Biostatistics 615/815 Lecture 17:
Numerical Optimization

Hyun Min Kang

March 17th, 2011

Hyun Min Kang Biostatistics 615/815 - Lecture 17

Introduction
0@000

Midterm Score Distribution

Midterm Score Histogram (n=18)

Frequency

T T T T T T 1
70 75 80 85 90 95 100

Midterm Score

March 17th, 2011

1/40

Introduction
90000

Annoucements

e Homework #5 will be annouced later today

e Apologies for the delay!

815 Projects

e Report the current progress to the instructore by the weekend

e Schedule a meeting with instructor by email

Hyun Min Kang Biostatistics 615/815 - Lecture 17 March 17th, 2011 2 /40

Introduction
00®00

Recap from last lecture

e Crude Monte Carlo method : calculate integration by taking averages
across samples from uniform distribution
e Rejection sampling
@ Define a finite rectangle
@® Sample data from uniform distribution
© Accept data if y < f(z)
@ Count how many y were hit
e Importance sampling : Reweight the probability distribution to reduce
the variance in the estimation

Hyun Min Kang Biostatistics 615/815 - Lecture 17 March 17th, 2011 4 /40

Hyun Min Kang Biostatistics 615/815 - Lecture 17

March 17th, 2011

3/40

Introduction
[e]e]e] 1o}

integration in multivariate normal

Homework problem :
distribution

Problem
Calculate

1978 Ymr
/ / s 5 0Py
Tm Ym

where f(z, y; p) is pdf of bivariate normal distribution, using
e Crude Monte Carlo Method
e Rejection sampling

e Importance sampling

Hyun Min Kang Biostatistics 615/815 - Lecture 17 March 17th, 2011

Root Finding
©000000000

The Minimization Problem

X X2

5 /40

Introduction
[e]ele]e] }

Disclaimer

e The lecture note is very similar to Goncalo's old lecture notes
e (C-specific portions are ported into C++

e The following lecture notes will be also similar.

Hyun Min Kang Biostatistics 615/815 - Lecture 17 March 17th, 2011

Root Finding
[o] Jeleleleleletele}

Specific Objectives

Finding global minimum

e The lowest possible value of the function

e Very hard problem to solve generally

Finding local minimum

e Smallest value within finite neighborhood

o Relatively easier problem

Hyun Min Kang Biostatistics 615/815 - Lecture 17 March 17th, 2011

7/ 40

Hyun Min Kang Biostatistics 615/815 - Lecture 17 March 17th, 2011

Root Finding
0000000000

A quick detour - The root finding problem

e Consider the problem of finding zeros for f(x)
e Assume that you know

e Point a where f(a) is positive

e Point b where f(b) is negative

e f(z) is continuous between a and b

e How would you proceed to find z such that f(z) = 07

Hyun Min Kang

Biostatistics 615/815 - Lecture 17

March 17th, 2011 9 /40

Root Finding
0000®00000

Root Finding with C++

// binary-search-like root finding algorithm
double binaryZero(myFunc foo, double lo, double hi, double e) {
for (int i=0;; ++i) {
double d = hi - 1lo;
double point = lo + d * 0.5;
double fpoint = foo(point);
if (fpoint < 0.0) {
d = lo - point; 1lo = point;

// find midpoint between lo and hi
// evaluate the value of the function

}

else {
d = point - hi; hi = point;

}

// e is tolerance level (higher e makes it faster but less accruate)

if (fabs(d) < e || fpoint == 0.0) {

std::cout << "Iteration << i << point =

<< ", d =" << d << std::endl;

<< point

return point;
Hyun Min Kang

Biostatistics 615/815 - Lecture 17 March 17th, 2011

11 / 40

Root Finding
000®000000

A C++ Example : definining a function object

#include <iostream>
class myFunc { // a typical way to define a function object
public:
double operator() (double x) const {
return (x*x-1);
}
s

int main(int argc, char** argv) {
myFunc foo;
std::cout << "foo(@®) = " << foo(@) << std::endl;
std::cout << "foo(2) = " << foo(2) << std::endl;

Hyun Min Kang Biostatistics 615/815 - Lecture 17 March 17th, 2011

Root Finding
[olelelele] Yelelele}

Improvements to Root Finding

Approximation using linear interpolation

F@) = fla) + (a— o=

b—a

Root Finding Strategy

e Select a new trial point such that f(z) =0

Hyun Min Kang Biostatistics 615/815 - Lecture 17 March 17th, 2011

12 / 40

Root Finding
000000e000

Root Finding Using Linear Interpolation

double linearZero (myFunc foo, double lo, double hi, double e) {

if (fpoint < 0.0) {

d = lo - point;
lo = point;
flo = fpoint;

}

else {
d = point - hi;
hi = point;
fhi = fpoint;

