimator of p is

5 Srimta _ Yo mita
N izita+n—Yr m+h8  a+B+n
Yo n a a+f

n a+pB+n a+fa+pB+n
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Bayes Estimator
0000e00

Solution (4/4)

The Bayes estimator of p is

5 Srimta _ Yo mita
N izita+n—Yr m+h8  a+B+n
Yo n a a+f

n a+pB+n a+fa+pB+n
= [Guess about p from data] - weight;

+ [Guess about p from prior] - weight,
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Bayes Estimator
0000e00

Solution (4/4)

The Bayes estimator of p is

5 Srimta _ Yo mita
N izita+n—Yr m+h8  a+B+n
DY Y n a a+f

n a+pB+n a+fa+pB+n
= [Guess about p from data] - weight;

+ [Guess about p from prior] - weight,

As n increase, weight, = a+g+n = &éﬂ becomes bigger and bigger and

approaches to 1. In other words, influence of data is increasing, and the
influence of prior knowledge is decreasing.
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Bayes Estimator
0000080

Is the Bayes estimator unbiased?

B Yo Fo _ np + «
a+p+n a+pB+n

Unless o%rﬁ =p.
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Bayes Estimator
0000080

Is the Bayes estimator unbiased?

B Yo Fo _ mpta 4y
a+p+n a+pB+n
UnIessO%B:p.
Bi _ npta _a—(a+B)p
ias = ——— —p= ——~——7%
a+p+n a+pB+n

As n increases, the bias approaches to zero.
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Sufficient statistic and posterior distribution

Posterior conditioning on sufficient statistics

If T(X) is a sufficient statistic, then the posterior distribution of 6 given X
is the same to the posterior distribution given T(X).
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Bayes Estimator
000000e

Sufficient statistic and posterior distribution

Posterior conditioning on sufficient statistics

If T(X) is a sufficient statistic, then the posterior distribution of 6 given X
is the same to the posterior distribution given T(X). In other words,

m(0x) = (6] T(x))

Hyun Min Kang Biostatistics 602 - Lecture 15 March 12th, 2013 19 / 26



Conjugate Family
000000

Conjugate family

Definition 7.2.15

Let F denote the class of pdfs or pmfs for f(x]|6). A class II of prior
distributions is a conjugate family of F, if the posterior distribution is the
class II for all f€ F, and all priors in II, and all z € X.

20 / 26
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Conjugate Family
(o] le]elele)

Example: Beta-Binomial conjugate

Let
= Xi,--+, X,|p ~ Binomial(m, p)
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Conjugate Family
(o] le]elele)

Example: Beta-Binomial conjugate

Let
= Xi,--+, X,|p ~ Binomial(m, p)

= 7(p) ~ Beta(a, §)
where m, a, 5 is known.
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Conjugate Family
(o] le]elele)

Example: Beta-Binomial conjugate

Let
= Xi,--+, X,|p ~ Binomial(m, p)

= m(p) ~ Beta(a, 5)
where m, a, 5 is known. The posterior distribution is

7(p|x) ~ Beta (Z T; 4+ o, mn — Z T + 5)

=1 =1
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Conjugate Family
[e]e] lelele)

Example: Gamma-Poisson conjugate

= Xj,--+, Xp|A ~ Poisson(A)
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Conjugate Family
[e]e] lelele)

Example: Gamma-Poisson conjugate

= Xj,--+, Xp|A ~ Poisson(A)
= m(A) ~ Gamma(c, 3)
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Conjugate Family
[e]e] lelele)

Example: Gamma-Poisson conjugate

= Xj,--+, Xp|A ~ Poisson(A)
= m(A) ~ Gamma(c, 3)

= Prior:
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Conjugate Family
[e]e] lelele)

Example: Gamma-Poisson conjugate

X1, -+, Xp|A ~ Poisson(\)
m(A) ~ Gamma(a, f)

= Prior:

Sampling distribution

.. —A\ &
x|y Hd €A
al

n 6—)\>\:L’7,

Ko =TT

Hyun Min Kang Biostatistics 602 - Lecture 15 March 12th, 2013



Conjugate Family
[e]e]e] lele)

Gamma-Poisson conjugate (cont'd)

= Joint distribution of X and \.

. n G_A)\Zi 1 a— _/\/5
fdNr() = [E[l = ]F(a)ﬂax '

e—n)\—)\/ﬁ/\z zit+a—1

1 1
[Tie) @ D) B>
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Conjugate Family
[e]e]e] lele)

Gamma-Poisson conjugate (cont'd)

= Joint distribution of X and \.

