Biostatistics 615/815 Lecture 17: Numerical Optimization

Hyun Min Kang

March 17th, 2011

Hyun Min Kang Biostatistics 615/815 - Lecture 17 March 17th, 2011 1 /

Homework

Introduction

- Homework #5 will be annouced later today
- Apologies for the delay!

815 Projects

- Report the current progress to the instructore by the weekend
- Schedule a meeting with instructor by email

Hyun Min Kang

Biostatistics 615/815 - Lecture 17

March 17th, 2011

2/4

Introduction 00•00

000000000

Minimization

Summary

Recap from last lecture

- Crude Monte Carlo method : calculate integration by taking averages across samples from uniform distribution
- Rejection sampling
 - Define a finite rectangle
 - 2 Sample data from uniform distribution
 - **3** Accept data if y < f(x)
 - f 4 Count how many y were hit
- Importance sampling : Reweight the probability distribution to reduce the variance in the estimation

Introduction

Homework problem: integration in multivariate normal distribution

Problem

Calculate

$$\int_{x_m}^{x_M} \int_{y_m}^{y_M} f(x, y; \rho) \, dx dy$$

where $f(x, y; \rho)$ is pdf of bivariate normal distribution, using

- Crude Monte Carlo Method
- Rejection sampling

Hyun Min Kang

Importance sampling

• The lecture note is very similar to Goncalo's old lecture notes

- C-specific portions are ported into C++
- The following lecture notes will be also similar.

Root Finding

Biostatistics 615/815 - Lecture 17

Introduction 00000

Disclaimer

Root Finding

Biostatistics 615/815 - Lecture 17

Specific Objectives

Hyun Min Kang

The Minimization Problem

Finding global minimum

- The lowest possible value of the function
- Very hard problem to solve generally

Finding local minimum

Hyun Min Kang

- Smallest value within finite neighborhood
- Relatively easier problem

Root Finding Root Finding

A quick detour - The root finding problem

- Consider the problem of finding zeros for f(x)
- Assume that you know
 - Point *a* where *f*(*a*) is positive
 - Point b where f(b) is negative
 - f(x) is continuous between a and b
- How would you proceed to find x such that f(x) = 0?

Hyun Min Kang Biostatistics 615/815 - Lecture 17

Root Finding

March 17th, 2011

Hyun Min Kang

Biostatistics 615/815 - Lecture 17

Root Finding with C++

```
// binary-search-like root finding algorithm
double binaryZero(myFunc foo, double lo, double hi, double e) {
 for (int i=0;; ++i) {
    double d = hi - lo;
    double point = lo + d * 0.5; // find midpoint between lo and hi
    double fpoint = foo(point);  // evaluate the value of the function
    if (fpoint < 0.0) {</pre>
      d = lo - point; lo = point;
    }
    else {
      d = point - hi; hi = point;
    // e is tolerance level (higher e makes it faster but less accruate)
    if (fabs(d) < e || fpoint == 0.0) {</pre>
      std::cout << "Iteration " << i << ", point = " << point</pre>
                << ", d = " << d << std::endl;
      return point;
```

A C++ Example : definining a function object

```
#include <iostream>
class myFunc {    // a typical way to define a function object
public:
  double operator() (double x) const {
    return (x*x-1);
 }
};
int main(int argc, char** argv) {
  myFunc foo;
  std::cout << "foo(0) = " << foo(0) << std::endl;
  std::cout << "foo(2) = " << foo(2) << std::endl;
```

Root Finding

March 17th, 2011

Improvements to Root Finding

Approximation using linear interpolation

$$f^*(x) = f(a) + (x - a) \frac{f(b) - f(a)}{b - a}$$

Root Finding Strategy

• Select a new trial point such that $f^*(x) = 0$

Hyun Min Kang

Biostatistics 615/815 - Lecture 17

Introduction

Root Finding

Minimization

Summary

Root Finding

Minimization

Summa

Root Finding Using Linear Interpolation

```
double linearZero (myFunc foo, double lo, double hi, double e) {
 double flo = foo(lo); // evaluate the function at the end pointss
 double fhi = foo(hi);
 for(int i=0;;++i) {
   double d = hi - lo;
    double point = lo + d * flo / (flo - fhi); //
    double fpoint = foo(point);
    if (fpoint < 0.0) {</pre>
      d = lo - point;
      lo = point;
      flo = fpoint;
    else {
      d = point - hi;
      hi = point;
      fhi = fpoint;
    if (fabs(d) < e || fpoint == 0.0) {</pre>
      std::cout << "Iteration " << i << ", point = " << point << ", d = " << d << std::endl;
      return point;
```