}

if (fabs(d) < e || fpoint == 0.0) {

std::cout << "Iteration " << i << ", point = " << point <<

return point;
}
}

Hyun Min Kang Biostatistics 615/815 - Lecture 17

"d =

double flo = foo(lo); // evaluate the function at the end pointss
double fhi = foo(hi);
for(int i=0;;++i) {

double d = hi - lo;

double point = lo + d * flo / (flo - fhi); //

double fpoint = foo(point);

March 17th, 2011

<< d << std::endl;

Root Finding
0000000e00

Performance Comparison

Finding sin(x) = @ between —7/4 and 7/2

#include <cmath>
class myFunc {
public:
double operator() (double x) const {
s

return sin(x); }

int main(int argc, char** argv) {
myFunc foo;
binaryZero(foo,0-M_PI/4,M_PI/2,1e-5);
linearZero(fo0,0-M_PI/4,M_PI/2,1e-5);
return 0;

vy

Experimental results

binaryZero() Iteration 17,

Iteration 5,

point = -2.99606e-06, d =

-4.47489%e-18

-8.98817e-06

linearZero() point = 0, d =

Root Finding
0000000080

R example of root finding

> uniroot(sin, c(@-pi/4,pi/2))
$root
[1] -3.531885e-09

$f.root
[1] -3.531885e-09

$iter
[1] 4

$estim.prec
[1] 8.719466e-05

Hyun Min Kang Biostatistics 615/815 - Lecture 17

March 17th, 2011

13 / 40

15 / 40

Hyun Min Kang

Root Finding
0000000008

Summary on root finding

e Implemented two methods for root finding

e Bisection Method : binaryzero()
e False Position Method : linearzero()

e In the bisection method, the bracketing interval is halved at each step

o For well-behaved function, the False Position Method will converage
faster, but there is no performance guarantee.

Hyun Min Kang Biostatistics 615/815 - Lecture 17 March 17th, 2011 16 / 40

Minimization
9000000000000 0000000000

Back to the Minimization Problem

Minimization
0O®00000000000000O0000000

Notes from Root Finding

e Consider a complex function f(z) (e.g. likelihood)
e Find z which f(z) is maximum or minimum value

e Maximization and minimization are equivalent
e Replace f(z) with —f(x)

Hyun Min Kang Biostatistics 615/815 - Lecture 17 March 17th, 2011 17 / 40

Minimization
00®00000000000000000000

Notes on Accuracy - Consider the Machine Precision

e Two approaches possibly applicable to minimization problems
e Bracketing
o Keep track of intervals containing solution

e Accuracy
e Recognize that solution has limited precision

Hyun Min Kang Biostatistics 615/815 - Lecture 17 March 17th, 2011

Minimization
000@0000000000000000000

Outline of Minimization Strategy

e When estimating minima and bracketing intervals, floating point
accuracy must be considered

e In general, if the machine precision is ¢, the achievable accuracy is no
more than \/e.

e /e comes from the second-order Taylor approximation

) & f(b) + 51 (5)(z—)

e For functions where higher order terms are important, accuracy could
be even lower.

e For example, the minimum for f(z) = 1 + 2% is only estimated to about
1/4
€ .

Hyun Min Kang Biostatistics 615/815 - Lecture 17 March 17th, 2011 19 / 40

@ Bracket minimum

® Successively tighten bracket interval

Hyun Min Kang

Biostatistics 615/815 - Lecture 17

March 17th, 2011

Minimization
O000@000000000000000000

Detailed Minimization Strategy

Minimization
00000®0000000000O0000000

Minimization after Bracketing

@ Find 3 points such that

e a<b<ec

e f(b) < fla) and f(b) < f(c)
® Then search for minimum by

e Selecting trial point in the interval
e Keep minimum and flanking points

Hyun Min Kang Biostatistics 615/815 - Lecture 17

Minimization
000000e0000000000000000

Part | : Finding a Bracketing Interval

March 17th, 2011

21 / 40

Hyun Min Kang Biostatistics 615/815 - Lecture 17 March 17th, 2011

Minimization
0000000@000000000000000

Bracketing in C++

e Consider two points

e x-values a, b
e y-values f(a) > f(b)

Hyun Min Kang Biostatistics 615/815 - Lecture 17 March 17th, 2011

23 / 40

#define SCALE 1.618

void bracket(myFunc foo, double& a, double& b, double& c) {
double fa = foo(a);
double fb = foo(b);
double fc = foo(c = b + SCALE*(b-a));
while(fb > fc) {
a =b; fa = fb;
b = c; fb = fc;
c = b + SCALE * (b-a);
fc = foo(c);

Hyun Min Kang Biostatistics 615/815 - Lecture 17 March 17th, 2011

Minimization Minimization
000000000 e@0000000000000

O0000000®00000000000000

Part Il : Finding Minimum After Bracketing What is the best location for a new point X7

e Given 3 points such that

e a<b<ec m
o f(b) < f(a) and f(b) < f(c) @ <& @

e How do we select new trial point?

