Exponential FamilyReviewSummary0000000000000000000000	Exponential FamilyReviewSummary•000000000000000000000
	Last Lecture
Biostatistics 602 - Statistical Inference Lecture 08 Data Reduction - Summary	 What is an exponential family distribution? 2 Does a Bernoulli distribution belongs to an exponential family?
Hyun Min Kang	 3 What is a curved exponential family? 4 What is an obvious sufficient statistic from an exponential family? 5 When can the sufficient statistic be complete?
February 5th, 2013	
Hyun Min Kang Biostatistics 602 - Lecture 08 February 5th, 2013 1 / 24 Exponential Family 0 • 0000000000 Review 0 • 0000000000 Summary 0	Hyun Min Kang Biostatistics 602 - Lecture 08 February 5th, 2013 2 / 24 Exponential Family Review Summary OO@00000000000000000000000000000000000
Theorem 6.2.25	Exponential Family Example
Suppose X_1, \dots, X_n is a random sample from pdf or pmf $f_X(x \theta)$ where $f_X(x \theta) = h(x)c(\theta) \exp\left[\sum_{j=1}^k w_j(\theta)t_j(x)\right]$ is a member of an exponential family. Then the statistic $T(\mathbf{X})$ $\mathbf{T}(\mathbf{X}) = \left(\sum_{j=1}^n t_1(X_j), \dots, \sum_{j=1}^n t_k(X_j)\right)$	Problem $X_1, \dots, X_n \xrightarrow{\text{i.i.d.}} \mathcal{N}(\mu, \sigma^2)$. Determine whether the following statistics are whether (1) sufficient (2) complete, and (3) minimal sufficient. $\mathbf{T}_1(\mathbf{X}) = \left(\sum_{i=1}^n X_i, \sum_{i=1}^n X_i^2\right), \mathbf{T}_2(\mathbf{X}) = \left(\overline{X}, s_{\mathbf{X}}^2 = \sum_{i=1}^n (X_i - \overline{X})^2 / (n-1)\right)$ How to solve it • Decompose $f_X(x \mu, \sigma)$ in the form of an an exponential family.

- Apply Theorem 6.2.10 to obtain a sufficient statistic and see if it is equivalent to or related to $\mathbf{T}_1(\mathbf{X})$ and $\mathbf{T}_2(\mathbf{X})$.
- Apply Theorem 6.2.25 to show that it is complete.
- Apply Theorem 6.2.28 to show that it is minimal sufficient.

is complete as long as the parameter space ${old O}$ contains an open set in ${\mathbb R}^k$

4 / 24

Applying Theorem 6.2.10

Re

Summary Exponential Family 00000000000

Applying Theorem 6.2.25. and Theorem 6.2.28

 $A = \{(w_1(\boldsymbol{\theta}), w_2(\boldsymbol{\theta})) : \boldsymbol{\theta} \in \mathbb{R}^2\}$

Contains a open subset in \mathbb{R}^2 , so $\mathbf{T}_1(\mathbf{X})$ is also complete by Theorem

6.2.25. By Theorem 6.2.28, $T_1(X)$ is also minimal sufficient.

 $= \left\{ \frac{\mu}{\sigma^2}, -\frac{1}{2\sigma^2} : \mu \in \mathbb{R}, \sigma > 0 \right\}$

$$f_X(x|\mu,\sigma^2) = \frac{1}{2\pi\sigma^2} \exp\left(-\frac{\mu^2}{2\sigma^2}\right) \exp\left(\frac{\mu}{\sigma^2}x - \frac{x^2}{2\sigma^2}\right)$$

where

$$\begin{cases} h(x) = 1\\ c(\boldsymbol{\theta}) = \frac{1}{2\pi\sigma^2} \exp\left(-\frac{\mu^2}{2\sigma^2}\right)\\ w_1(\boldsymbol{\theta}) = \mu/\sigma^2\\ w_2(\boldsymbol{\theta}) = -\frac{1}{2\sigma^2}\\ t_1(x) = x\\ t_2(x) = x^2 \end{cases}$$

By Theorem 6.2.10, $(\sum_{i=1}^{n} t_1(X_i), \sum_{i=1}^{n} t_2(X_i)) = (\sum_{i=1}^{n} X_1, \sum_{i=1}^{n} X_i^2) = \mathbf{T}_1(\mathbf{X})$ is a sufficient statistic