Hyun Min Kang

Biostatistics 615/815 - Lecture 17

March 17th, 2011 1

Minimization

Summar

Introduction 00000 Root Finding

Summary O

R example of root finding

```
> uniroot( sin, c(0-pi/4,pi/2) )
$root
[1] -3.531885e-09

$f.root
[1] -3.531885e-09

$iter
[1] 4

$estim.prec
[1] 8.719466e-05
```

Performance Comparison

```
Finding sin(x) = 0 between -π/4 and π/2

#include <cmath>
class myFunc {
public:
    double operator() (double x) const { return sin(x); }
};
...
int main(int argc, char** argv) {
    myFunc foo;
    binaryZero(foo,0-M_PI/4,M_PI/2,1e-5);
    linearZero(foo,0-M_PI/4,M_PI/2,1e-5);
    return 0;
}
```

Experimental results

```
binaryZero() : Iteration 17, point = -2.99606e-06, d = -8.98817e-06 linearZero() : Iteration 5, point = 0, d = -4.47489e-18
```

Hyun Min Kang

Biostatistics 615/815 - Lecture 17

March 17th, 2011 14 / 40

Introduction 00000

Root Finding

Summar

Summary on root finding

- Implemented two methods for root finding
 - Bisection Method : binaryZero()
 - False Position Method : linearZero()
- In the bisection method, the bracketing interval is halved at each step
- For well-behaved function, the False Position Method will converage faster, but there is no performance guarantee.

Minimization Minimization

Back to the Minimization Problem

- Consider a complex function f(x) (e.g. likelihood)
- Find x which f(x) is maximum or minimum value
- Maximization and minimization are equivalent
 - Replace f(x) with -f(x)

Hyun Min Kang

Biostatistics 615/815 - Lecture 17

Notes from Root Finding

- Two approaches possibly applicable to minimization problems
- Bracketing
 - Keep track of intervals containing solution
- Accuracy
 - Recognize that solution has limited precision

Hyun Min Kang

Biostatistics 615/815 - Lecture 17

March 17th, 2011

Notes on Accuracy - Consider the Machine Precision

- When estimating minima and bracketing intervals, floating point accuracy must be considered
- In general, if the machine precision is ϵ , the achievable accuracy is no more than $\sqrt{\epsilon}$.
- $\sqrt{\epsilon}$ comes from the second-order Taylor approximation

$$f(x) \approx f(b) + \frac{1}{2}f'(b)(x-b)^2$$

- For functions where higher order terms are important, accuracy could be even lower.
 - For example, the minimum for $f(x) = 1 + x^4$ is only estimated to about

Outline of Minimization Strategy

- Bracket minimum
- 2 Successively tighten bracket interval

Detailed Minimization Strategy

- 1 Find 3 points such that
 - *a* < *b* < *c*
 - f(b) < f(a) and f(b) < f(c)
- 2 Then search for minimum by
 - Selecting trial point in the interval
 - Keep minimum and flanking points

	3	6
l		

Hyun Min Kang

Biostatistics 615/815 - Lecture 17

March 17th, 2011

Hyun Min Kang

Biostatistics 615/815 - Lecture 17

Minimization

March 17th, 2011

11 22 / 4

Introduction

Root Finding

Minimization

Summar

Part I : Finding a Bracketing Interval

- Consider two points
 - x-values a, b
 - $\bullet \ \ \text{y-values} \ \textit{f}(\textit{a}) > \textit{f}(\textit{b})$

D 1 11 1 C 1

```
Bracketing in C++
```

Minimization after Bracketing

```
#define SCALE 1.618

void bracket( myFunc foo, double& a, double& b, double& c) {
  double fa = foo(a);
  double fb = foo(b);
  double fc = foo(c = b + SCALE*(b-a) );
  while( fb > fc ) {
    a = b; fa = fb;
    b = c; fb = fc;
    c = b + SCALE * (b-a);
    fc = foo(c);
  }
}
```

Introductio

Root Finding

Minimization

Summary

oot Finding

What is the best location for a new point *X*?

