Affected Sibling Pairs

Biostatistics 666

Today ...

- Discussion of linkage analysis using affected sibling pairs
- Our exploration will include several components we have seen before:
 - A simple disease model
 - IBD sharing probabilities
 - Maximum likelihood
 - The E-M algorithm
 - A Hidden Markov model
- Linkage analysis with sibling pairs using Risch's Maximum LOD Score (MLS)
- Distribution of IBD in affected sibling pairs and Holman's "Possible Triangle Constraint"

Examplar Linkage Study

- Concannon et al (1998) Nature Genetics, **19:**292-296
- Affected sibling pair study of type 1 diabetes
 - Chronic disease affecting ~1 in 250 children
 - 292 affected sibpairs for initial screen
 - 467 affected sibpairs for follow-up
- Highest LOD score reaches 34.2 near HLA on chr. 6
 - At this locus, chromosomes carried by affected sibs are identical in 73% of pairs.

Examplar Linkage Study Results

Concannon et al (1998) Nature Genetics, 19:292-296

Single Locus Disease Model

- Allele frequencies *p* and (1-*p*)
- Penetrances f_{11} , f_{12} , f_{22}
- Useful in exploring behavior of linkage and association tests
 - We used similar constructs to explore genetic association test power
- Simplification of reality, ignores other loci and the environment

Using Penetrances

- Allele frequency *p*
- Genotype penetrances f_{11} , f_{12} , f_{22}
- Prevalence
 - K =
- Probability of genotype given disease
 - P(G = ij | D) =

Pairs of Individuals

- A genetic model can predict probability of sampling different affected relative pairs
- We will first consider some simple cases:
 - Unrelated individuals
 - Parent-offspring pairs
 - Monozygotic twins
- How much genetic material do these pairs share IBD?

Unrelated Individuals

• Probability of affected pair of unrelateds

P(a and b affected) = P(a affected)P(b affected) $= P(a\text{ affected})^{2}$ $= \left[p^{2}f_{11} + 2p(1-p)f_{12} + (1-p)^{2}f_{22}\right]^{2}$ $= K^{2}$

• For related individuals, probability that both affected is greater or equal

Monozygotic Twins

• Probability of affected pair of identical twins

$$P(MZ \text{ pair affected}) = \sum_{G} P(G)P(a \text{ affected} | G)P(b \text{ affected} | G)$$
$$= p^{2}f_{11}^{2} + 2p(1-p)f_{12}^{2} + (1-p)^{2}f_{22}^{2}$$
$$= K_{MZ}K$$
$$= \lambda_{MZ}K^{2}$$

- K_{MZ} is prevalence among MZ twins of an affected individual
 - It is always greater than or equal to K
- $\lambda_{MZ} = K_{MZ} / K$ is the increase in risk for MZ twins of an affected individual
 - For any single locus disease model, it is always greater than 1

Parent Offspring Pairs

• Probability of affected parent-offspring pair

$$P = P(parent \text{ and } child \text{ affected})$$

= $\sum_{G_P} \sum_{G_O} P(G_P, G_O) f_{G_P} f_{G_O}$
= $\sum_{i} \sum_{j} \sum_{k} P(i, j, k) f_{ij} f_{ik}$
= $p^3 f_{11}^2 + (1-p)^3 f_{22}^2 + p(1-p) f_{12}^2 + 2p^2 (1-p) f_{11} f_{12} + 2p(1-p)^2 f_{22} f_{12}$
= $K_O K$
= $\lambda_O K^2$

- K_{o} is the prevalence among offspring of an affected individual
- λ_o is the increase in risk for offspring of affected individuals, between 1 and λ_{MZ}

Point of Situation

- Probabilities of affected pairs for
 - Unrelated Individuals
 - Monozygotic Twins
 - Parent-Offspring Pairs
- Prevalences K_{MZ} and K_{O} among twins and offspring of affected individuals
- \bullet Relative risks λ_{MZ} and λ_{O} summarizing changes in risk
- How to predict K_R and λ_R for other types of relatives?

Recurrence Risks vs IBD

$$\lambda_{IBD=2} = \lambda_{MZ} = \frac{P(affected \mid IBD = 2 \text{ with affected relative})}{P(affected)}$$

$$\lambda_{IBD=1} = \lambda_{O} = \frac{P(affected \mid IBD = 1 \text{ with affected relative})}{P(affected)}$$

$$\lambda_{IBD=0} = 1 = \frac{P(affected \mid IBD = 0 \text{ with affected relative})}{P(affected)}$$

Affected Half-Siblings

- IBD sharing
 - 0 alleles with probability 50%
 - 1 allele with probability 50%
- This gives ...

$$\lambda_{H} = \frac{1}{2} \lambda_{O} + \frac{1}{2} = \frac{1}{2} (\lambda_{O} + 1)$$
$$K_{H} = \frac{1}{2} K_{O} + \frac{1}{2} K = \frac{1}{2} (K_{O} + K)$$

Affected Sibpairs

- IBD sharing ...
 - 0 alleles with probability 25%
 - 1 alleles with probability 50%
 - 2 alleles with probability 25%
- This gives ...

$$\lambda_{S} = \frac{1}{4} \lambda_{MZ} + \frac{1}{2} \lambda_{O} + \frac{1}{4} = \frac{1}{4} (\lambda_{MZ} + 2\lambda_{O} + 1)$$

What does this have to do with linkage analysis?