Biostatistics 602 - Lecture 08	February 5th, 2013	5 / 24
Review	Su	immary
	Biostatistics 602 - Lecture 08 Review 000000000	Biostatistics 602 - Lecture 08 February 5th, 2013 Review Su 000000000000000000000000000000000000

Connecting $\mathbf{T}_2(\mathbf{X})$ to $\mathbf{T}_1(\mathbf{X})$

$$\mathbf{T}_{1}(\mathbf{X}) = \left(\sum_{i=1}^{n} X_{i}, \sum_{i=1}^{n} X_{i}^{2}\right)$$
$$\mathbf{T}_{2}(\mathbf{X}) = \left(\overline{X}, s_{\mathbf{X}}^{2}\right)$$

$$\begin{cases} \overline{X} = \frac{\sum_{i=1}^{n} X_{i}}{n} = g_{1}(\mathbf{T}_{1}(\mathbf{X})) \\ s_{\mathbf{X}}^{2} = \frac{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}{n-1} = \frac{\sum_{i=1}^{n} X_{i}^{2} + \sum_{i=1}^{n} X_{i}^{2}/n}{n-1} = g_{2}(\mathbf{T}_{1}(\mathbf{X})) \\ \begin{cases} \sum_{i=1}^{n} X_{i} = n\overline{X} = g_{1}^{-1}(\mathbf{T}_{2}(\mathbf{X})) \\ \sum_{i=1}^{n} X_{i}^{2} = (n-1)s_{\mathbf{X}}^{2} - n\overline{X}^{2} = g_{2}^{-1}(\mathbf{T}_{2}(\mathbf{X})) \end{cases} \end{cases}$$

Therefore, $\mathbf{T}_2(\mathbf{X})$ is an one-to-one function of $\mathbf{T}_1(\mathbf{X})$, and also is sufficient, complete, and minimal sufficient.

Bio

February 5th, 2013

6 / 24

Example of Curved Exponential Family

Problem

Exponential Family

Hyun Min Kang

 $X_1, \dots, X_n \xrightarrow{\text{i.i.d.}} \mathcal{N}(\mu, \mu^2)$. Determine whether the following statistic is whether (1) sufficient (2) complete, and (3) minimal sufficient.

Biostatistics 602 - Lecture 08

$$\mathbf{T}(\mathbf{X}) = \left(\sum_{i=1}^{n} X_i, \sum_{i=1}^{n} X_i^2\right)$$

How to solve it

- Decompose $f_X(x|\mu)$ in the form of an an exponential family.
- Apply Theorem 6.2.10 to obtain a sufficient statistic and see if it is equivalent to or related to T(X)
- Apply Theorem 6.2.25 to see if it is complete.
- Apply Theorem 6.2.28 to see if it is minimal sufficient.

