Genotype Imputation

Class Discussion for January 19, 2016



Intultion

* Patterns of genetic variation in
one individual ...

* ... guide our interpretation of the
genomes of other individuals

* Imputation uses previously seen
combinations of genetic variants
to interpret new genomes.




Observed Genotypes

Observed Genotypes

Study Sample
Inexpensive measurements

A
G

at 100,000s of markers

Reference Haplotypes

CGAGATCTCCTTCTTCTGTGC
CGAGATCTCCCGACCTCATGSG
CCAAGCTCTTTTCTTCTGT®GC
CGAAGCTCTTTTCTTCTGTGZC
CGAGACTCTCCGACCTTATGC
TGGGATCTCCCGACCTCATGG
CGAGATCTCCCGACCTTGTGC
CGAGACTCTTTTCTTTTGTAC
CGAGACTCTCCGACCTCGTGC
CGAAGCTCTTTTCTTCTGTGZC

Reference Sample
Detailed measurements

of 1,000,000s of markers
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|dentify Match Among Reference

Reference Haplotypes

CGAGATCTCCTTCTTCTGTGZC
CGAGATCTCCCGACCTCATGS®G
CCAAGCTCTTTTCTTCTGTGZC
CGAAGCTCTTTTCTTCTGT®GZC
CGAGACTCTCCGACCTTATGZC
TGGGATCTCCCGACCTCATGSG
CGAGATCTCCCGACCTTGTGC
CGAGACTCTTTTCTTTTGTAC
CGAGACTCTCCGACCTCGTGC
CGAAGCTCIT T T TITCITITCTGTGC




Issing Genotypes

Fill-in M

Observed Genotypes

cgagAtctcccgAcctcAtgayg

t cAtgg

t Ctt

cgaaGectcttt

Reference Haplotypes

CGAGATCTCCTTCTTCTGTGZC
CGAGATCTCCCGACCTCATGSG
CCAAGCTCTTTTCTTCTGTGZC
CGAAGCTCTTTTCTTCTGTGZC
CGAGACTCTCCGACCTTATGC
TGGGATCTCCCGACCTCATGG®G
CGAGATCTCCCGACCTTGTGC
CGAGACTCTTTTCTTTTGTAZC
CGAGACTCTCCGACCTCGTGC
CGAAGCITCIT T I TCITITCTGTGC




Howie et al (2012) Nat Genet 44:955

* Questions...

* Reviewing table 2, can you summarize the factors that influence
imputation quality and their relative contributions?

* What struck you most about the paper?



Table 2 Accuracy of different imputation methods and 1000 Genomes reference panels applied to various GWAS data sets

Imputation accuracy (mean R?)

GWAS data set Imputation method? Reference panel® MAF 1-3% MAF 3-5% MAF >5%
GAIN psoriasis MaCH or minimac 60 CEU individuals 0.67 0.76 0.91
(European American; N = 2,759) 0.69 0.77 0.91
283 EUR individuals 0.73 0.78 0.92
381 EUR individuals 0.83 0.85 0.94
WTCCC2 IMPUTEZ2 60 CEU individuals 0.66 0.78 0.88
(UK; N=2,490) (sampling or pre-phasing) 0.65 0.77 0.87
283 EUR individuals 0.77 0.82 0.89
0.75 0.81 0.88
381 EUR individuals 0.84 0.88 0.92
0.82 0.86 0.91
WHI MaCH or minimac 60 CEU and 59 YRI individuals 0.51 0.73 0.83
(African-American; N=8,421) 0.49 0.70 0.80
283 EUR and 172 AFR individuals 0.55 0.72 0.81
381 EUR and 174 AFR individuals 0.61 0.75 0.83
1000 Genomes EUR IMPUTEZ2 380 EUR individuals 0.82 0.86 0.92
(European ancestry; N = 381) (sampling or pre-phasing) (WTCCC2 SNPs) 0.81 0.85 0.91
380 EUR individuals (sequence SNPs) 0.66 0.79 0.91
0.64 0.78 0.90

YRI, Yoruba from Ibadan, Nigeria; AFR, African population; CEU, EUR, European populations; from 1000 Genomes.

aWe imputed each GWAS data set with an existing imputation method and its pre-phasing counterpart. PReference panels used to impute each GWAS data set included the 1000 Genomes
low-coverage Pilot (June 2010), the 1000 Genomes interim release (August 2010) and the 1000 Genomes interim Phase 1 release (November 2010). “Each cell shows the mean RZ between
true genotypes and imputed dosages for the specified MAF window and reference panel. For a given GWAS data set, all accuracy values within a MAF window were calculated on the same set of
SNPs; the corresponding SNP counts are shown in Supplementary Figure 1. Accuracy values from pre-phasing are shown in bold (some analyses were performed only with pre-phasing).



