The Lander-Green A/gorithm in Practice

Biostatistics 666

Last Lecture:
 Lander-Green Algorithm

$$
L=\sum_{I_{1}} \cdots \sum_{I_{m}} P\left(I_{1}\right) \prod_{i=2}^{m} P\left(I_{i} \mid I_{i-1}\right) \prod_{i=1}^{m} P\left(G_{i} \mid I_{i}\right)
$$

- More general definition for I, the "IBD vector"
- Probability of genotypes given "IBD vector"
- Transition probabilities for the "IBD vectors"

Lander-Green Recipe

- 1. List all meiosis in the pedigree
- There should be $2 n$ meiosis for n non-founders
- 2. List all possible IBD patterns
- Total of $2^{2 n}$ possible patterns by setting each meiosis to one of two possible outcomes
- 3. At each marker location, score $P(G \mid I)$
- Evaluate using founder allele graph

Lander-Green Recipe

- 4. Build transition matrix for moving along chromosome

$$
T^{\otimes n+1}=\left[\begin{array}{cc}
(1-\theta) T^{\otimes n} & \theta T^{\otimes n} \\
\theta T^{\otimes n} & (1-\theta) T^{\otimes n}
\end{array}\right]
$$

- Patterned matrix, built from matrices for individual meiosis

Lander-Green Recipe

- 5. Run Markov chain
- Start at first marker, $m=1$
- Build a vector listing $P\left(G_{\text {first marker }} I\right)$ for each I
- Move along chromosome
- Multiply vector by transition matrix
- Combine with information at the next marker
- Multiply each component of the vector by $P\left(G_{\text {current marker }} I\right)$
- Repeat previous two steps until done

Pictorial Representation

- Forward recurrence

- Backward recurrence

- At an arbitrary location

Today:
 Lander-Green Algorithm in practice

- Common applications of the algorithm
- Non-parametric linkage analysis
- Parametric linkage analysis
- Information content calculation (time permitting)

Uses of the Lander Green Algorithm

- Non-parametric linkage analysis
- Parametric linkage analysis
- Information content calculation

Nonparametric Linkage Analysis

- Model-free
- Does not require specification of a trait model

Test for evidence of excess IBD sharing among affected individuals

Nonparametric Linkage Analysis

 Typical Dataset0
-970

\bigcirc

Non-parametric Analysis for Arbitrary Pedigrees

- Must rank general IBD configurations
- Low scores correspond to no linkage
- High scores correspond to linkage
- Multiple possible orderings are possible
- Especially for large pedigrees
- Under linkage, probability for vectors with high scores should increase

Nonparametric Linkage Statistic

- Statistic $S(I)$ which ranks IBD vectors
- Then, following Whittemore and Halpern (1995)

$$
\begin{aligned}
& S(G)=\sum_{I} S(I) P(I \mid G) \\
& \mu=\sum_{G} S(G) P(G) \\
& \sigma^{2}=\sum_{G}[S(G)-\mu]^{2} P(G) \\
& Z=\frac{S(G)-\mu}{\sigma} \sim N(0,1)
\end{aligned}
$$

Nonparametric Linkage Statistic

- Original definition not useful for multipoint data...
- Kruglyak et al (1996) proposed:

$$
\begin{aligned}
& S(G)=\sum_{I} S(I) P(I \mid G) \\
& \mu=\sum_{I} S(I) P(I) \\
& \sigma^{2}=\sum_{I}[S(I)-\mu]^{2} P(I) \\
& Z=\frac{S(G)-\mu}{\sigma} \sim N(0,1)
\end{aligned}
$$

The Pairs Statistic

- Sum of IBD sharing for all affected pairs

$$
\begin{aligned}
& S_{\text {pairs }}(I)=\sum_{(a, b) \in(\text { affected pais) }} I B D(a, b \mid I) \\
& \mu=\sum_{I} S_{\text {pairs }}(I) P_{\text {unijorm }}(I) \\
& \sigma^{2}=\sum_{I}\left(S_{\text {paiss }}(I)-\mu\right)^{2} P_{\text {unijorm }}(I)
\end{aligned}
$$

The $S_{\text {pairs }}$ Statistic

Total allele sharing among affected relatives

Sibpair:
$\begin{gathered}A-B \\ 2\end{gathered}+1+\begin{gathered}B-C \\ =\end{gathered}$

Example:
Pedigree with 4 affected individuals

What is $\mathrm{S}_{\text {pairs }}(\mathrm{I})$ for this Descent Graph?

The NPL Score

- Non-parametric linkage score

$$
\begin{aligned}
& Z(I)=\left(S_{\text {piis }}-\mu\right) / \sigma \\
& Z_{\text {NRL }}=\sum_{I} Z(I) P(I \mid G)
\end{aligned}
$$

Variance will always be ≤ 1 so using standard normal as reference gives conservative test.

Accurately Measuring NPL Evidence for Linkage

- For a single marker...

$$
\sigma^{2}=\sum_{G}[S(G)-\mu]^{2} P(G)
$$

- Estimating variance of statistic over all possible genotype configurations is not practical for multipoint analysis
- One possibility is to evaluate the empirical variance of the statistic over families in the sample...

