Estimates of Genetic Ancestry

Chaolong Wang

Sequence Analysis Workshop
June 2014 @ University of Michigan
Outline

• Background
 – Population structure: causes and consequences
 – Population stratification in genetic association studies
 – Existing methods to estimate genetic ancestry

• Our approaches to estimate genetic ancestry
 – How to infer individual ancestry from small amounts of sequencing or genotyping data?
 – Simulations and empirical examples
 – Potential applications
Population structure: Different populations differ in allele frequencies at loci across the genome.

Microsatellite examples:

Rosenberg (2011) Human Biology
Causes of population structure

Human migration:

Henn et al. (2012) PNAS
Causes of population structure

Isolation by distance: gene flow occurs more frequently between neighboring groups.

Genetic similarity decreases as geographic distance increases.

Figure: Michael DeGiorgio
Assortative mating: mating occurs more often between individuals from similar “classes” (color, education, social stratification).

People from the same “class” are genetically more similar. Example: upper caste and lower caste in India
Population stratification in genetic association studies

Population stratification: systematic ancestry differences between subjects with different phenotypes, leading to spurious association.

Price et al. 2010, Nat Rev Genet
Consequence of population structure in association studies

Population stratification: systematic ancestry differences between subjects with different phenotypes, leading to spurious association.

Case-control:

Quantitative trait: (e.g. height)

Methods to estimate population structure

- High-dimensional genotype data (>1K samples, >100K loci)

<table>
<thead>
<tr>
<th>Sample</th>
<th>SNP 1</th>
<th>SNP 2</th>
<th>SNP 3</th>
<th>SNP 4</th>
<th>SNP 5</th>
<th>...</th>
<th>SNP L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample 1</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>...</td>
<td>2</td>
</tr>
<tr>
<td>Sample 2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>-</td>
<td>2</td>
<td>...</td>
<td>1</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Sample N</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>...</td>
<td>2</td>
</tr>
</tbody>
</table>

- Model-based clustering methods
 - STRUCTURE/ADMIXTURE/FRAPPE
 - Model allele frequencies of (pre-specified) K discrete clusters
 - Computationally challenging for large datasets
 - Not suitable for continuous population structure

Example for 29 worldwide populations (Jakobsson et al. 2008, Nature)
Methods to estimate population structure

• High-dimensional genotype data (>1K samples, >100K loci)

<table>
<thead>
<tr>
<th></th>
<th>SNP 1</th>
<th>SNP 2</th>
<th>SNP 3</th>
<th>SNP 4</th>
<th>SNP 5</th>
<th>...</th>
<th>SNP L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample 1</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>...</td>
<td>2</td>
</tr>
<tr>
<td>Sample 2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>-</td>
<td>2</td>
<td>...</td>
<td>1</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>Sample N</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>...</td>
<td>2</td>
</tr>
</tbody>
</table>

• Multivariate dimension reduction methods
 – Principal components analysis (PCA)
 – Multidimensional scaling (MDS)
PCA in decomposing population structure

- **Worldwide population structure**
 - Human Genome Diversity Panel (HGDP, 53 worldwide populations)

PCA in decomposing population structure

- European population structure
 - Population Reference Panel (POPRES, 37 European populations)

Title of the paper: **Genes mirror geography in Europe**

Control of population stratification in association studies

• **Control for stratification using estimated ancestry:**
 – Stratified analysis of subgroups followed by meta-analysis
 – Regression on ancestry principal components
 – Genetic matching of study subjects

• **Other approaches without explicitly estimating ancestry:**
 – Linear mixed models
 – Genomic control

• **These approaches require high-quality genotype data across the genome.**
 – GWAS array genotyping data
 – Whole genome sequencing (when genotypes can be accurately estimated)
Targeted sequencing experiments

• Targeted sequencing focuses on specific regions of interests.
 - Our AMD study: 10 candidate regions (2MB in total)
 - Goal: search for additional high-risk (rare) variants that provide functional information about the disease

• Large sample size is required to provide statistical power to detect association signal for rare variants.
 - Many studies now include >10,000 individuals
 - Likely to include samples of different ancestry background

• Correcting for population stratification is difficult for targeted sequencing experiments.
 - Too few variant loci within targeted regions
Estimating ancestry for targeted sequencing data

What happens when we apply PCA to targeted sequencing data?

