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Last Lecture

• Can Cramer-Rao bound be used to find the best unbiased estimator
for any distribution? If not, in which cases?

• When Cramer-Rao bound is attainable, can Cramer-Rao bound be
used for find best unbiased estimator for any τ(θ)? If not, what is the
restriction on τ(θ)?

• What is another way to find the best unbiased estimator?
• Describe two strategies to obtain the best unbiased estimators for

τ(θ), using complete sufficient statistics.
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Recap - The power of complete sufficient statistics

.Theorem 7.3.23..

......

Let T be a complete sufficient statistic for parameter θ. Let ϕ(T) be any
estimator based on T. Then ϕ(T) is the unique best unbiased estimator of
its expected value.
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Finding UMUVE - Method 1

.

......Use Cramer-Rao bound to find the best unbiased estimator for τ(θ).

..1 If ”regularity conditions” are satisfied, then we have a Cramer-Rao
bound for unbiased estimators of τ(θ).

• It helps to confirm an estimator is the best unbiased estimator of τ(θ)
if it happens to attain the CR-bound.

• If an unbiased estimator of τ(θ) has variance greater than the
CR-bound, it does NOT mean that it is not the best unbiased
estimator.

..2 When ”regularity conditions” are not satisfied, [τ ′(θ)]2

In(θ) is no longer a
valid lower bound.

• There may be unbiased estimators of τ(θ) that have variance smaller
than [τ ′(θ)]2

In(θ) .
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Finding UMVUE - Method 2

.

......
Use complete sufficient statistic to find the best unbiased estimator for
τ(θ).

..1 Find complete sufficient statistic T for θ.

..2 Obtain ϕ(T), an unbiased estimator of τ(θ) using either of the
following two ways

• Guess a function ϕ(T) such that E[ϕ(T)] = τ(θ).
• Guess an unbiased estimator h(X) of τ(θ). Construct

ϕ(T) = E[h(X)|T], then E[ϕ(T)] = E[h(X)] = τ(θ).

Hyun Min Kang Biostatistics 602 - Lecture 15 March 12th, 2013 5 / 1

Frequentists vs. Bayesians

A biased view in favor of Bayesians at http://xkcd.com/1132/
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Bayesian Statistic

.Frequentist’s Framework..

...... P = {X ∼ fX(x|θ), θ ∈ Ω}

.Bayesian Statistic..

......

• Parameter θ is considered as a random quantity
• Distribution of θ can be described by probability distribution, referred

to as prior distribution
• A sample is taken from a population indexed by θ, and the prior

distribution is updated using information from the sample to get
posterior distribution of θ given the sample.
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Bayesian Framework

• Prior distribution of θ : θ ∼ π(θ).
• Sample distribution of X given θ.

X|θ ∼ f(x|θ)

• Joint distribution X and θ
f(x, θ) = π(θ)f(x|θ)

• Marginal distribution of X.
m(x) =

∫

θ∈Ω
f(x, θ)dθ =

∫

θ∈Ω
f(x|θ)π(θ)dθ

• Posterior distribution of θ (conditional distribution of θ given X)
π(θ|x) =

f(x, θ)

m(x)
=

f(x|θ)π(θ)

m(x)
(Bayes’ Rule)
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Example

Burglary (θ) Pr(Alarm|Burglary) = Pr(X = 1|θ)
True (θ = 1) 0.95
False (θ = 0) 0.01

Suppose that Burglary is an unobserved parameter (θ ∈ {0, 1}), and Alarm
is an observed outcome (X = {0, 1}).

• Under Frequentist’s Framework,
• If there was no burglary, there is 1% of chance of alarm ringing.
• If there was a burglary, there is 95% of chance of alarm ringing.
• One can come up with an estimator on θ, such as MLE
• However, given that alarm already rang, one cannot calculate the

probability of burglary.

Hyun Min Kang Biostatistics 602 - Lecture 15 March 12th, 2013 9 / 1

Inference Under Bayesian’s Framework

.Leveraging Prior Information..

......

Suppose that we know that the chance of Burglary per household per
night is 10−7.