. n G_A)\Zi 1 a— _/\/5
fdNr() = [E[l = ]F(a)ﬂax '

e—n)\—)\/ﬁ/\z zit+a—1

1 1
[Tie) @ D) B>

= Marginal distribution

m(x) = / SN T(A) dA
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Conjugate Family
[e]e]e]e] o)

Gamma-Poisson conjugate (cont'd)

= Posterior distribution (proportional to the joint distribution)
JxN)m(A)
m(x)

e—n)\—)\/ﬂ)\z zita—1 1 Sora
I zi+ ) (nil)
B

m(Alx) =
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Conjugate Family
[e]e]e]e] o)

Gamma-Poisson conjugate (cont'd)

= Posterior distribution (proportional to the joint distribution)

fxA)m ()

m(x)

e—n)\—)\/ﬂ)\z zita—1 1 Sora
I zi+ ) (nil)
B

-1
So, the posterior distribution is Gamma <Z zi + «, (n+ %) )

m(Alx) =
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Example: Normal Bayes Estimators

Let X ~ N (A,0?%) and suppose that the prior distribution of 6 is N'(u, 72).
Assuming that o2, 42, 72 are all known, the posterior distribution of § also
becomes normal, with mean and variance given by
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Conjugate Family
[e]e]e]e]e] )

Example: Normal Bayes Estimators

Let X ~ N (A,0?%) and suppose that the prior distribution of 6 is N'(u, 72).
Assuming that o2, 42, 72 are all known, the posterior distribution of § also
becomes normal, with mean and variance given by
2 2
T g
E[f|x] =
101 72+02I+02+7'2'u
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Conjugate Family
[e]e]e]e]e] )

Example: Normal Bayes Estimators

Let X ~ N (A,0?%) and suppose that the prior distribution of 6 is N'(u, 72).
Assuming that o2, 42, 72 are all known, the posterior distribution of § also
becomes normal, with mean and variance given by

2 2
T o
E[6 =
[O1x] 7-24—02:%L o2+ 2t
2 2
o’r
ar(6]2) 024712

Hyun Min Kang

Biostatistics 602 - Lecture 15

March 12th, 2013



Conjugate Family
[e]e]e]e]e] )

Example: Normal Bayes Estimators

Let X ~ N (A,0?%) and suppose that the prior distribution of 6 is N'(u, 72).
Assuming that o2, 42, 72 are all known, the posterior distribution of § also
becomes normal, with mean and variance given by

2 2
T o
E[6 =
[O1x] 7-24—02:%L o2+ 2t
2 2
o’r
ar(6]2) 024712

= The normal family is its own conjugate family.
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Conjugate Family
[e]e]e]e]e] )

Example: Normal Bayes Estimators

Let X ~ N (A,0?%) and suppose that the prior distribution of 6 is N'(u, 72).
Assuming that o2, 42, 72 are all known, the posterior distribution of § also
becomes normal, with mean and variance given by

2 2
T o
E[6 =
[O1x] 7-24—02%L o2+ 2t
2 2
o’r
ar(6]2) 024712

= The normal family is its own conjugate family.

= The Bayes estimator for 6 is a linear combination of the prior and
sample means
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Conjugate Family
[e]e]e]e]e] )

Example: Normal Bayes Estimators

Let X ~ N (A,0?%) and suppose that the prior distribution of 6 is N'(u, 72).
Assuming that o2, 42, 72 are all known, the posterior distribution of § also
becomes normal, with mean and variance given by

2 2
T o
E[6 =
[O1x] 7-24—02%L o2+ 2t
2 2
o’r
ar(6]2) 024712

= The normal family is its own conjugate family.

= The Bayes estimator for 6 is a linear combination of the prior and
sample means

= As the prior variance 72 approaches to infinity, the Bayes estimator
tends toward to sample mean
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Conjugate Family
[e]e]e]e]e] )

Example: Normal Bayes Estimators

Let X ~ N (A,0?%) and suppose that the prior distribution of 6 is N'(u, 72).
Assuming that o2, 42, 72 are all known, the posterior distribution of § also
becomes normal, with mean and variance given by

2 2
T o
E[6 =
[O1x] 7-24—02%L o2+ 2t
2 2
o’r
ar(6]2) 024712

= The normal family is its own conjugate family.

= The Bayes estimator for 6 is a linear combination of the prior and
sample means

= As the prior variance 72 approaches to infinity, the Bayes estimator
tends toward to sample mean

= As the prior information becomes more vague, the Bayes estimator
tends to give more weight to the sample information
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Summary

= Bayesian Statistics
= Bayes Estimator

= Conjugate family
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Summary
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Summary

= Bayesian Statistics

= Bayes Estimator

= Conjugate family

v

Next Lecture

= Bayesian Risk Functions

= Consistency

\
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