Biostatistics 602 - Statistical Inference Lecture 15 Bayes Estimator- Can Cramer-Rao bound be used to find the best unbiased estimator for any distribution? If not, in which cases?Hyun Min Kang March 12th, 2013- Can Cramer-Rao bound be used to find the best unbiased estimator for any $\tau(\theta)$? If not, what is the vesticition on $\tau(\theta)$?Narch 12th, 2013- Can Cramer-Rao bound be used to find the best unbiased estimators for $\tau(\theta)$, using complete sufficient statisticsNew Nur AveReceap - The power of complete sufficient statisticsFinding UMUVE - Method 1Eter To be a complete sufficient statistic for parameter θ . Let $\phi(T)$ be any estimator based on T . Then $\phi(T)$ is the unique best unbiased estimator of $\tau(\theta)$.If "regularity conditions" are as taisfied, then we have a Cramer-Rao bound for unbiased or $\tau(\theta)$ and the best unbiased estimator of $\tau(\theta)$.It be a complete sufficient statistic for parameter θ . Let $\phi(T)$ be any estimator based on T . Then $\phi(T)$ is the unique best unbiased estimator of $\tau(\theta)$.If "regularity conditions" are not satisfied, $\frac{ \tau'(\theta) ^2}{L_0(\theta)}$ is no longer a valid lower bound.• When "regularity conditions" are not satisfied, $\frac{ \tau'(\theta) ^2}{L_0(\theta)}$ is no longer a valid lower bound.• There may be unbiased estimators of $\tau(\theta)$ that have variance smaller than $\frac{ \tau'(\theta) ^2}{L_0(\theta)}$.			Last Lecture		
Hyun Min Kang March 12th, 2013 What is another way to find the best unbiased estimators for $\tau(\theta)$, using complete sufficient statistics. March 12th, 2013 What is another way to find the best unbiased estimators for $\tau(\theta)$, using complete sufficient statistics. March 12th, 2013 March 12th, 20	Biostatistics 602 - Statistical Inference Lecture 15 Bayes Estimator		 Can Cramer-Rao bound be used to find the best unbiased estimator for any distribution? If not, in which cases? When Cramer-Rao bound is attainable, can Cramer-Rao bound be used for find best unbiased estimator for any τ(θ)? If not, what is the restriction an τ(θ)? 		
Hyun Min KangBiestatistics 602 - Lecture 15March 12th, 20131 / 1Recap - The power of complete sufficient statisticsFinding UMUVE - Method 1Use Cramer-Rao bound to find the best unbiased estimator for $\tau(\theta)$.I firegularity conditions" are satisfied, then we have a Cramer-Rao bound for unbiased estimators of $\tau(\theta)$.I thelps to confirm an estimator is the best unbiased estimator of $\tau(\theta)$.I thelps to confirm an estimator of $\tau(\theta)$ has variance greater than the CR-bound.I thelps to confirm an estimator of $\tau(\theta)$ has variance greater than the CR-bound.I the a complete sufficient statistic for parameter θ . Let $\phi(T)$ be any estimator based on T . Then $\phi(T)$ is the unique best unbiased estimator of the cR-bound.I thelps to confirm an estimator of $\tau(\theta)$ has variance greater than the CR-bound.I the a complete sufficient statistic for parameter θ . Let $\phi(T)$ be any estimator based on T . Then $\phi(T)$ is the unbiased estimator of the cR-bound.I the laps to confirm an estimator of $\tau(\theta)$ has variance greater than the CR-bound.I the optimized estimator of $\tau(\theta)$ has variance greater than the CR-bound.I the multiple conditions" are not satisfied, $\frac{[\tau'(\theta)]^2}{I_n(\theta)^2}$ is no longer a valid lower bound.I there may be unbiased estimators of $\tau(\theta)$ that have variance smaller than $\frac{[\tau'(\theta)]^2}{I_n(\theta)^2}$.	Hyun Min Kang March 12th, 2013		 restriction on τ(θ)? What is another way to find the best unbiased estimator? Describe two strategies to obtain the best unbiased estimators for τ(θ), using complete sufficient statistics. 		
Recap - The power of complete sufficient statisticsFinding UMUVE - Method 1 Theorem 7.3.23 Use Cramer-Rao bound to find the best unbiased estimator for $\tau(\theta)$.Let T be a complete sufficient statistic for parameter θ . Let $\phi(T)$ be any estimator based on T. Then $\phi(T)$ is the unique best unbiased estimator of its expected value.It helps to confirm an estimator is the best unbiased estimator of $\tau(\theta)$ It helps to statian the CR-bound, it does NOT mean that it is not the best unbiased estimator.It when "regularity conditions" are not satisfied, $\frac{ \tau'(\theta) ^2}{L_n(\theta)}$ is no longer a valid lower bound.It helps to estimators of $\tau(\theta)$ that have variance smaller than $\frac{ \tau'(\theta) ^2}{L_n(\theta)^2}$.	Hyun Min Kang Biostatistics 602 - Lecture 15 March 12th,	2013 1 / 1	Hyun Min Kang Biostatistics 602 - Lecture 15 March 12th, 2013 2 / 1		
Theorem 7.3.23 Let <i>T</i> be a complete sufficient statistic for parameter θ . Let $\phi(T)$ be any estimator based on <i>T</i> . Then $\phi(T)$ is the unique best unbiased estimator of the let unbiased estimator of $\tau(\theta)$. • It helps to confirm an estimator is the best unbiased estimator of $\tau(\theta)$. • It helps to confirm an estimator is the best unbiased estimator of $\tau(\theta)$. • It helps to confirm an estimator is the best unbiased estimator of $\tau(\theta)$. • It helps to confirm an estimator of $\tau(\theta)$ has variance greater than the CR-bound, it does NOT mean that it is not the best unbiased estimator. • When "regularity conditions" are not satisfied, $\frac{[\tau'(\theta)]^2}{I_n(\theta)}$ is no longer a valid lower bound. • There may be unbiased estimators of $\tau(\theta)$ that have variance smaller than $\frac{[\tau'(\theta)]^2}{I_n(\theta)}$.	Recap - The power of complete sufficient statistics		Finding UMUVE - Method 1		
	Theorem 7.3.23 Let <i>T</i> be a complete sufficient statistic for parameter θ . Let $\phi(T)$ estimator based on <i>T</i> . Then $\phi(T)$ is the unique best unbiased estimits expected value.	be any mator of	 Use Cramer-Rao bound to find the best unbiased estimator for τ(θ). If "regularity conditions" are satisfied, then we have a Cramer-Rao bound for unbiased estimators of τ(θ). It helps to confirm an estimator is the best unbiased estimator of τ(θ) if it happens to attain the CR-bound. If an unbiased estimator of τ(θ) has variance greater than the CR-bound, it does NOT mean that it is not the best unbiased estimator. When "regularity conditions" are not satisfied, ^{[τ'(θ)]²}/_{I_n(θ)} is no longer a valid lower bound. There may be unbiased estimators of τ(θ) that have variance smaller than ^{[τ'(θ)]²}/_{I_n(θ)}. 		