- For a single locus model...
 - Siblings with IBD=0 are *like* unrelateds
 - Siblings with IBD=1 are *like* parent offspring pairs
 - Siblings with IBD=2 are *like* identical twins
- The genetic model parameters and the relative risks they imply allow us to calculate expected IBD probabilities at a disease locus ...

• ... and compare these to null expectations where $z_0 = \frac{1}{4}$, $z_1 = \frac{1}{2}$, $z_2 = \frac{1}{4}$

Expected IBD sharing among affected siblings... (at the disease locus!)

$$z_0 = 0.25 \frac{1}{\lambda_s}$$
$$z_1 = 0.50 \frac{\lambda_o}{\lambda_s}$$
$$z_2 = 0.25 \frac{\lambda_{MZ}}{\lambda_s}$$

 $1 \le \lambda_o \le \lambda_s \le \lambda_{MZ}$ for any genetic model

Possible Triangle

Possible Triangle

 Z_0

Intuition: Affected Sibpair Linkage Analyses

- Consider affected sibling pairs
- Consider one genetic marker at a time
- Are paired genotypes more similar than expected?

Likelihood Based Linkage Test

- Depends on three parameters z_0 , z_1 , z_2
 - Probability of sharing 0, 1 and 2 alleles IBD
- Null likelihood uses $z_0 = \frac{1}{4}, z_1 = \frac{1}{2}, z_2 = \frac{1}{4}$
- Alternative likelihood uses MLE for z₀, z₁, z₂
- Compare likelihoods with likelihood ratio test

Potential Sib-Pair Likelihood

Under the null hypothesis:

$$L = (\frac{1}{4})^{n_{IBD0}} (\frac{1}{2})^{n_{IBD1}} (\frac{1}{4})^{n_{IBD2}}$$

Under the alternative hypothesis

$$L = (\hat{z}_0)^{n_{IBD0}} (\hat{z}_1)^{n_{IBD1}} (\hat{z}_2)^{n_{IBD2}}$$

In real life...

- Markers are only partially informative
- IBD sharing is equivocal
 - Uncertainty can only be partly reduced by examining relatives
- Need an alternative likelihood
 - Should allow for partially informative data

For A Single Family

$$L_{i} = \sum_{j=0}^{2} P(IBD = j | ASP) P(Genotypes_{i} | IBD = j) = \sum_{j=0}^{2} z_{j} w_{ij}$$

Risch (1990) defines

 $w_{ij} = P(Genotypes_i | IBD = j)$

We only need proportionate w_{ij}

Likelihood and LOD Score

$$L(z_0, z_1, z_2) = \prod_i \sum_j z_j w_{ij}$$

$$LOD = \log_{10} \prod_{i} \frac{\hat{z}_{0} w_{i0} + \hat{z}_{1} w_{i1} + \hat{z}_{2} w_{i2}}{\frac{1}{4} w_{i0} + \frac{1}{2} w_{i1} + \frac{1}{4} w_{i2}}$$

The MLS statistic is the LOD evaluated at the MLEs of z_0, z_1, z_2

w: P(Marker Genotype|IBD State)

Relative		IBD			
I II		0	1	2	
(a,b)	(c,d)	$4p_ap_bp_cp_d$	0	0	
(a,a)	(b,c)	$2p_a^2 p_b p_c$	0	0	
(a,a)	(b,b)	$p_{a}^{2}p_{b}^{2}$	0	0	
(a,b)	(a,c)	$4\mathbf{p}_{a}^{2}\mathbf{p}_{b}\mathbf{p}_{c}$	$p_a p_b p_c$	0	
(a,a)	(a,b)	$2p_a^3 p_b$	$p_a^2 p_b$	0	
(a,b)	(a,b)	$4p_a^2 p_b^2$	$(p_{a}p_{b}^{2}+p_{a}^{2}p_{b})$	$2p_ap_b$	
(a,a)	(a,a)	p_a^4	p_a^3	p_a^2	
Prior Pro	bability	1⁄4	1/2	1⁄4	

These probabilities apply to pair of individuals, when no other genotypes in the family are known.

Example scoring for w_{ij}

In this case, relative weights depend on allele frequency.

More examples for scoring: w_{ii}

In these cases, multiple weights are non-zero (but equal) for each family.