Implementation

* Markov model is used to model each haplotype, conditional on all
others

* At each position, we assume that the haplotype being modeled
copies a template haplotype

* Each individual has two haplotypes, and therefore copies two
template haplotypes



Markov Model

ﬁp(xl [S,) ﬁp(xz |S2) ﬁP(Xg |S5) ﬁP(XM |Su)

Sy S; S3 Sy
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The final ingredient connects template states along the chromosome ...



Possible States

* A state S selects pair of template haplotypes
* Consider §; as vector with two elements (S;,, S; ,)

* With H possible haplotypes, H? possible states
* H(H+1)/2 of these are distinct

* A recombination rate parameter describes probability of switches between
states
* P((S;;=a,S;,=b) > (S5;,1:=3,S;,1,=D)) (1-6)?
* P((S;1=a,5,=b) > (Si.1.=2%,S,1,= b)) (8(1-6))/H
* P((S;1=a,5;,=b) > (Si.1,,=8%,5,1,= b%)) (B/H)?



Emission Probabilities

* Each value of S implies expected pair of alleles

* Emission probabilities will be higher when observed genotype
matches expected alleles

* Emission probabilities will be lower when alleles mismatch

 Let T(S) be a function that provides expected allele pairs for each
state S



Emission Probabilities

(1 —ej)z +g}2, I'(5;)=G; and G; is heterozygote,
2(1—¢j)g;,  T(5)#G; and G; is heterozygote,
(1 —gj)z, I'(5))=G; and G; is homozygote,
P(Gjl5) =< (1 —&))E, T(5;) is heterozygote and

G; homozygote,
£, I'(5;) and G; are opposite
k homozygotes.




Does This Really Work?
Preliminary Results

* Used .11 tag SNPs to predict 84 Comparison of Test Statistics,
SNPs in CFH Truth vs. Imputed

Chi-Square Test Statistic for Disease-Marker Association

* Predicted genotypes differ
from original ~1.8% of the time

* Reasonably similar results
possible using various
haplotyping methods




Does this really, really work?

* 90 GAIN psoriasis study samples were re-genotyped for 906,600 SNPs using the
Affymetrix 6.0 chip.

* Comparison of 15,844,334 genotypes for 218,039 SNPs that overlap between the

Perlegen and Affymetrix chips resulted in discrepancy rate of 0.25% per genotype
(0.12% per aIIeIeY.

 Comparison of 57,747,244 imputed and experimentally derived genotypes for
661,881 non-PerIegen SNPs present in the Affymetrix 6.0 array resulted in a
discrepancy rate of 1.80% per genotype (0.91% per allele).

* Overall, the average r? between imputed genotypes and their experimental
counterparts was 0.93. This statistic exceeded 0.80 for >90% of SNPs.

Nair et al, Nature Genetics, 2009



LDLR and LDL example

—logg p—value for LDL

LDLR locus and LDL cholesterol
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Impact of HapMap Imputation on Power

Power
Disease
SNP MAF tagSNPs Imputation

2.5% 24.4% 56.2%

5% 55.8% 73.8%
10% 77.4% 87.2%
20% 85.6% 92.0%
50% 93.0% 96.0%

Power for Simulated Case Control Studies.
Simulations Ensure Equal Power for Directly Genotyped SNPs.

Simulated studies used a tag SNP panel that captures
80% of common variants with pairwise r? > 0.80.