Finding UMVUE - Method 2

Use complete sufficient statistic to find the best unbiased estimator for $\tau(\theta).$

- **1** Find complete sufficient statistic T for θ .
- 2 Obtain $\phi(\mathit{T}),$ an unbiased estimator of $\tau(\theta)$ using either of the following two ways
 - Guess a function $\phi(T)$ such that $E[\phi(T)] = \tau(\theta)$.
 - Guess an unbiased estimator $h(\mathbf{X})$ of $\tau(\theta)$. Construct $\phi(T) = E[h(\mathbf{X})|T]$, then $E[\phi(T)] = E[h(\mathbf{X})] = \tau(\theta)$.

Frequentists vs. Bayesians

A biased view in favor of Bayesians at http://xkcd.com/1132/

Hyun Min Kang Biostatistics 602 - Lecture 15 March 12th, 2013 5 / 1	Hyun Min Kang Biostatistics 602 - Lecture 15 March 12th, 2013 6 / 1
Bayesian Statistic	Bayesian Framework
 Frequentist's Framework P = {X ~ f_X(x θ), θ ∈ Ω} Bayesian Statistic Parameter θ is considered as a random quantity Distribution of θ can be described by probability distribution, referred to as <i>prior</i> distribution A sample is taken from a population indexed by θ, and the prior distribution is updated using information from the sample to get <i>posterior</i> distribution of θ given the sample. 	 Prior distribution of θ : θ ~ π(θ). Sample distribution of X given θ. X θ ~ f(x θ) Joint distribution X and θ f(x, θ) = π(θ)f(x θ) Marginal distribution of X. m(x) = ∫_{θ∈Ω} f(x, θ) dθ = ∫_{θ∈Ω} f(x θ)π(θ) dθ Posterior distribution of θ (conditional distribution of θ given X) π(θ x) = f(x, θ)/m(x) = f(x θ)π(θ)/m(x) (Bayes' Rule)

Burglary $(heta)$	$\Pr(Alarm Burglary) = \Pr(X = 1 \theta)$
True $(\theta = 1)$	0.95
$False\ (\theta=0)$	0.01

Suppose that Burglary is an unobserved parameter ($\theta \in \{0, 1\}$), and Alarm is an observed outcome ($X = \{0, 1\}$).