Novembre et al. (2008) *Nature*

2,547 SNPs in POPRES data overlapped with whole exome sequencing
Targeted sequencing data

A lot of sequence reads distribute *randomly* and *sparsely* across the off-target genome!
Workflow of target/exome sequencing

- Construct shotgun library
- Hybridization
- Pulldown
- Wash
- DNA sequencing
- Captured DNA

Genomic DNA → Fragments

Mapping, alignment, variant calling

LASER: Locating Ancestry from SEquence Reads

• Traditional methods such as PCA cannot be directly applied on off-target sequencing data.
 – Genotype uncertainty
 – Large amount of missing data

The LASER method:
• Use off-target sequence reads to place sequenced samples one by one into a reference PCA map of ancestry
 - Directly analyze sequence reads without calling genotypes
 - Analyze each sample with a set of reference individuals

Ancestry estimation and control of population stratification for sequence-based association studies

Chaolong Wang1,2,10, Xiaowei Zhan2,10, Jennifer Bragg-Gresham2, Hyun Min Kang2, Dwight Stambolian3, Emily Y Chew4, Kari E Branham3, John Heckenlively5, The FUSION Study6, Robert Fulton7, Richard K Wilson7, Elaine R Mardis7, Xihong Lin1, Anand Swaroop8, Sebastian Züllner2,9 & Gonçalo R Abecasis2

\textit{Nature Genetics} \textbf{Volume 46} | \textbf{Number 4} | \textbf{April 2014}
Data used in LASER

• **Study samples**: low-coverage sequencing reads sparsely distributed across off-target regions.

• **Reference samples with known ancestry**: high-quality genome-wide SNP data.

 – Human Genome Diversity Panel (HGDP)
 • 938 individuals from 53 worldwide populations
 • 632,958 autosomal SNPs after QC
 • Li *et al.* (2008) *Science*

 – Population Reference Sample (POPRES)
 • 1,385 individuals from 37 European populations
 • 318,682 autosomal SNPs after QC
 • Novembre *et al.* (2008) *Nature*
Step 1: create a reference map

- Generate a reference map by applying PCA on SNP data of N reference individuals. (Map 0)

Geographic map

37 populations, 1,385 individuals
318,682 autosomal SNPs
Novembre et al. (2008) Nature
Step 2: adjust reference to each sample

Given a sample i that was sequenced with coverage C_{ij} at locus j, for $j = 1, 2, \ldots, L$.

Simulate sequence data for all reference individuals with coverage at each locus j equal to C_{ij}.

$$P(\text{drawing a read } A) = \begin{cases} 1 - e & \text{if } g_{ij} = AA \\ 0.5 & \text{if } g_{ij} = AB \\ e & \text{if } g_{ij} = BB \end{cases}$$

Ref 1: $\begin{array}{ccccc} AB & AA & BB & BB & AB \\ \end{array}$

Ref 2: $\begin{array}{ccccc} BB & AB & AA & AA & BB \\ \end{array}$
Step 2: adjust reference to each sample

Sample i

Ref 1:

Ref 2:
Step 3: count the variant bases at each locus

Sample i

Ref 1:

Ref 2:
Step 4: construct a sample-specific map

- Perform PCA on combined sequencing data of sample i and N reference individuals. (Map i)
Step 5: find optimal transformation

- **Procrustes analysis**: transform Map i to optimize the similarity to Map 0 based on N reference samples.

Transformations: $f(Y) = \rho Y A + B$

Minimize objective: $d(X, f(Y)) = \sum_{i=1}^{N}(x_i - f(y_i))^T(x_i - f(y_i))$

Step 6: apply transformation

- Apply the transformation on coordinates of sample i to place it into the reference PCA map.
Step 7: repeat!