Combined Lipid Scans

* SardiNIA (Schlessinger, Uda, et al.)
e ~4,300 individuals, cohort study

FUSION (Mohlke, Boehnke, Collins, et al.)
e ~2,500 individuals, case-control study of type 2 diabetes

DGI (Kathiresan, Altshuler, Orho-Mellander, et al.)
e ~3,000 individuals, case-control study of type 2 diabetes

Individually, 1-3 hits/scan, mostly known loci

Analysis:
* Impute genotypes so that all scans are analyzed at the same “SNPs”
* Carry out meta-analysis of results across scans

Willer et al, Nature Genetics, 2008



Combined Lipid Scan Results
18 clear loci!

HDL Cholesterol
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Summary

* Genotype imputation can be used to accurately estimate missing
genotypes

* Genotype imputation is usually implemented through using a Hidden
Markov Model

* Benefits of genotype imputation
* Increases power of genetic association studies
* Facilitates analyses that combine data across studies
* Facilitates interpretation of results



Code Tidbits



Try to Sketch Transition() function for

MM...



Conditioning Probabilities on Observed Data

void MarkovModel: :Condition(float * vector, char ** haplotypes, int position,
char observed, double e, double freq)
{

if (observed == @) return;

double pmatch = (1. - e) + e * freq;
double prandom = e * freq;

for (int 1 = @; 1 < states; 1i++)
if (haplotypes[i][position] == observed)
vector[i] *= pmatch;
else
vector[i] *= prandom;

Any idea why we use e * freq for error model?



Applying Transition Probabilities ...

void MarkovModel::Transpose(float * from, float

{

if (r == 9)

for (int i = @; 1 < states; i++)
to[i] = from[i];

else

}

{

double sum = ©.09;

for (int i = @; 1 < states; i++)
sum += from[i];

sum *= r / states;
double complement = 1. - r;

// avoid underflows
if (sum < 1le-18)
{
sum *= 1el5;
complement *= 1el5;

}

for (int i = @; 1 < states; i++)

to[i] = from[i] * complement + sum;

}

* to, double r)

 What are the inputs?
* float * from, float * to, doubler

 Why calculate the sum?
* What is the alternative?
 Why multiply it by 1/r?

 Why is there a section guarding
against underflow?



Scanning Along the Chromosome ...

void MarkovModel::WalkLeft(char * observed, char ** haplotypes, float ** freqs)
{
// Initialize likelihoods at first position
for (int 1 = @; 1 < states; i++)
matrix[@][i] = 1.;

// Scan along chromosome
for (int 1 = @; i < markers - 1; i++)
{
if (observed[i])
Condition(matrix[i], haplotypes, i, observed[i], E[1], freqgs[observed[i]][i]);
Transpose(matrix[i], matrix[i+1], R[1i]);

¥

if (observed[markers - 1])
Condition(matrix[markers - 1], haplotypes, markers - 1, observed[markers - 1],
E[markers - 1], fregs[observed[markers - 1]][markers - 1]);



Connection Between Imputation
and Low-Pass Sequencing



Shotgun Sequence Data

TAGCTGATA

ATA
ATGCTAGCTGATA
AGCTGATA

TAGCTGATA

5-ACTGGTCGATGCTAGCTGATAGCTAG LTAGCTGATGA

TAGATA

TAGATA
TAGLTA
TAGCTA

TAGLTA

A/C

TGATGA

TGATGA
TGATGA
TGATGA

TGATGA

AT
AT

AT
A

AT

TGOTAGET

T

Sequence Reads

TCCTAGCTCGACG-3
Reference Genome

Predicted Genotype



Shotgun Sequence Data

Sequence Reads

5-ACTGGTCGATGCTAGCTGATAGCTAG LTAGCTGATGA AT TCCTAGCTCGACG-3
Reference Genome

P(reads|A/A, read mapped)= 1.0
P(reads|A/C, read mapped)= 1.0

P(reads|C/C, read mapped)= 1.0

Possible Genotypes



Shotgun Sequence Data

TAGCTGATAGCTAGLUTAGCTGATGA A
Sequence Reads

5-ACTGGTCGATGCTAGCTGATAGCTAG LTAGCTGATGA AT TCCTAGCTCGACG-3
Reference Genome

P(reads|A/A, read mapped)= P(C observed|A/A, read mapped)
P(reads|A/C, read mapped)= P(C observed|A/C, read mapped)