	000000000	O		000000000	O O
Applying	Theorem 6.2.10		Applying Theore	m 6.2.25.	
where By Theore $(\sum_{i=1}^{n} t_1)$ statistic fo	$\begin{split} f_X(x \mu) &= \frac{1}{2\pi\mu^2} \exp\left(-\frac{1}{2}\right) \exp\left(\frac{1}{\mu}x + \frac{1}{2}\right) \\ & \left\{ \begin{array}{l} h(x) &= 1\\ c(\mu) &= \frac{1}{2\pi\mu^2} \exp\left(-\frac{1}{2}\right)\\ w_1(\mu) &= 1/\mu\\ w_2(\mu) &= -\frac{1}{2\mu^2}\\ t_1(x) &= x\\ t_2(x) &= x^2 \end{array} \right. \\ & \text{m 6.2.10,} \\ X_i), \sum_{i=1}^n t_2(X_i)) &= \left(\sum_{i=1}^n X_i, \sum_{i=1}^n X_i^2\right) = \\ & \text{r } \mu \end{split}$	$-\frac{x^2}{2\mu^2}$) T (X) is a sufficient	A does not contains 6.2.25. We need to g	$A = \{(w_1(\mu), w_2(\mu) : \mu \in \mathbb{R}\} \\ = \left\{\frac{1}{\mu^2}, -\frac{1}{2\mu^2} : \mu \in \mathbb{R}\right\}$ a open subset in \mathbb{R}^2 , so we cannot go back to the definition	ot apply Theorem
Hyun Mi	in Kang Biostatistics 602 - Lecture 08	February 5th, 2013 9 / 24	Hyun Min Kang	Biostatistics 602 - Lecture 08	February 5th, 2013 10 /
Exponential Family	Review 00000000	Summary O	Exponential Family 000000000000000000000000000000000000	Review 000000000	Summai O
Is $\mathbf{T}(\mathbf{X})$	$= \left(\sum_{i=1}^{n} X_{i}, \sum_{i=1}^{n} X_{i}^{2}\right) \text{ Complete?}$		Is $\mathbf{T}(\mathbf{X}) = (\sum_{i=1}^{n}$	$X_i, \sum_{i=1}^n X_i^2$) Complete?	(cont'd)
Note that	$E\left(\sum_{i=1}^{n} X_{i}\right) = n\mu$ $E\left(\sum_{i=1}^{n} X_{i}^{2}\right) = nE\left(X_{i}^{2}\right)$ $= n\left[E(X_{i})^{2} + \operatorname{Var}(X_{i})^{2}\right]$ $= n(\mu^{2} + \mu^{2}) = 2n\mu^{2}$ $\sum_{i=1}^{n} X_{i} \sim \mathcal{N}(n\mu, n\mu^{2}).$	$X_i)\Big]_2$	Define $g({f T}({f X}))$	$\begin{aligned} \mathbf{X})) &= g\left(\sum_{i=1}^{n} X_{i}, \sum_{i=1}^{n} X_{i}^{2}\right) \\ &= \frac{\sum_{i=1}^{n} X_{i}^{2}}{2n} - \frac{\left(\sum_{i=1}^{n} X_{i}^{2}\right)^{2}}{n(n+1)} \\ \mu &= \frac{E\left(\sum_{i=1}^{n} X_{i}^{2}\right)}{2n} - \frac{E\left(\sum_{i=1}^{n} X_{i}^{2}\right)}{n(n+1)\mu^{2}} \end{aligned}$	$\left(\frac{1}{1}\frac{X_i}{X_i}\right)^2$ +1)
	$\sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i$	$\langle n \rangle$		$= \frac{1}{2n} - \frac{n(n+1)r^2}{n(n+1)} = 0$)

 $E\left[\left(\sum_{i=1}^{n} X_{i}\right)^{2}\right] = \left[E\left(\sum_{i=1}^{n} X_{i}\right)\right]^{2} + \operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right)$ $= (n\mu)^{2} + n\mu^{2} = n(n+1)\mu^{2}$

 $\Pr(g(\mathbf{T}) = 0) < 1$, $\mathbf{T}(\mathbf{X})$ is NOT complete.

for all $\mu\in\mathbb{R}.$ Because there exist $g(\mathbf{T})$ such that $E[\mathbf{T}|\mu]=0$ and