- Repeat steps 2-6 for all sequenced samples one by one.
LASER: Locating Ancestry from SEquence Reads

Human Genome Diversity Panel (HGDP)
PCA on the HGDP data
Simulations based on HGDP

HGDP: 938 individuals at 632,958 autosomal SNP loci

Test set: 238 individuals; **Reference set:** 700 individuals
Simulations based on HGDP

Sequence-based coordinates vs. SNP-based coordinates

<table>
<thead>
<tr>
<th>Simulated mean coverage</th>
<th>Expected number of loci with reads</th>
<th>Sequence-based coordinates vs. SNP-based coordinates</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Pearson correlation of PC1</td>
<td>Pearson correlation of PC2</td>
</tr>
<tr>
<td>0.25</td>
<td>140,010</td>
<td>0.9998</td>
<td>0.9998</td>
</tr>
<tr>
<td>0.20</td>
<td>114,736</td>
<td>0.9998</td>
<td>0.9998</td>
</tr>
<tr>
<td>0.15</td>
<td>88,166</td>
<td>0.9997</td>
<td>0.9998</td>
</tr>
<tr>
<td>0.10</td>
<td>60,234</td>
<td>0.9996</td>
<td>0.9996</td>
</tr>
<tr>
<td>0.05</td>
<td>30,870</td>
<td>0.9994</td>
<td>0.9993</td>
</tr>
<tr>
<td>0.01</td>
<td>6,298</td>
<td>0.9974</td>
<td>0.9966</td>
</tr>
<tr>
<td>0.008</td>
<td>5,043</td>
<td>0.9970</td>
<td>0.9960</td>
</tr>
<tr>
<td>0.006</td>
<td>3,786</td>
<td>0.9948</td>
<td>0.9941</td>
</tr>
<tr>
<td>0.004</td>
<td>2,527</td>
<td>0.9947</td>
<td>0.9941</td>
</tr>
<tr>
<td>0.002</td>
<td>1,265</td>
<td>0.9877</td>
<td>0.9852</td>
</tr>
<tr>
<td>0.001</td>
<td>633</td>
<td>0.9750</td>
<td>0.9689</td>
</tr>
</tbody>
</table>
Simulations based on POPRES

POPRES: 1,385 individuals at 318,682 autosomal SNP loci
Test set: 385 individuals; Reference set: 1,000 individuals
Simulations based on POPRES

Sequence-based coordinates vs. SNP-based coordinates

<table>
<thead>
<tr>
<th>Simulated mean coverage</th>
<th>Expected number of loci with reads</th>
<th>Sequence-based coordinates vs. SNP-based coordinates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Pearson correlation of PC1</td>
</tr>
<tr>
<td>0.40</td>
<td>105,063</td>
<td>0.9927</td>
</tr>
<tr>
<td>0.35</td>
<td>94,111</td>
<td>0.9933</td>
</tr>
<tr>
<td>0.30</td>
<td>82,597</td>
<td>0.9906</td>
</tr>
<tr>
<td>0.25</td>
<td>70,492</td>
<td>0.9898</td>
</tr>
<tr>
<td>0.20</td>
<td>57,767</td>
<td>0.9868</td>
</tr>
<tr>
<td>0.15</td>
<td>44,390</td>
<td>0.9825</td>
</tr>
<tr>
<td>0.10</td>
<td>30,327</td>
<td>0.9752</td>
</tr>
<tr>
<td>0.05</td>
<td>15,542</td>
<td>0.9408</td>
</tr>
<tr>
<td>0.01</td>
<td>3,171</td>
<td>0.7541</td>
</tr>
</tbody>
</table>
Homogeneous samples need more markers

- Homogeneous samples need more markers to reveal their geographic structure of genetic variation.
- Europe is the most homogeneous continental group.