P(reads|C/C, read mapped)= P(C observed|C/C, read mapped)

Possible Genotypes



Shotgun Sequence Data

TAGCTGATAGCTAGLUTAGCTGATGA A
Sequence Reads

5-ACTGGTCGATGCTAGCTGATAGCTAG LTAGCTGATGA AT TCCTAGCTCGACG-3
Reference Genome

P(reads|A/A, read mapped)=0.01
P(reads|A/C, read mapped)= 0.50

P(reads|C/C, read mapped)= 0.99

Possible Genotypes



Shotgun Sequence Data

AGCTGATAGCTAGLTAGCTGATGA
TAGCTGATAGCTAGLTAGCTGATGA

5-ACTGGTCGATGCTAGCTGATAGCTAG LTAGCTGATGA

ATCGCT

Sequence Reads

AT TCCTAGCTCGACG-3
Reference Genome

P(reads|A/A, read mapped)= 0.0001

P(reads|A/C, read mapped)= 0.25

P(reads|C/C, read mapped)= 0.98

Possible Genotypes



Shotgun Sequence Data

ATGCTAGCTGATAGCTAGLTAGCTGATGA
AGCTGATAGCTAGLTAGCTGATGA ATCGCT

TAGCTGATAGCTAGLUTAGCTGATGA A
Sequence Reads

5-ACTGGTCGATGCTAGCTGATAGCTAG LTAGCTGATGA AT TCCTAGCTCGACG-3
Reference Genome

P(reads|A/A , read mapped)= 0.000001
P(reads|A/C, read mapped)= 0.125

P(reads|C/C, read mapped)= 0.97

Possible Genotypes



Shotgun Sequence Data

ATA
ATGCTAGCTGATA
AGCTGATA

TAGCTGATA

5-ACTGGTCGATGCTAGCTGATAGCTAG LTAGCTGATGA

TAGATA
TAGLTA
TAGCTA
TAGLTA

TGATGA
TGATGA
TGATGA

TGATGA

ATCGCTGCTAGCT

ATCGCT

A
Sequence Reads

AT TCCTAGCTCGACG-3
Reference Genome

P(reads|A/A , read mapped)= 0.00000099

P(reads|A/C, read mapped)= 0.0625

P(reads|C/C, read mapped)= 0.0097

Possible Genotypes



Shotgun Sequence Data

TAGCTGATAGCTAGATAGCTGATGA AT
ATAGCTAGATAGCTGATGA ATCGCTGCTAGET
ATGCTAGCTGATAGCTAG LTAGCTGATGA
AGCTGATAGCTAGLTAGCTGATGA ATCGCT
TAGCTGATAGCTAGLUTAGCTGATGA A
Sequence Reads
5-ACTGGTCGATGCTAGCTGATAGCTAG LTAGCTGATGA ATCGCTCCTAGCTCGACG-3

Reference Genome

P(reads|A/A , read mapped)= 0.00000098

P(reads|A/C, read mapped)= 0.03125

P(reads|C/C, read mapped)= 0.000097

Possible Genotypes



Shotgun Sequence Data

TAGCTGATAGCTAGATA

ATAGCTAGATA

ATGCTAGCTGATAGCTAGLTA
AGCTGATAGCTAGLTA

TAGCTGATAGCTAGLTA

5-ACTGGTCGATGCTAGCTGATAGCTAG LTAGCTGATGA

TGATGA

TGATGA
TGATGA
TGATGA

TGATGA

AT
ATCGCTGCTAGCT

ATCGCT

A Sequence Reads

AT TCCTAGCTCGACG-3
Reference Genome

P(reads|A/A, read mapped)= 0.00000098

P(reads|A/C, read mapped)= 0.03125

P(reads|C/C, read mapped)= 0.000097

Combine these likelihoods with a prior incorporating information from other
individuals and flanking sites to assign a genotype.