How to maximize likelihood?

- If all families are informative
 - Use sample proportions of IBD=0, 1, 2
- If some families are uninformative
 - Use an E-M algorithm
 - At each stage generate complete dataset with fractional counts
 - Iterate until estimates of LOD and z parameters are stable

Assigning Partial Counts in E-M

$$P(IBD = j | Genotypes) =$$

$$= \frac{P(IBD = j | ASP)P(Genotypes | IBD = j)}{L_i}$$

$$= \frac{P(IBD = j | ASP)P(Genotypes | IBD = j)}{\sum_{k=0}^{2} P(IBD = k | ASP)P(Genotypes | IBD = k)}$$

$$= \frac{z_j w_{ij}}{\sum_{k=0}^{2} z_k w_{ik}}$$

Example

Assume a bi-allelic marker where the two alleles have identical frequencies.

Example of E-M Steps

Pa	rameter	S	Equiv	ocal Far	nilies	Other			
z0	z1	z2	IBD=0	IBD=1	IBD=2	IBD=2	LOD	LODi	LODu
0.250	0.500	0.250	0.56	2.22	2.22	5	0.00	0.00	0.00
0.056	0.222	0.722	0.08	0.66	4.26	5	3.19	2.30	0.89
0.008	0.066	0.926	0.01	0.17	4.82	5	4.01	2.84	1.16
0.001	0.017	0.982	0.00	0.04	4.96	5	4.20	2.97	1.23
0.000	0.004	0.996	0.00	0.01	4.99	5	4.25	3.00	1.24
0.000	0.001	0.999	0.00	0.00	5.00	5	4.26	3.01	1.25
0.000	0.000	1.000	0.00	0.00	5.00	5	4.26	3.01	1.25

Point of Situation ...

- Noted that affected siblings are more likely to share two alleles identical by descent
- Derived a likelihood based linkage test that compares sharing probabilities to null defaults
- Let's examine these probabilities in more detail ...

Intuition: Possible Triangle Constraints

- Under the null
 - True parameter values are (1/4, 1/2, 1/4)
 - Estimates will wobble around this point
- Under the alternative
 - True parameter values are within triangle
 - Estimates will wobble around true point
- Holmans (1993) suggested we focus testing on searching for alternatives within the triangle
 - These suggest a disease gene

The possible triangle method

- 1. Estimate z_0 , z_1 , z_2 without restrictions
- 2. If estimate of $z_1 > \frac{1}{2}$ then ...
 - a) Repeat estimation with $z_1 = \frac{1}{2}$
 - b) If this gives $z_0 > \frac{1}{4}$ then revert to null (MLS=0)
- 3. If estimates imply $2z_0 > z_1$ then ...
 - a) Repeat estimation with $z_1 = 2z_0$
 - b) If this gives $z_0 > \frac{1}{4}$ then revert to null (MLS=0)
- 4. Otherwise, leave estimates unchanged.

Possible Triangle

MLS Combined With Possible Triangle

- Under null, true **z** is a corner of the triangle
 - Estimates will often lie outside triangle
 - Restriction to the triangle decreases MLS
 - MLS threshold for fixed type I error decreases
- Under alternative, true **z** is within triangle
 - Estimates will lie outside triangle less often
 - MLS decreases less
 - Overall, power should be increased

Example

- Type I error rate of 0.001
- LOD of 3.0 with unrestricted method
 - Risch (1990)
- LOD of 2.3 with possible triangle constraint
 - Holmans (1993)
 - For some cases, almost doubles power

Recommended Reading

- Holmans (1993)
 Asymptotic Properties of
 Affected-Sib-Pair Linkage Analysis
 Am J Hum Genet 52:362-374
- Introduces possible triangle constraint
- Good review of MLS method

Recommended Reading

- Risch (1990)
 - Linkage Strategies for Genetically Complex Traits. III. The Effect of Marker Polymorphism on Analysis of Affected Relative Pairs
 - Am J Hum Genet **46:**242-253
- Introduces MLS method for linkage analysis
 - Still, one of the best methods for analysis pair data
- Evaluates different sampling strategies
 - Results were later corrected by Risch (1992)

Intuition For Multipoint Analysis

- IBD changes infrequently along the chromosome
- Neighboring markers can help resolve ambiguities about IBD sharing
- In the Risch approach, they might ensure that only one w is effectively non-zero

Ingredients for a multipoint model...

One ingredient will be the observed genotypes at each marker ...

Ingredients for a multipoint model...

Another ingredient will be the possible IBD states at each marker ...

Ingredients for a multipoint model...

The final ingredient connects IBD states along the chromosome ...