Estimate ancestry from SNP genotypes

Motivations:
• Sequence reads might not be available
 - Array-genotyping data
• Joint analysis of sequencing and array-genotyping data
• Computational time scales linearly with sample size
 - PCA scales cubically
• Robust to family structure within the sample
• Can handle large amounts of missing data
 - Ancient DNA samples (Skoglund et al. 2012, Science)
Challenges

- Small number of overlapped markers
 - POPRES European reference panel: \(~319K\) SNPs after QC
 - ExomeChip array: \(~273K\) SNPs by design
 - Shared by POPRES and ExomeChip: \(3,983\) SNPs

- Too expensive to whole-genome sequence a large reference sample
Impute the reference panel

- Use 1000 Genomes data to impute POPRES
 - Imputed POPRES: **4.2 million SNPs** after QC
 - Overlapped with the ExomeChip: **19,123 SNPs**

- PC1 reflects the north-south population structure.
- PC2 reflects some imputation artifacts.
- The east-west population structure is likely captured by higher order PCs.
Imputation causes artifacts in PCA

PCA on the **original** POPRES data

PCA on the **imputed** POPRES data

Association with PC2 of the imputed POPRES data

Driven by \(~9000\) SNPs around the centromere of chromosome 11
Project from high-dimensional PC space

K-dimensional PCA map X based on the genotyped SNPs of the reference panel

K’-dimensional PCA map Y based on the SNPs shared by the imputed reference panel and the study sample ($K' \geq K$)

Projection Procrustes analysis:

Search for a set of K'-to-K dimensional transformations f in Y such that the similarity between $f(Y)$ and X is maximized.

- **Projection**, rotation, reflection, translation, scaling

Solution:

The transformation f does not have close form solution, but can be numerically solved using an iterative algorithm.
Project from high-dimensional PC space

- Combining imputation and high-dimensional projection can substantially improve the ancestry estimation!

$t_0 = 0.9277$ when $K' = 20$
• Same strategies can be used to improve ancestry estimation from off-target sequence reads.

Simulation:

1. Take off-target coverage patterns from the Exome Sequencing Project, and down sample to 5% of the original coverage (~0.05X on average).

2. Simulate sequence reads based on the genotypes of 385 POPRES Europeans.
Application to the AMD study

- **Targeted sequencing of 10 AMD risk loci**
 - Sequenced at 127X across 0.97Mb targeted region
 - The off-target region is covered at ~0.2X on average
 - Sequenced 2,348 cases and 789 controls
AMD samples on HGDP reference panel
Genotype vs. sequence for 931 AMD samples

SNP-based coordinates

Sequence-based coordinates
SNP vs. sequencing for 928 AMD samples
LASER 1.0 vs. LASER 2.0

3,066 AMD sample with European ancestry

LASER 1.0
$K'=2$, original POPRES reference

$\mathbf{t}_0=0.9013$

LASER 2.0
$K'=20$, imputed POPRES reference

$\mathbf{t}_0=0.9534$
LASER 1.0 vs. LASER 2.0

Sample-specific Procrustes similarity score (partially) reflects estimation accuracy of each sample.

Ancestry estimation improves for all samples, especially for samples that have extremely low coverage off-target data.
Be cautious in choosing reference panel

- **Limitation:** results might be difficult to interpret when the reference panel does not include relevant ancestry groups.

- **Recommendation:** start with a worldwide reference panel and gradually narrow down to fine-scale regional panels.
Potential applications

• Control of population stratification in genetic association studies.
 – Regression on ancestry coordinates
 – Match ancestry background of study samples

• Can apply to study sequencing data of ancient DNA samples, which often have abundant missing data.
 – Skoglund et al. (2012, Science) investigated the genetic relationship of four ancient DNA samples in Europe with modern humans using a similar approach.
Application to the AMD study

• **Targeted sequencing of 10 AMD risk loci (0.97Mb)**
 – To search for additional high-risk (rare) variants that can provide information about function
 – Sequenced 2,348 cases and 789 controls
 • Known high-risk variant R1210C in CFH gene has \(P=2.6\times10^{-3} \)
 • Not enough sample size for studying rare variants.