Shotgun Sequence Data

TAGCTGATAGCTAGATAGCTGATGA AT
ATAGCTAGATAGCTGATGA ATCGCTGCTAGCT
ATGCTAGCTGATAGCTAGLTAGCTGATGA
AGCTGATAGCTAGLTAGCTGATGA ATCGCT
TAGCTGATAGCTAGLTAGCTGATGA A

Sequence Reads

5-ACTGGTCGATGCTAGCTGATAGCTAG LTAGCTGATGA AT TCCTAGCTCGACG-3
Reference Genome

P(reads|Genotype)Prior(Genotype)
Y.c P(reads|G)Prior(G)

P(Genotype|reads) =

Combine these likelihoods with a prior incorporating information from other
individuals and flanking sites to assign a genotype.



Ingredients That Go Into Prior

* Most sites don’t vary
* P(non-reference base) ~ 0.001

 When a site does vary, it is usually heterozygous
* P(non-reference heterozygote) ~ 0.001 * 2/3
* P(non-reference homozygote) ~ 0.001 * 1/3

* Mutation model
* Transitions account for most variants (C<>T or A<=>G)
e Transversions account for minority of variants



From Sequence to Genotype:

Individual Based Prior

TAGCTGATAGCTAGATAGCTGATGA AT
ATAGCTAGATAGCTGATGA AT
ATGCTAGCTGATAGCTAGLTAGCTGATGA
AGCTGATAGCTAGLTAGCTGATGA AT
TAGCTGATAGCTAGLTAGCTGATGA A
5-ACTGGTCGATGCTAGCTGATAGCTAG LTAGCTGATGA AT

Prior(A/A) = 0.00034

Prior(A/C) = 0.00066

Prior(C/C) = 0.99900

TGOTAGET

Sequence Reads

TCCTAGCTCGACG-3
Reference Genome

Individual Based Prior: Every site has 1/1000 probability of varying.



From Sequence to Genotype:
Individual Based Prior

TAGCTGATAGCTAGATAGCTGATGA AT
ATAGCTAGATAGCTGATGA ATCGCTGCTAGCT
ATGCTAGCTGATAGCTAGLTAGCTGATGA
AGCTGATAGCTAGLTAGCTGATGA ATCGCT
TAGCTGATAGCTAGLTAGCTGATGA A

Sequence Reads

5-ACTGGTCGATGCTAGCTGATAGCTAG LTAGCTGATGA AT TCCTAGCTCGACG-3
Reference Genome

P(reads|A/A)= 0.00000098 Prior(A/A)=0.00034 Posterior(A/A) = <.001

P(reads|A/C)= 0.03125 Prior(A/C) = 0.00066 Posterior(A/C) =0.175

P(reads|C/C)= 0.000097 Prior(C/C) = 0.99900 Posterior(C/C) = 0.825

Individual Based Prior: Every site has 1/1000 probability of varying.



Sequence Based Genotype Calls

* Individual Based Prior

* Assumes all sites have an equal probability of showing polymorphism
Specifically, assumption is that about 1/1000 bases differ from reference
If reads where error free and sampling Poisson ...
... 14x coverage would allow for 99.8% genotype accuracy
... 30x coverage of the genome needed to allow for errors and clustering



From Sequence to Genotype:

Population Based Prior

TAGCTGATAGCTAGATAGCTGATGA AT
ATAGCTAGATAGCTGATGA AT
ATGCTAGCTGATAGCTAGLTAGCTGATGA
AGCTGATAGCTAGLTAGCTGATGA AT
TAGCTGATAGCTAGLTAGCTGATGA A
5-ACTGGTCGATGCTAGCTGATAGCTAG LTAGCTGATGA AT

Prior(A/A) = 0.04
Prior(A/C) = 0.32

Prior(C/C) = 0.64

TGOTAGET

Sequence Reads

TCCTAGCTCGACG-3
Reference Genome

Population Based Prior: Use frequency information from examining others at the same site.
In the example above, we estimated P(A) = 0.20



From Sequence To Genotype:
Population Based Prior

TAGCTGATAGCTAGATAGCTGATGA AT
ATAGCTAGATAGCTGATGA ATCGCTGCTAGCT
ATGCTAGCTGATAGCTAGLTAGCTGATGA
AGCTGATAGCTAGLTAGCTGATGA ATCGCT
TAGCTGATAGCTAGLTAGCTGATGA A