Part II: Finding Minimum After Bracketing

- Given 3 points such that
 - *a* < *b* < *c*
 - f(b) < f(a) and f(b) < f(c)
- How do we select new trial point?

A)----

 $\left(\mathsf{B}\right)$

Hyun Min Kang

Biostatistics 615/815 - Lecture 17

March 17th, 2011 25

Hyun Min Kang

Biostatistics 615/815 - Lecture 17

March 17th, 2011

26 / 40

ntroduction

Root Finding

Minimization

Summa

ry

Root Finding

Minimization

Summar

What we want

We want to minimize the size of next search interval, which will be either from A to X or from B to C

Minimizing worst case possibility

Formulae

$$w = \frac{b-a}{c-a}$$
$$z = \frac{x-b}{c-a}$$

Segments will have length either 1 - w or w + z.

Optimal case

Hyun Min Kang

$$\frac{1-w}{z} = w+z$$

$$\frac{z}{1-w} = w$$

$$w = \frac{3-\sqrt{5}}{2} = 0.38197$$

Minimization

Golden Search

- Reduces bracketing by $\sim 40\%$ after function evaluation
- Performance is independent of the function that is being minimized
- In many cases, better schemes are available

Hyun Min Kang Biostatistics 615/815 - Lecture 17

March 17th, 2011

Biostatistics 615/815 - Lecture 17

March 17th, 2011

Minimization

Golden Search

```
double goldenSearch(myFunc foo, double a, double b, double c, double e) {
 int i = 0;
 double fb = foo(b);
 while ( fabs(c-a) > fabs(b*e) ) {
    double x = b + goldenStep(a, b, c);
    double fx = foo(x);
    if ( fx < fb ) {
     (x > b)? (a = b): (c = b);
     b = x; fb = fx;
    else {
     (x < b)? (a = x): (c = x);
   }
    ++i;
 std::cout << "i = " << i << ", b = " << b << ", f(b) = " << foo(b) << std::endl;
 return b;
}
```

Golden Step

```
#define GOLD 0.38196
#define ZEPS 1e-10 // precision tolerance
double goldenStep (double a, double b, double c) {
 double mid = (a + c) * .5;
 if ( b > mid )
   return GOLD * (a-b);
   return GOLD * (c-b);
```

Hyun Min Kang

0000000000000000000000

Minimization

A running example

```
Finding minimum of f(x) = -\cos(x)
```

```
class myFunc {
public:
  double operator() (double x) const {
    return 0-cos(x);
 }
};
int main(int argc, char** argv) {
  myFunc foo;
  goldenSearch(foo,0-M_PI/4,M_PI/4,M_PI/2,1e-5);
  return 0;
```

```
Results
```

```
i = 66, b = -4.42163e-09, f(b) = -1
```

Hyun Min Kang

Biostatistics 615/815 - Lecture 17

R example of minimization

> optimize(cos,interval=c(0-pi/4,pi/2),maximum=TRUE)

\$maximum

[1] -8.648147e-07

\$objective

[1] 1

Further improvements

- As with root finding, performance can improve substantially when local approximation is used
- However, a linear approximation won't do in this case.

Hyun Min Kang Biostatistics 615/815 - Lecture 17

March 17th, 2011 37 / 40

Hyun Min Kang

Biostatistics 615/815 - Lecture 17

March 17th, 2011

38 / 4

Introduction

0000000000

 Summary

Introducti

Root Finding

Minimization

Minimization

0000000000000000000000

Summar

Approximation Using Parabola

Summary

Today

- Root Finding Algorithms
 - Bisection Method : Simple but likely less efficient
 - False Position Method : More efficient for most well-behaved function
- Single-dimensional minimization
 - Golden Search

Next Lecture

- More Single-dimensional minimization
 - Brent's method
- Multidimensional optimization
 - Simplex method

Hyun Min Kang

Hyun Min Kang

Biostatistics 615/815 - Lecture 17

March 17th, 2011

39 / 40

Biostatistics 615/815 - Lecture 17