	Keview 0000000000	O		Review •000000000	O Summary
ls $\mathbf{T}(\mathbf{X}) = (\sum_{i=1}^{n} X)$	$f_i, \sum_{i=1}^n X_i^2)$ Minimal S	ufficient?	Summary of Suffic	ciency Principle	
Is $\mathbf{T}(\mathbf{X}) = (\sum_{i=1}^{n} X_i, \sum_{i=1}^{n} X_i^2)$ Winimal Sufficient? $\frac{f_X(\mathbf{x} \mu)}{f_X(\mathbf{y} \mu)} = \exp\left[\frac{\sum_{i=1}^{n} y_i^2 - \sum_{i=1}^{n} x_i^2}{2\mu^2} + \frac{\sum_{i=1}^{n} x_i - \sum_{i=1}^{n} y_i}{\mu}\right]$ The ratio above is a constant to μ if and only if $\begin{cases}\sum_{i=1}^{n} x_i^2 = \sum_{i=1}^{n} y_i^2\\\sum_{i=1}^{n} x_i = \sum_{i=1}^{n} y_i \end{cases}$ which is equivalent to $\mathbf{T}(\mathbf{x}) = \mathbf{T}(\mathbf{y})$. Therefore, $\mathbf{T}(\mathbf{X})$ is a minimal sufficient statistic.			Summary of Sumclency Principle • Model : $\mathcal{P} = \{f_X(x \theta), \theta \in \Omega\}$ • Statistic : $T = T(\mathbf{X})$ where $\mathbf{X} = (X_1, \dots, X_n)$. Sufficient Statistic Contains all info about θ Definition $f_{\mathbf{X}}(\mathbf{x} T(\mathbf{X}))$ does not depend on θ Theorem 6.2.2 $f_{\mathbf{X}}(\mathbf{x} \theta)/q_T(T(\mathbf{X}) \theta)$ does not depend on θ Factorization Theorem $f_{\mathbf{X}}(\mathbf{x} \theta) = h(\mathbf{x})g(T(\mathbf{X}) \theta)$ Exponential Family $(\sum_{i=1}^n t_1(X_i), \dots, \sum_{i=1}^n t_k(X_i))$ is sufficient		
Hyun Min Kang	Biostatistics 602 - Lecture 08	February 5th, 2013 13 / 24	Hyun Min Kang	Biostatistics 602 - Lecture 08	February 5th, 2013 14 / 24
Exponential Family 00000000000	Review 0●00000000	Summary O	Exponential Family 00000000000	Review 00●0000000	Summary O
Summary of Sufficie	ency Principle (cont'd)		Summary of Suffic	ciency Principle (cont'd)	
Minimal Sufficient Stat Sufficient statistic that a Definition <i>T</i> is sufficient statistics. Theorem 6.2.13 $f_{\mathbf{X}}(\mathbf{x} \theta)$ $T(\mathbf{x}) = T(\mathbf{x})$	cistic achieves the maximum data r ent and it is a function of all $/f_{\mathbf{X}}(\mathbf{y} \theta)$ is constant as a fun- y)	reduction $ ext{other sufficient}$ ction of $ heta \iff$	Complete Statistic This family have to co The restriction $E[g(T)]$ non-zero functions Definition $E[g(T) \theta$	ntain "many" distributions in or $ heta]=0, \ orall heta\in \Omega$ is strong enoug $]=0$ implies $\Pr(g(T)=0 heta)=$	rder to be complete. gh to rule out all 1.

Exponential Family (Theorem 6.2.28) Complete and sufficient statistic is minimal sufficient

Exponential Family The parameter space Ω is an open subset of \mathbb{R}^k .

Exponential Family	Review	Summary
00000000000	000●000000	O

Solution - Distribution 1

Problem

Example

The random variable X takes the values 0, 1, 2, according to one of the following distributions:

	$\Pr(X=0)$	$\Pr(X=1)$	$\Pr(X=2)$	
Distribution 1	p	3p	1 - 4p	0
Distribution 2	p	p^2	$1 - p - p^2$	0

In each case, determine whether the family of distribution of X is complete.

Suppose that there exist $g(\cdot)$ such that E[g(X)|p] = 0 for all 0 .

Review

$$\begin{split} f_X(x|p) &= p^{I(x=0)}(3p)^{I(x=1)}(1-4p)^{I(x=2)} \\ E[g(X)|p] &= \sum_{x \in \{0,1,2\}} g(x) f_X(x|p) \\ &= g(0) \cdot p + g(1) \cdot (3p) + g(2) \cdot (1-4p) \\ &= p[g(0) + 3g(1) - 4g(2)] + g(2) = 0 \end{split}$$

Therefore, g(2) = 0, g(0) + 3g(1) = 0 must hold, and it is possible that g is a nonzero function that makes $\Pr[g(X) = 0] < 1$. For example, g(0) = 1, g(1) = -3, g(2) = 0. Therefore the family of distribution of X is not complete.

Hyun Min Kang	Biostatistics 602 - Lecture 08	February 5th, 2013 17 / 24	Hyun Min Kang	Biostatistics 602 - Lecture 08	February 5th, 2013 18 / 24
Exponential Family 00000000000	Review 00000●0000	Summary O	Exponential Family 00000000000	Review oooooo●ooo	Summary O
Solution - Distribution 2			Another Example		
Suppose that there e	exist $g(\cdot)$ such that $E[g(X) p] =$	= 0 for all $0 .$			

$$\begin{split} f_X(x|p) &= p^{I(x=0)}(p^2)^{I(x=1)}(1-p-p^2)^{I(x=2)} \\ E[g(X)|p] &= \sum_{x \in \{0,1,2\}} g(x) f_X(x|p) \\ &= g(0) \cdot p + g(1) \cdot p^2 + g(2) \cdot (1-p-p^2) \\ &= p^2[g(1)-g(2)] + p[g(0)-g(2)] + g(2) = 0 \end{split}$$

g(0) = g(1) = g(2) = 0 must hold in order to E[g(X)|p] = 0 for all p. Therefore the family of distribution of X is complete.