Sequence Reads

5-ACTGGTCGATGCTAGCTGATAGCTAG LTAGCTGATGA AT TCCTAGCTCGACG-3
Reference Genome

P(reads|A/A)= 0.00000098 Prior(A/A)=0.04 Posterior(A/A) = <.001
P(reads|A/C)= 0.03125 Prior(A/C) = 0.32 Posterior(A/C) = 0.999
P(reads|C/C)= 0.000097 Prior(C/C) = 0.64 Posterior(C/C) = <.001

Population Based Prior: Use frequency information from examining others at the same site.
In the example above, we estimated P(A) = 0.20



Sequence Based Genotype Calls

* Individual Based Prior

* Assumes all sites have an equal probability of showing polymorphism
Specifically, assumption is that about 1/1000 bases differ from reference
If reads where error free and sampling Poisson ...
... 14x coverage would allow for 99.8% genotype accuracy
... 30x coverage of the genome needed to allow for errors and clustering

* Population Based Prior
* Uses frequency information obtained from examining other individuals
* Calling very rare polymorphisms still requires 20-30x coverage of the genome
e Calling common polymorphisms requires much less data



Shotgun Sequence Data

Haplotype Based Prior

TAGCTGATAGCTAGATAGCTGATGA AT
ATAGCTAGATAGCTGATGA AT
ATGCTAGCTGATAGCTAGLTAGCTGATGA
AGCTGATAGCTAGLTAGCTGATGA AT
TAGCTGATAGCTAGLTAGCTGATGA A
5-ACTGGTCGATGCTAGCTGATAGCTAG LTAGCTGATGA AT

Prior(A/A) = 0.81
Prior(A/C) =0.18

Prior(C/C) = 0.01

TGOTAGET

Sequence Reads

TCCTAGCTCGACG-3
Reference Genome

Haplotype Based Prior: Examine other chromosomes that are similar at locus of interest.
In the example above, we estimated that 90% of similar chromosomes carry allele A.



Shotgun Sequence Data

Haplotype Based Prior

TAGCTGATAGCTAGATAGCTGATGA AT
ATAGCTAGATAGCTGATGA ATCGCTGCTAGCT
ATGCTAGCTGATAGCTAGLTAGCTGATGA
AGCTGATAGCTAGLTAGCTGATGA ATCGCT
TAGCTGATAGCTAGLTAGCTGATGA A Sequence Reads
5-ACTGGTCGATGCTAGCTGATAGCTAG LTAGCTGATGA ATCGCTGOTAGCTCGACG-3

P(reads|A/A)= 0.00000098 Prior(A/A)=0.81

P(reads|A/C)= 0.03125

P(reads|C/C)= 0.000097

Prior(A/C) =0.18

Prior(C/C) = 0.01

Reference Genome

Posterior(A/A) = <.001

Posterior(A/C) = 0.999

Posterior(C/C) = <.001

Haplotype Based Prior: Examine other chromosomes that are similar at locus of interest.
In the example above, we estimated that 90% of similar chromosomes carry allele A.



Sequence Based Genotype Calls

* Individual Based Prior

* Assumes all sites have an equal probability of showing polymorphism
Specifically, assumption is that about 1/1000 bases differ from reference
If reads where error free and sampling Poisson ...
... 14x coverage would allow for 99.8% genotype accuracy
... 30x coverage of the genome needed to allow for errors and clustering

* Population Based Prior
* Uses frequency information obtained from examining other individuals
* Calling very rare polymorphisms still requires 20-30x coverage of the genome
e Calling common polymorphisms requires much less data

* Haplotype Based Prior or Imputation Based Analysis
e Compares individuals with similar flanking haplotypes
* Calling very rare polymorphisms still requires 20-30x coverage of the genome
e Can make accurate genotype calls with 2-4x coverage of the genome
* Accuracy improves as more individuals are sequenced



Current Genome Scale Approaches

* Deep whole genome sequencing
e Can only be applied to limited numbers of samples
* Most complete ascertainment of variation

 Exome capture and targeted sequencing
* Can be applied to moderate numbers of samples
* SNPs and indels in the most interesting 1% of the genome

* Low coverage whole genome sequencing
e Can be applied to moderate numbers of samples
* Very complete ascertainment of shared variation
* Less complete ascertainment of rare variants



Recipe For Imputation With Shotgun Sequence
Data

e Start with some plausible configuration for each individual

* Use Markov model to update one individual conditional on all others

* Repeat previous step many times

e Generate a consensus set of genotypes and haplotypes for each
individual



Silly Cartoon View of Shot Gun Data
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Silly Cartoon View of Shot Gun Data
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How Do We Upadate
One Pair Of Haplotypes?