Kong and Cox Method

- A probability distribution for IBD states
- Under the null and alternative
- Null
- All IBD states are equally likely
- Alternative
- Increase (or decrease) in probability is proportional to $\mathrm{S}(\mathrm{I})$
- "Generalization" of the MLS method

Kong and Cox Method

$$
\begin{aligned}
& P(I \mid \delta)=P(I)\left(1+\delta \frac{S(I)-\mu}{\sigma}\right) \\
& L(\delta)=\prod_{\text {families }} \sum_{I} P(G \mid I) P(I \mid \delta) \\
& L O D=\log _{10} \frac{L(\hat{\delta})}{L(\delta=0)}
\end{aligned}
$$

Note:
 Alternative NPL Statistics

- Any arbitrary statistic can be used
- Vectors with high scores must be more common when linkage exists
- Statistics have been defined that
- Focus on the most common allele among affecteds
- Count number of founder alleles among affecteds
- Evaluate linkage for quantitative traits

Many Alternative NPL Statistics!

TABLE I. Example 1: Outbred Sib Pair and First Cousin

Configuration (sib, sib, cousin)	Null prob.	$S_{\text {pairs }}-\mu_{0}$	$S_{\text {all }}-\mu_{0}$	$S_{\text {-Halleles }}-\mu_{0}$	$S_{\text {everyone }}-\mu_{0}$	$S_{\text {-\#gero }}-\mu_{0}$	$S_{\text {fewest }}-\mu_{0}$
$c_{1} 123456$. 125	-1.5	-. 41	-1.375	-. 125	-. 25	-. 0625
$c_{2} 123415$. 125	-. 5	-. 16	-. 375	-. 125	-. 25	-. 0625
$c_{3} 121345$. 3125	-. 5	-. 16	-. 375	-. 125	-. 25	-. 0625
$c_{4} 121324$. 125	. 5	. 09	. 625	-. 125	-. 25	-. 0625
$c_{5} 121234$. 1875	. 5	. 09	. 625	-. 125	. 75	-. 0625
$c_{6} 1121314$. 0625	1.5	. 59	. 625	. 875	-. 25	-. 0625
$c_{7} 121223$. 0625	2.5	. 84	1.625	. 875	. 75	. 9375

McPeek (1999) Genetic Epidemiology 16:225-249

Typical Plot for NPL Along Chromosome

Age Related Macular Degeneration: Example of Non-Parametric Scan

All macular degeneration cases; Geographic Atrophy; Neovascular Disease

Parametric Linkage Analysis

- X phenotype data (affected/normal)
- I inheritance vector (meiosis outcomes)
- Calculate $P(X \mid I)$ based on...
- Trait locus allele frequencies
- p and q
- Penetrances for each genotype
${ }^{-} f_{11}, f_{12}, f_{22}$

Parametric Linkage Analysis: Typical Interesting Pedigree

I

Parametric Linkage Analysis

$$
P(X \mid I)=\sum_{a_{1}} \ldots \sum_{a_{2 j}} \prod_{i} P\left(a_{i}\right) \prod_{j} P\left(X_{j} \mid \mathbf{a}, I\right)
$$

- Sum over all allele states for each founder
- Due to incomplete penetrance
- Once $P(X \mid I)$ is available, the trait "plugs into" the calculation as if it was a marker locus
- $P(X \mid I)$ will typically be large for only a few I

Likelihood Ratio Test

- Evaluate evidence for linkage as...

$$
L R(I)=\frac{P\left(X \mid I_{\text {observed }}\right)}{\sum_{i \in I^{*}} P(X \mid i) P_{\text {uniform }}(i)}
$$

- Is set of meiotic outcomes suggested by marker data likely given the trait model?

Allowing for uncertainty...

- Weighted sum over possible meiotic outcomes...

$$
\begin{aligned}
L R & =\sum_{i \in I^{*}} L R(i) P(i \mid G) \\
& =\frac{\sum_{i \in I^{*}} P(X \mid i) P(i \mid G)}{\sum_{i \in I^{*}} P(X \mid i) P_{u n j f o r m}(i)}
\end{aligned}
$$

Parametric LOD Score Plot: X-Linked Cone Rod Dystrophy Example

Genotype Data Informativeness

- Based on the Shannon entropy measure:

$$
\begin{aligned}
& E=-\sum P_{i} \log _{2} P_{i} \\
& I=1-\frac{E}{E_{0}}
\end{aligned}
$$

- Ranges between 0 and 1.
- Randomness in distribution of conditional probabilities.

Some Exemplar Entropies

Example of Multipoint Information Content

Information Content

More on Information Content...

- The theoretical maximum is 1.0
- All probability concentrated on one inheritance vector
- The practical maximum is lower
- It will depend on which individuals are genotyped
- Useful in a comparative manner
- Identifies regions where study conclusions are less certain

Today

- Non-parametric linkage analysis
- Parametric linkage analysis
- Information content

Reference

- Kruglyak, Daly, Reeve-Daly, Lander (1996) Am J Hum Genet 58:1347-63
- Whittemore and Halpern (1994) Biometrics 50:109-117