• **Expanding our experiment**
 – Identify additional ancestry-matched controls from public resources to augment our sample size
 – Plan
 • Place AMD samples in the worldwide ancestry map
 • Place other sequenced samples in the same map
 • Identify matched controls for all cases
Matching results

- Search for matches from >6,800 samples in the Exome Sequencing Project
- Build matched set
 - 2,268 AMD cases
 - 2,268 matched controls
 - Focused on sites with >10X depth
 - Exclude sites near indels
 - 430 protein changing variants in both ESP and AMD experiments
- R1210C variant now has $P=2.9 \times 10^{-6}$ (initial $P=2.6 \times 10^{-3}$)
- A new rare variant K155Q in the C3 gene: $P=2.7 \times 10^{-4}$ (initial $P=6.3 \times 10^{-3}$), OR=2.68

Zhan et al. (2013) Nature Genetics
Validation of the K155Q variant

<table>
<thead>
<tr>
<th>Sample set</th>
<th>Controls</th>
<th></th>
<th>Cases</th>
<th></th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>MAF</td>
<td>N</td>
<td>MAF</td>
<td></td>
</tr>
<tr>
<td>Discovery sample</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sequenced samples (N = 4,536)</td>
<td>2,268</td>
<td>0.004</td>
<td>2,268</td>
<td>0.011</td>
<td>2.7×10^{-4}</td>
</tr>
<tr>
<td>Follow-up samples</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Germany: University of Regensburg (N = 2,976)</td>
<td>1,147</td>
<td>0.006</td>
<td>1,829</td>
<td>0.016</td>
<td>1.7×10^{-3}</td>
</tr>
<tr>
<td>United States: Vanderbilt/Miami (N = 1,819)</td>
<td>726</td>
<td>0.004</td>
<td>1,093</td>
<td>0.007</td>
<td>3.5×10^{-1}</td>
</tr>
<tr>
<td>Netherlands: Rotterdam Study (N = 1,409)</td>
<td>1,280</td>
<td>0.005</td>
<td>129</td>
<td>0.031</td>
<td>1.5×10^{-4}</td>
</tr>
<tr>
<td>UK: Cambridge AMD Study (N = 1,279)</td>
<td>423</td>
<td>0.006</td>
<td>856</td>
<td>0.015</td>
<td>6.2×10^{-2}</td>
</tr>
<tr>
<td>United States: University of California, University of</td>
<td>211</td>
<td>0.004</td>
<td>619</td>
<td>0.017</td>
<td>8.3×10^{-4}</td>
</tr>
<tr>
<td>Los Angeles/University of Pittsburgh (N = 830)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>deCODE study</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>deCODE discovery sample (N = 52,578)</td>
<td>51,435</td>
<td>0.005</td>
<td>1,143</td>
<td>-a</td>
<td>1.1×10^{-7}</td>
</tr>
<tr>
<td>Meta-analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All follow-up samples (N = 8,313)</td>
<td>3,787</td>
<td>0.005</td>
<td>4,526</td>
<td>0.013</td>
<td>7.7×10^{-7}</td>
</tr>
<tr>
<td>Discovery and all follow-up samples (N = 12,849)</td>
<td>6,055</td>
<td>0.005</td>
<td>6,794</td>
<td>0.013</td>
<td>1.1×10^{-9}</td>
</tr>
<tr>
<td>Discovery, all follow-up and deCODE samples (N = 65,427)</td>
<td>57,490</td>
<td>0.005</td>
<td>7,937</td>
<td>-a</td>
<td>1.6×10^{-15}</td>
</tr>
</tbody>
</table>

Zhan et al. (2013) *Nature Genetics*
Summary

• A statistical framework to trace individual ancestry in a reference PCA space.
 – Accurate even with small amounts of sequence/genotype data
 – Robust to family structure and sampling distribution
 – Computationally efficient, \(\sim O(n) \)
 – Easy for parallel computation

• High-dimensional projection and genotype imputation can substantially improve the accuracy of our ancestry estimates.

• Software package:
 – LASER: http://www.sph.umich.edu/csg/chaolong/LASER/
 – Both LASER 1.0 and 2.0 are available online, but the manuscript for LASER 2.0 is unpublished.
Other resources: admixed samples

- **SEQMIX**
 - Improve estimation of local ancestry for admixed samples using low-coverage off-target sequence data