Problem

Let X_1, \dots, X_n be iid samples from

$$f_X(x|\mu,\lambda) = \left(\frac{\lambda}{2\pi x^3}\right)^{1/2} \exp\left[-\frac{\lambda(x-\mu)^2}{2\mu^2 x}\right]$$

where x > 0. Show that $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ and $T = \frac{n}{\sum_{i=1}^{n} \frac{1}{X} - \frac{1}{X}}$ are sufficient and complete.

Solution

Review 0000000000

 $= \left(\frac{\lambda}{2\pi x^3}\right)^{1/2} \exp\left[-\frac{\lambda x^2}{2\mu^2 x} + \frac{2\lambda\mu x}{2\mu^2 x} - \frac{\lambda\mu^2}{2\mu^2 x}\right]$

 $= \left(\frac{1}{2\pi x^3}\right)^{1/2} \lambda^{1/2} \exp\left[-\frac{\lambda}{2\mu^2}x + \frac{\lambda}{\mu} - \frac{\lambda}{2} \cdot \frac{1}{x}\right]$

 $= \left(\frac{1}{2\pi x^3}\right)^{1/2} \lambda^{1/2} e^{\lambda/\mu} \exp\left[-\frac{\lambda}{2\mu^2} x - \frac{\lambda}{2} \cdot \frac{1}{x}\right]$

 $= h(x)c(\boldsymbol{\theta}) \exp \left[w_1(\boldsymbol{\theta})t_1(x) + w_2(\boldsymbol{\theta})t_2(x)\right]$

Summary

Solution (cont'd)

where

$$h(x) = \frac{1}{2\pi x^3}$$

$$c(\theta) = \lambda^{1/2} e^{\lambda/\mu}$$

$$w_1(\theta) = -\frac{\lambda}{2\mu^2}$$

$$t_1(x) = x$$

$$w_2(\theta) = -\frac{\lambda}{2}$$

$$t_2(x) = \frac{1}{x}$$

Review

0000000000

Therefore $\mathbf{T}(\mathbf{X}) = (T_1(\mathbf{X}), T_2(\mathbf{X})) = (\sum_{i=1}^n X_i, \sum_{i=1}^n 1/X_i)$ is a complete sufficient statistic because $\theta = (\lambda, \mu)$ contains an open set in \mathbb{R}^2 .

Hyun Min Kang	Biostatistics 602 - Lecture 08	February 5th, 2013 21 / 24	Hyun Min Kang	Biostatistics 602 - Lecture 08	February 5th, 2013 22 / 2
Exponential Family 00000000000	R eview 00000000●	Summary O	Exponential Family 00000000000	R eview 000000000	Summary •
Solution (cont'd)			Summary		

Now, we need to show that $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ one-to-one function of $\mathbf{T}(\mathbf{X})$.

 $f_X(x|\boldsymbol{\theta}) = \left(\frac{\lambda}{2\pi x^3}\right)^{1/2} \exp\left[-\frac{\lambda(x-\mu)^2}{2\mu^2 x}\right]$

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i = \frac{1}{n} T_1(\mathbf{X})$$
$$T = \frac{n}{\sum_{i=1}^{n} \frac{1}{X} - \frac{1}{\overline{X}}} = \frac{n}{T_2(\mathbf{X}) - \frac{n}{T_1(\mathbf{X})}}$$
$$T_1(\mathbf{X}) = n\overline{X}$$
$$T_2(\mathbf{X}) = \frac{n}{T} + \frac{1}{\overline{X}}$$

Therefore, (\overline{X}, T) are one-to-one function of $(T_1(\mathbf{X}), T_2(\mathbf{X}))$ and are also a sufficient complete statistic.

00•	Summary O	Exponential Family 00000000000	Review 000000000	Summary ●
		Summary		
and $T=rac{n}{\sum_{i=1}^{n}rac{1}{X}-rac{1}{\overline{X}}}$ a	ire			

Today

- More Examples of Exponential Family
- Review of Chapter 6

Next Lecture

- Likelihood Function
- Point Estimation