- Under Frequentist's Framework,
 - If there was no burglary, there is 1% of chance of alarm ringing.
 - If there was a burglary, there is 95% of chance of alarm ringing.
 - One can come up with an estimator on θ , such as MLE
 - However, given that alarm already rang, one cannot calculate the probability of burglary.

Inference Under Bayesian's Framework

Leveraging Prior Information

Suppose that we know that the chance of Burglary per household per night is 10^{-7} .

$$\Pr(\theta = 1|X = 1) = \Pr(X = 1|\theta = 1) \frac{\Pr(\theta = 1)}{\Pr(X = 1)}$$
(Bayes' rule)
$$= \Pr(X = 1|\theta = 1) \frac{\Pr(\theta = 1)}{\Pr(\theta = 1, X = 1) + \Pr(\theta = 0, X = 1)}$$
$$= \frac{\Pr(X = 1|\theta = 1) \Pr(\theta = 1)}{\Pr(X = 1|\theta = 1) \Pr(\theta = 1) + \Pr(X = 1|\theta = 0) \Pr(\theta = 0)}$$
$$= \frac{0.95 \times 10^{-7}}{0.95 \times 10^{-7} + 0.01 \times (1 - 10^{-7})} \approx 9.5 \times 10^{-6}$$

So, even if alarm rang, one can conclude that the burglary is unlikely to happen.

Hyun Min Kang	Biostatistics 602 - Lecture 15	March 12th, 2013 9 / 1	Hvun Min Kang	Biostatistics 602 - Lecture 15	March 12th, 2013	10 / 1
What if the prior i	nformation is mislead	ing?	Advantages and D	rawbacks of Bayesian	Inference	
Over-fitting to Prior I Suppose that, in fact, a planning to break-in eit same probability). The $Pr(\theta = 1 X)$	nformation a thief found a security breacher tonight or tomorrow nine the correct prior $Pr(\theta = 1)$	ach in my place and ght for sure (with the $1) = 0.5$.	Advantages over Freque Allows making infe Available informati Uncertainty and in	uentist's Framework erence on the distribution of ion about θ can be utilized. formation can be quantified	heta given data. probabilistically.	
$= \frac{1}{\Pr(X=1 \theta)}$ $= \frac{0}{0.95 \times 0.5}$ However, if we relied on end up concluding that alarm, and ignore it, requite a bit of fortune.	$\Pr(X = 1 \theta = 1) \Pr(\theta = 0)$ $P = 1) \Pr(\theta = 1) + \Pr(X = 0.95 \times 0.5) \approx 0.99$ $P = 10 \exp(1 - 0.5) \exp(1 - 0.5) \exp(1 - 0.5)$ $P = 10 \exp(1 - 0.5) \exp(1 - 0.5) \exp(1 - 0.5)$ $P = 10 \exp(1 - 0.5) \exp(1 - 0.5)$ $P = 10 \exp(1 - 0.5) \exp(1 - 0.5)$ $P = 10 \exp(1 - 0.5) \exp(1 - 0.5)$ $P = 10 \exp(1 - 0.5) \exp(1 - 0.5)$ $P = 10 \exp(1 - 0.5) \exp(1 - 0.5)$ $P = 10 \exp(1 - 0.5) \exp(1 - 0.5)$ $P = 10 \exp(1 - 0.5) \exp(1 - 0.5)$ $P = 10 \exp($	= 1) $1 \theta = 0) \Pr(\theta = 0)$ e incorrect prior, we may that this is a false night of good sleep with	 Drawbacks of Bayesia Misleading prior ca Bayesian inference See : Larry Wa Bayesian Analy Bayesian inference interpret, compared 	n Inference in result in misleading infere is often (but not always) pr isserman "Frequentist Bayes is 'sis 3:451-456. could be sometimes unnece d to Frequentist's inference.	ence. rone to be "subjecti Objective" (2006) essarily complicated	ive" to
Hyun Min Kang	Biostatistics 602 - Lecture 15	March 12th 2013 11 / 1	Hyun Min Kang	Biostatistics 602 - Lecture 15	March 12th 2013	12 / 1

Bayes Estimator

Definition

Bayes Estimator of θ is defined as the posterior mean of θ .

$$E(\boldsymbol{\theta}|\mathbf{x}) = \int_{\boldsymbol{\theta} \in \Omega} \boldsymbol{\theta} \pi(\boldsymbol{\theta}|\mathbf{x}) d\boldsymbol{\theta}$$

Example Problem

 $X_1, \dots, X_n \xrightarrow{\text{i.i.d.}} \text{Bernoulli}(p)$ where $0 \le p \le 1$. Assume that the prior distribution of p is $\text{Beta}(\alpha, \beta)$. Find the posterior distribution of p and the Bayes estimator of p, assuming α and β are known.