* Markov model similar to that for genotype imputation

* To carry out an update, select one individual
* Let X, be observed bases overlapping position i for individual

* Assume (temporarily) that current haplotype estimates
for all other individuals are correct

* Model haplotypes for individual being updated as
mosaic of the other available haplotypes

* S.=(S.;, S;,) denotes the pair of haplotypes being copied



Markov Model

X

X

AN

N

/)
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2
J @ = QL
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Model is very similar to the one we previously used for imputation...



Likelihood

L = ZZ ZP(S )HP(S |S. 1)Hp(x

* P(S;) =1/ H?where H is the number of template haplotypes
* P(S,|S, ;) depends on estimated population recombination rate

* P(X;|S;) are the genotype likelihoods



Simulation Results: Common Sites

* Detection and genotyping of Sites with MAF >5%
(2116 simulated sites/Mb)

* Detected Polymorphic Sites: 2x coverage

* 100 people 2102 sites/Mb detected
e 200 people 2115 sites/Mb detected
e 400 people 2116 sites/Mb detected

* Error Rates at Detected Sites: 2x coverage

* 100 people 98.5% accurate, 90.6% at hets
e 200 people 99.6% accurate, 99.4% at hets
* 400 people 99.8% accurate, 99.7% at hets

Yun Li



Simulation Results: Rarer Sites

* Detection and genotyping of Sites with MAF 1-2%
(425 simulated sites/Mb)

Detected Polymorphic Sites: 2x coverage
100 people 139 sites/Mb detected
200 people 213 sites/Mb detected
400 people 343 sites/Mb detected

Error Rates at Detected Sites: 2x coverage

100 people 98.6% accurate, 92.9% at hets
200 people 99.4% accurate, 95.0% at hets
400 people 99.6% accurate, 95.9% at hets

Yun Li



That's The Theory ...
Show Me The Data!

Results from 1000 Genomes Project



1000 Genomes Pilot Completed
nature
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» 2 deeply sequenced trios
* 179 whole genomes sequenced at low coverage
» 8,820 exons deeply sequenced in 697 individuals

e 15M SNPs, 1M indels, 20,000 structural variants



Accuracy of Low Pass Genotypes
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Genotype accuracy for rare genotypes is lowest, but

definition of rare changes as more samples are sequenced.
Hyun Min Kang



Does Haplotype Information Really Help?

Single Site Analysis Haplotype Aware Analysis
— 21.4% HET errors — 2.0% HET errors
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As More Samples Are Sequenced,
Low Pass Genotypes Improve

Missing
HapMap Accuracy
Analysis #SNPs dbSNP% % at Hets*
March 2010
Michigan/EUR 60 9,158,226 63.5 /7.0 1.91 96.74
August 2010
Michigan/EUR 186 10,537,718 52.5 5.6 2.04 97.56
October 2010 15 76 643 501 1.8 220  97.91**

Michigan/EUR 280

Accuracy of Low Pass Genotypes Generated by 1000 Genomes Project,
When Analyzed Here At the University of Michigan



Some Important Notes

* The Markov model we described is one of several possible models for
analysis of low pass data

* Alternative models, based on E-M algorithms or local clustering of
individuals into small groups exist

* Currently, the best possible genotypes produced by running multiple
methods and generating a consensus across analysis their results.



What Was Optimal Model
for Analyzing Pilot Data?

Homozygous
1000 Genomes Call Set Reference Homozygous Non-
(CEU) Error Heterozygote Error Reference Error

Broad 0.66 4.29 3.80
Michigan 0.68 3.26 3.06
Sanger 1.27 3.43 2.60
Majority Consensus 0.45 2.05 2.21

* Pilot analyzed with different haplotype sharing models

— Sanger (QCALL), Michigan (MaCH/Thunder), Broad (BEAGLE)
— Consensus of the three callers clearly bested single callers
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