The Likelihood of Marker Data

$$L = \sum_{I_1} \sum_{I_2} \dots \sum_{I_M} P(I_1) \prod_{i=2}^M P(I_i \mid I_{i-1}) \prod_{i=1}^M P(X_i \mid I_i)$$

- General formulation, allows for any number of markers.
- Combined with Bayes' Theorem can estimate probability of each IBD state at any marker.

$P(X_m | I_m)$

	-	0	1	2
Sib	CoSib	0	<u> </u>	2
(a,b)	(c,d)	$4p_ap_bp_cp_d$	0	0
(a,a)	(b,c)	$2p_a^2 p_b p_c$	0	0
(a,a)	(b,b)	$p_a^2 p_b^2$	0	0
(a,b)	(a,c)	$4p_a^2 p_b p_c$	$p_a p_b p_c$	0
(a,a)	(a,b)	$2p_a^3 p_b$	$p_a^2 p_b$	0
(a,b)	(a,b)	$4p_a^2 p_b^2$	$(p_{a}p_{b}^{2}+p_{a}^{2}p_{b})$	$2p_ap_b$
(a,a)	(a,a)	p_a^4	p_a^3	$\mathbf{p_a}^2$
Prior Probability		1⁄4	1/2	1/4

$P(I_{m+1} \mid I_m)$

- \bullet Depends on recombination fraction θ
 - This is a measure of distance between two loci
 - Probability grand-parental origin of alleles changes between loci

		IBD State at m + 1		
		0	1	2
IBD state	0	$(1-\psi)^2$	$2\psi(1-\psi)$	ψ^2
at marker	1	ψ(1-ψ)	$(1-\psi)^2 + \psi^2$	ψ(1-ψ)
m	2	ψ^2	$2\psi(1-\psi)$	$(1-\psi)^2$

 $\psi=2\theta(1\!-\!\theta)$

The Likelihood of Marker Data

$$L = \sum_{I_1} \sum_{I_2} \dots \sum_{I_M} P(I_1) \prod_{i=2}^M P(I_i \mid I_{i-1}) \prod_{i=1}^M P(X_i \mid I_i)$$

- General, but slow unless there are only a few markers.
- How do we speed things up?

Example

- Consider two loci separated by $\theta = 0.1$
- Each loci has two alleles, each with frequency .50
- If two siblings are homozygous for the first allele at both loci, what is the probability that IBD = 2 at the first locus?

A Markov Model

Re-organize the computation slightly, to avoid evaluating nested sum directly

• Three components:

- Probability considering a single location
- Probability including left flanking markers
- Probability including right flanking markers
- Scale of computation increases linearly with number of markers

Left-Chain Probabilities

$$L_{m}(I_{m}) = P(X_{1},...,X_{m-1} | I_{m})$$

= $\sum_{I_{m-1}} L_{m-1}(I_{m-1})P(X_{m-1} | I_{m-1})P(I_{m-1} | I_{m})$
 $L_{1}(I_{1}) = 1$

- Proceed one marker at a time.
- Computation cost increases linearly with number of markers.

Right-Chain Probabilities

$$R_{m}(I_{m}) = P(X_{m+1}, ..., X_{M} | I_{m})$$

= $\sum_{I_{m+1}} R_{m+1}(I_{m+1})P(X_{m+1} | I_{m+1})P(I_{m+1} | I_{m})$
 $R_{M}(I_{M}) = 1$

- Proceed one marker at a time.
- Computation cost increases linearly with number of markers.

Extending the MLS Method ...

$$w_{j} = P(X_{j} | I_{j})P(X_{1}...X_{j-1} | I_{j})P(X_{j+1}...X_{M} | I_{j})$$
$$= P(X_{j} | I_{j})L_{j}(I_{j})R_{j}(I_{j})$$

• We just change the definition for the "weights" given to each configuration!

Possible Further Extensions

Modeling error

- What components might have to change?
- Modeling other types of relatives
 - What components might have to change?
- Modeling larger pedigrees
 - What components might have to change?

$$w_0 = P(X \mid IBD = 0) = p_1^4 = \frac{1}{16}$$
$$w_1 = P(X \mid IBD = 1) = p_1^3 = \frac{1}{8}$$
$$w_2 = P(X \mid IBD = 2) = p_1^2 = \frac{1}{4}$$

If
$$z_0 = 0.25, z_1 = 0.50, z_2 = 0.25$$
, then

$$P(X) = \frac{1}{4}p_1^4 + \frac{1}{2}p_1^3 + \frac{1}{4}p_1^2 = \frac{9}{64}$$

$$P(IBD = 0 | X) = \frac{\frac{1}{4}p_1^4}{P(X)} = \frac{1}{9}$$
$$P(IBD = 1 | X) = \frac{\frac{1}{2}p_1^3}{P(X)} = \frac{4}{9}$$
$$P(IBD = 2 | X) = \frac{\frac{1}{4}p_1^2}{P(X)} = \frac{4}{9}$$