Pr(θ = 1|X = 1) = Pr(X = 1|θ = 1)
Pr(θ = 1)

Pr(X = 1)
(Bayes’ rule)

= Pr(X = 1|θ = 1)
Pr(θ = 1)

Pr(θ = 1, X = 1) + Pr(θ = 0, X = 1)

=
Pr(X = 1|θ = 1) Pr(θ = 1)

Pr(X = 1|θ = 1) Pr(θ = 1) + Pr(X = 1|θ = 0) Pr(θ = 0)

=
0.95 × 10−7

0.95 × 10−7 + 0.01 × (1 − 10−7)
≈ 9.5 × 10−6

So, even if alarm rang, one can conclude that the burglary is unlikely to
happen.
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What if the prior information is misleading?
.Over-fitting to Prior Information..

......

Suppose that, in fact, a thief found a security breach in my place and
planning to break-in either tonight or tomorrow night for sure (with the
same probability). Then the correct prior Pr(θ = 1) = 0.5.

Pr(θ = 1|X = 1)

=
Pr(X = 1|θ = 1) Pr(θ = 1)

Pr(X = 1|θ = 1) Pr(θ = 1) + Pr(X = 1|θ = 0) Pr(θ = 0)

=
0.95 × 0.5

0.95 × 0.5 + 0.01 × (1 − 0.5)
≈ 0.99

However, if we relied on the inference based on the incorrect prior, we may
end up concluding that there are > 99.9% chance that this is a false
alarm, and ignore it, resulting an exchange of one night of good sleep with
quite a bit of fortune.
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Advantages and Drawbacks of Bayesian Inference
.Advantages over Frequentist’s Framework..

......

• Allows making inference on the distribution of θ given data.
• Available information about θ can be utilized.
• Uncertainty and information can be quantified probabilistically.

.Drawbacks of Bayesian Inference..

......

• Misleading prior can result in misleading inference.
• Bayesian inference is often (but not always) prone to be ”subjective”

• See : Larry Wasserman ”Frequentist Bayes is Objective” (2006)
Bayesian Analysis 3:451-456.

• Bayesian inference could be sometimes unnecessarily complicated to
interpret, compared to Frequentist’s inference.
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Bayes Estimator

.Definition..

......

Bayes Estimator of θ is defined as the posterior mean of θ.
E(θ|x) =

∫

θ∈Ω
θπ(θ|x)dθ

.Example Problem..

......

X1, · · · , Xn
i.i.d.∼ Bernoulli(p) where 0 ≤ p ≤ 1. Assume that the prior

distribution of p is Beta(α, β). Find the posterior distribution of p and the
Bayes estimator of p, assuming α and β are known.
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Solution (1/4)
Prior distribution of p is

π(p) =
Γ(α + β)

Γ(α)Γ(β)
pα−1(1 − p)β−1

Sampling distribution of X given p is

fX(x|p) =

n∏

i=1

{
pxi(1 − p)1−xi

}

Joint distribution of X and p is

fX(x, p) = fX(x|p)π(p)

=
n∏

i=1

{
pxi(1 − p)1−xi

} Γ(α + β)

Γ(α)Γ(β)
pα−1(1 − p)β−1
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Solution (2/4)
The marginal distribution of X is

m(x) =

∫
f(x, p)dp =

∫ 1

0

Γ(α + β)

Γ(α)Γ(β)
p

∑n
i=1 xi+α−1(1 − p)n−∑n

i=1 xi+β−1dp

=

∫ 1

0

Γ(α + β)

Γ(α)Γ(β)

Γ(
∑

xi + α)Γ(n −∑ xi + β)

Γ(α + β + n)

× Γ(
∑

xi + α + n −∑ xi + β)

Γ(
∑

xi + α)Γ(n −∑ xi + β)
p

∑
xi+α−1(1 − p)n−∑

xi+β−1dp

=
Γ(α + β)

Γ(α)Γ(β)

Γ(
∑n

i=1 xi + α)Γ(n −∑n
i=1 xi + β)

Γ(α + β + n)

×
∫ 1

0
fBeta(

∑
xi+α,n−∑

xi+β)(p)dp

=
Γ(α + β)

Γ(α)Γ(β)

Γ(
∑n

i=1 xi + α)Γ(n −∑n
i=1 xi + β)

Γ(α + β + n)
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Solution (3/4)

The posterior distribution of θ|x :

π(θ|x) =
f(x, p)

m(x)

=

[
Γ(α + β)

Γ(α)Γ(β)
p

∑
xi+α−1(1 − p)n−∑

xi+β−1

]

[
Γ(α + β)

Γ(α)Γ(β)