Biostatistics 602 - Lecture 15

Solution (1/4)

Prior distribution of p is

$$\pi(p) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} p^{\alpha - 1} (1 - p)^{\beta - 1}$$

Sampling distribution of X given p is

$$f_{\mathbf{X}}(\mathbf{x}|p) = \prod_{i=1}^{n} \left\{ p^{x_i} (1-p)^{1-x_i} \right\}$$

Joint distribution of \mathbf{X} and p is

$$f_{\mathbf{X}}(\mathbf{x}, p) = f_{\mathbf{X}}(\mathbf{x}|p)\pi(p)$$

=
$$\prod_{i=1}^{n} \left\{ p^{x_i}(1-p)^{1-x_i} \right\} \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)} p^{\alpha-1}(1-p)^{\beta-1}$$

Biostatistics 602 - Lecture 15

Solution (2/4)

Hyun Min Kang

The marginal distribution of **X** is

$$\begin{split} m(\mathbf{x}) &= \int f(\mathbf{x}, p) \, dp = \int_0^1 \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} p^{\sum_{i=1}^n x_i + \alpha - 1} (1 - p)^{n - \sum_{i=1}^n x_i + \beta - 1} \, dp \\ &= \int_0^1 \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \frac{\Gamma(\sum x_i + \alpha)\Gamma(n - \sum x_i + \beta)}{\Gamma(\alpha + \beta + n)} \\ &\times \frac{\Gamma(\sum x_i + \alpha + n - \sum x_i + \beta)}{\Gamma(\sum x_i + \alpha)\Gamma(n - \sum x_i + \beta)} p^{\sum x_i + \alpha - 1} (1 - p)^{n - \sum x_i + \beta - 1} \, dp \\ &= \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \frac{\Gamma(\sum_{i=1}^n x_i + \alpha)\Gamma(n - \sum_{i=1}^n x_i + \beta)}{\Gamma(\alpha + \beta + n)} \\ &\times \int_0^1 f_{\text{Beta}(\sum x_i + \alpha, n - \sum x_i + \beta)}(p) \, dp \\ &= \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \frac{\Gamma(\sum_{i=1}^n x_i + \alpha)\Gamma(n - \sum_{i=1}^n x_i + \beta)}{\Gamma(\alpha + \beta + n)} \end{split}$$

Solution (3/4)

 π

Hyun Min Kang

J

The posterior distribution of $\theta | \mathbf{x} :$

$$\begin{aligned} (\theta|\mathbf{x}) &= \frac{f(\mathbf{x},p)}{m(\mathbf{x})} \\ &= \frac{\left[\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}p^{\sum x_i+\alpha-1}(1-p)^{n-\sum x_i+\beta-1}\right]}{\left[\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}\frac{\Gamma(\sum x_i+\alpha)\Gamma(n-\sum x_i+\beta)}{\Gamma(\alpha+\beta+n)}\right]} \\ &= \frac{\Gamma(\alpha+\beta+n)}{\Gamma(\sum x_i+\alpha)\Gamma(n-\sum x_i+\beta)}p^{\sum x_i+\alpha-1}(1-p)^{n-\sum x_i+\beta-1} \end{aligned}$$

March 12th, 2013

13 / 1

March 12th, 2013

14 / 1

Solution (4/4)

The Bayes estimator of p is

$$\hat{p} = \frac{\sum_{i=1}^{n} x_i + \alpha}{\sum_{i=1}^{n} x_i + \alpha + n - \sum_{i=1}^{n} x_i + \beta} = \frac{\sum_{i=1}^{n} x_i + \alpha}{\alpha + \beta + n}$$

$$= \frac{\sum_{i=1}^{n} x_i}{n} \frac{n}{\alpha + \beta + n} + \frac{\alpha}{\alpha + \beta} \frac{\alpha + \beta}{\alpha + \beta + n}$$

$$= [\text{Guess about } p \text{ from data}] \cdot \text{weight}_1$$

$$+ [\text{Guess about } p \text{ from prior}] \cdot \text{weight}_2$$

As n increase, weight₁ = $\frac{n}{\alpha+\beta+n} = \frac{1}{\frac{\alpha+\beta}{n}+1}$ becomes bigger and bigger and approaches to 1. In other words, influence of data is increasing, and the influence of prior knowledge is decreasing.