Biostatistics 615/815 - Lecture 17 March 17th, 2011

Hyun Min Kang Biostatistics 615/815 - Lecture 17 March 17th, 2011 25 / 40 Hyun Min Kang

Minimization Minimization
00000000000 e00000000000

Q000000000 eO00000000000

What we want Minimizing worst case possibility
e Formulae
b—a
w =
cC— a
r—b

z =
®&—6C©0 6
Segments will have length either 1 — w or w+ 2.

e Optimal case

We want to minimize the size of next search interval, which will be either l—w = w4z
from A to X or from Bto C 2 W

w = 3_2—\/5:0.38197

Biostatistics 615/815 - Lecture 17 March 17th, 2011

Hyun Min Kang Biostatistics 615/815 - Lecture 17 March 17th, 2011 27 / 40 Hyun Min Kang

Minimization
000000000000 e®0000000000

The Golden Search

The Golden Ratio

Minimization
000000000000 0e000000000

6

Hyun Min Kang Biostatistics 615/815 - Lecture 17 March 17th, 2011 29 / 40

Minimization
00000000000000e00000000

The Golden Ratio

Bracketing Triplet

Hyun Min Kang

The Golden Ratio

(B
9 :

Biostatistics 615/815 - Lecture 17 March 17th, 2011

Minimization
000000000000000e0000000

New Point
Dy ® ® @
N
0.38196 0.38196

The number 0.38196 is related to the golden mean studied by Pythagoras

Biostatistics 615/815 - Lecture 17 March 17th, 2011

31/ 40

Hyun Min Kang

New Bracketing Triplet

@@

0.38196

Alternative New Bracketing Triplet

B
O T osstee

Hyun Min Kang

()
X :

Biostatistics 615/815 - Lecture 17 March 17th, 2011

Minimization
0000000000000 000eO00000

Golden Search

Minimization
00000000000 000000e00000

Golden Step

e Reduces bracketing by ~ 40% after function evaluation
e Performance is independent of the function that is being minimized

e In many cases, better schemes are available

Hyun Min Kang March 17th, 2011 33 /40

Biostatistics 615/815 - Lecture 17

Minimization
000000000000000000e0000

Golden Search

#define GOLD ©.38196
#define ZEPS 1le-10 // precision tolerance
double goldenStep (double a, double b, double c) {
double mid = (a + ¢) * .5;
if (b > mid)
return GOLD * (a-b);
else
return GOLD * (c-b);

Hyun Min Kang Biostatistics 615/815 - Lecture 17 March 17th, 2011

Minimization
0000000000000000000e000

A running example

double goldenSearch(myFunc foo, double a, double b, double c, double e) {
int i = 0;
double fb = foo(b);
while (fabs(c-a) > fabs(b*e)) {
double x = b + goldenStep(a, b, c);
double fx = foo(x);
if (fx < fb) {
(x >b) ? (a=Db): (c=Db);
b = x; fb = fx;
}
else {
(x <b) ? (a=x):(c=x);
}
++1i;
¥
std::cout << "1 = " << i << ", b="x<<b<< ", f(b) =" << foo(b) << std::endl;

return b;

Biostatistics 615/815 - Lecture 17 March 17th, 2011 35 / 40

Hyun Min Kang

Finding minimum of f|

class myFunc {
public:
double operator() (double x) const {
return 0-cos(x);
¥
s

int main(int argc, char** argv) {
myFunc foo;
goldenSearch(foo,0-M_PI/4,M_PI/4,M_PI/2,1e-5);
return ©;

b = -4.42163e-09, f(b) = -1

Hyun Min Kang Biostatistics 615/815 - Lecture 17 March 17th, 2011

Minimization
0000000000000 0000000e00

Minimization
000000000000 000000000e0

R example of minimization

> optimize(cos,interval=c(0-pi/4,pi/2),maximum=TRUE)
$maximum
[1] -8.648147e-07

$objective
(1] 1

Hyun Min Kang Biostatistics 615/815 - Lecture 17 March 17th, 2011

Minimization
0000000000000000000000e

Approximation Using Parabola

_______ parabola through @ @ @
«.eess parabola through @ @ @ |

Hyun Min Kang Biostatistics 615/815 - Lecture 17 March 17th, 2011

37 / 40

39 / 40

Further improvements

e As with root finding, performance can improve substantially when
local approximation is used

e However, a linear approximation won't do in this case.

Hyun Min Kang

Biostatistics 615/815 - Lecture 17

March 17th, 2011 38 / 40

Summary
°

Summary

Today

e Root Finding Algorithms

e Bisection Method : Simple but likely less efficient

e False Position Method : More efficient for most well-behaved function
¢ Single-dimensional minimization

e Golden Search

Next Lecture

A

e More Single-dimensional minimization
e Brent's method

e Multidimensional optimization
e Simplex method

Hyun Min Kang

Biostatistics 615/815 - Lecture 17 March 17th, 2011 40 / 40