Γ(
∑

xi + α)Γ(n −∑ xi + β)

Γ(α + β + n)

]

=
Γ(α + β + n)

Γ(
∑

xi + α)Γ(n −∑ xi + β)
p

∑
xi+α−1(1 − p)n−∑

xi+β−1
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Solution (4/4)

The Bayes estimator of p is

p̂ =

∑n
i=1 xi + α∑n

i=1 xi + α + n −∑n
i=1 xi + β

=

∑n
i=1 xi + α

α + β + n

=

∑n
i=1 xi
n

n
α + β + n +

α

α + β

α + β

α + β + n
= [Guess about p from data] · weight1

+ [Guess about p from prior] · weight2

As n increase, weight1 = n
α+β+n = 1

α+β
n +1

becomes bigger and bigger and
approaches to 1. In other words, influence of data is increasing, and the
influence of prior knowledge is decreasing.

Hyun Min Kang Biostatistics 602 - Lecture 15 March 12th, 2013 17 / 1

Is the Bayes estimator unbiased?

E
[ ∑n

i=1 +α

α + β + n

]
=

np + α

α + β + n ̸= p

Unless α
α+β = p.

Bias =
np + α

α + β + n − p =
α − (α + β)p

α + β + n

As n increases, the bias approaches to zero.
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Sufficient statistic and posterior distribution

.Posterior conditioning on sufficient statistics..

......

If T(X) is a sufficient statistic, then the posterior distribution of θ given X
is the same to the posterior distribution given T(X). In other words,

π(θ|x) = π(θ|T(x))
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Conjugate family

.Definition 7.2.15..

......

Let F denote the class of pdfs or pmfs for f(x|θ). A class Π of prior
distributions is a conjugate family of F , if the posterior distribution is the
class Π for all f ∈ F , and all priors in Π, and all x ∈ X .
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Example: Beta-Binomial conjugate

Let
• X1, · · · , Xn|p ∼ Binomial(m, p)

• π(p) ∼ Beta(α, β)

where m, α, β is known. The posterior distribution is

π(p|x) ∼ Beta
( n∑

i=1

xi + α, mn −
n∑

i=1

xi + β

)
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Example: Gamma-Poisson conjugate

• X1, · · · , Xn|λ ∼ Poisson(λ)

• π(λ) ∼ Gamma(α, β)

• Prior:
π(λ) =

1

Γ(α)βα
λα−1e−λ/β

• Sampling distribution

X|λ i.i.d.∼ e−λλx

x!

fX(x|λ) =

n∏

i=1

e−λλxi

xi!
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Gamma-Poisson conjugate (cont’d)

• Joint distribution of X and λ.

f(x|λ)π(λ) =

[ n∏

i=1

e−λλxi

xi!

]
1

Γ(α)βα
λα−1e−λ/β

= e−nλ−λ/βλ
∑

xi+α−1 1∏n
i=1 xi!

1

Γ(α)βα

• Marginal distribution

m(x) =

∫
f(x|λ)π(λ)dλ
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Gamma-Poisson conjugate (cont’d)

• Posterior distribution (proportional to the joint distribution)

π(λ|x) =
f(x|λ)π(λ)

m(x)

= e−nλ−λ/βλ
∑

xi+α−1 1

Γ(
∑

xi + α)

(
1

n+ 1
β

)∑
xi+α

So, the posterior distribution is Gamma
(∑

xi + α,
(

n + 1
β

)−1
)

.
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Example: Normal Bayes Estimators
Let X ∼ N (θ, σ2) and suppose that the prior distribution of θ is N (µ, τ2).
Assuming that σ2, µ2, τ2 are all known, the posterior distribution of θ also
becomes normal, with mean and variance given by

E[θ|x] =
τ2

τ2 + σ2
x +

σ2

σ2 + τ2
µ

Var(θ|x) =
σ2τ2

σ2 + τ2

• The normal family is its own conjugate family.
• The Bayes estimator for θ is a linear combination of the prior and

sample means
• As the prior variance τ2 approaches to infinity, the Bayes estimator

tends toward to sample mean
• As the prior information becomes more vague, the Bayes estimator

tends to give more weight to the sample information
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Summary

.Today..

......

• Bayesian Statistics
• Bayes Estimator
• Conjugate family

.Next Lecture..

......

• Bayesian Risk Functions
• Consistency
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