Is the Bayes estimator unbiased?

$$E\left[\frac{\sum_{i=1}^{n} + \alpha}{\alpha + \beta + n}\right] = \frac{np + \alpha}{\alpha + \beta + n} \neq p$$

Unless $\frac{\alpha}{\alpha+\beta} = p$.

Bias =
$$\frac{np + \alpha}{\alpha + \beta + n} - p = \frac{\alpha - (\alpha + \beta)p}{\alpha + \beta + n}$$

As n increases, the bias approaches to zero.

Hyun Min Kang	Biostatistics 602 - Lecture 15	March 12th, 2013	17 / 1	Hyun Min Kang	Biostatistics 602 - Lecture 15	March 12th, 2013	18 / 1
Sufficient statistic a	nd posterior distributio	on		Conjugate family			
Posterior conditioning of If $T(\mathbf{X})$ is a sufficient statistic the same to the posterior of the poster	In sufficient statistics stistic, then the posterior distribution given $T(\mathbf{X})$. $\pi(\theta \mathbf{x}) = \pi(\theta T(\mathbf{x}))$	ribution of θ give In other words,	n X	Definition 7.2.15 Let \mathcal{F} denote the class distributions is a conjug class Π for all $f \in \mathcal{F}$, ar	of pdfs or pmfs for $f(x \theta)$. A rate family of \mathcal{F} , if the posten ad all priors in Π , and all $x \in$	class II of prior rior distribution is t \mathcal{X} .	the

Example: Beta-Binomial conjugate	Example: Gamma-Poisson conjugate
Let • $X_1, \dots, X_n p \sim \text{Binomial}(m, p)$ • $\pi(p) \sim \text{Beta}(\alpha, \beta)$ where m, α, β is known. The posterior distribution is $\pi(p \mathbf{x}) \sim \text{Beta}\left(\sum_{i=1}^n x_i + \alpha, mn - \sum_{i=1}^n x_i + \beta\right)$	• $X_1, \dots, X_n \lambda \sim \text{Poisson}(\lambda)$ • $\pi(\lambda) \sim \text{Gamma}(\alpha, \beta)$ • Prior: $\pi(\lambda) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}}\lambda^{\alpha-1}e^{-\lambda/\beta}$ • Sampling distribution $\mathbf{X} \lambda \stackrel{\text{i.i.d.}}{\sim} \frac{e^{-\lambda}\lambda^x}{x!}$ $f_{\mathbf{X}}(\mathbf{x} \lambda) = \prod_{i=1}^n \frac{e^{-\lambda}\lambda^{x_i}}{x_i!}$
Gamma-Poisson conjugate (cont d)	Gamma-Poisson conjugate (cont'd)

March 12th, 2013 23 / 1

Hyun Min Kang

Biostatistics 602 - Lecture 15

March 12th, 2013 24 / 1

Hyun Min Kang

Biostatistics 602 - Lecture 15

Example: Normal Bayes Estimators

Let $X \sim \mathcal{N}(\theta, \sigma^2)$ and suppose that the prior distribution of θ is $\mathcal{N}(\mu, \tau^2)$. Assuming that σ^2, μ^2, τ^2 are all known, the posterior distribution of θ also becomes normal, with mean and variance given by

$$E[\theta|\mathbf{x}] = \frac{\tau^2}{\tau^2 + \sigma^2} x + \frac{\sigma^2}{\sigma^2 + \tau^2} \mu$$
$$Var(\theta|x) = \frac{\sigma^2 \tau^2}{\sigma^2 + \tau^2}$$

- The normal family is its own conjugate family.
- The Bayes estimator for $\boldsymbol{\theta}$ is a linear combination of the prior and sample means
- As the prior variance τ^2 approaches to infinity, the Bayes estimator tends toward to sample mean
 - As the prior information becomes more vague, the Bayes estimator tends to give more weight to the sample information

Hyun M	∕lin∣	Kang
--------	-------	------

Biostatistics 602 - Lecture 15

March 12th, 2013

25 / 1

Summary

Today

- Bayesian Statistics
- Bayes Estimator
- Conjugate family

Next Lecture

Bayesian Risk Functions

Biostatistics 602 - Lecture 15

March 12th, 2013

26 / 1

Consistency

Hyun Min Kang