Biostatistics 615/815 Lecture 8:
Hash Tables, and

Dynamic Programming

Hyun Min Kang

February 1st, 2011

Hyun Min Kang Biostatistics 615/815 - Lecture 8 February 1st, 2011

Introduction
00000

Announcements

Homework #2

e For problem 3, assume that all the input values are unique

e Include the class definition into myTree.h and myTreeNode.h (do not
make . cpp file)

e The homework .tex file containing the source code is uploaded in the
class web page

Hyun Min Kang Biostatistics 615/815 - Lecture 8 February 1st, 2011 2 /36

Introduction
00000

Announcements

Homework #2

e For problem 3, assume that all the input values are unique

e Include the class definition into myTree.h and myTreeNode.h (do not
make . cpp file)

e The homework .tex file containing the source code is uploaded in the
class web page

815 projects

e Instructor sent out E-mails to individually today morning

A,

Hyun Min Kang Biostatistics 615/815 - Lecture 8 February 1st, 2011 2 /36

Introduction
0e0000

Recap : Elementary data structures

SEARCH INSERT REMOVE

Array O(n) O(1) O(n)
SortedArray O(logn) ©O(n) O(n)
List O(n) O(1) O(n)
Tree O(logn) ©(logn) ©(logn)
Hash O(1) O(1) o(1)

e Array or list is simple and fast enough for small-sized data
e Tree is easier to scale up to moderate to large-sized data

e Hash is the most robust for very large datasets

Hyun Min Kang Biostatistics 615/815 - Lecture 8 February 1st, 2011

Introduction
[o]e] lele]e]

Recap: Example of a linked list

prev key next
\ | /

@ L.head —> /9] T Tie] T— 4] 1 L [i]/]

® Lhead —— /25| T [o| L [ue] T[4 T[]/

© Lohead ——>{ /28] T Jo| T Jie] T—L [1]/]

e Example of a doubly-linked list
o Singly-linked list if prev field does not exist

Hyun Min Kang Biostatistics 615/815 - Lecture 8 February 1st, 2011 4 /36

Introduction
[e]e]e] le]e]

Recap: An example binary search tree

e Pointers to left and right children (NIL if absent)

e Pointers to its parent can be omitted.

Hyun Min Kang Biostatistics 615/815 - Lecture 8 February 1st, 2011

Introduction
0000e0

Correction: Building your program (lecture 6)

Individually compile and link - Does NOT work with template

e Include the content of your .cpp files into .h
e For example, Main.cpp includes myArray.h

user@host:” /> g++ -o myArrayTest Main.cpp

v

Or create a Makefile and just type 'make’

all: myArrayTest # binary name is myArrayTest

myArrayTest: Main.cpp # link two object files to build binary
g++ -0 myArrayTest Main.cpp # must start with a tab

clean:

rm *.o myArrayTest

Hyun Min Kang Biostatistics 615/815 - Lecture 8 February 1st, 2011 6 /36

Introduction
00000e

Today

Data structure
e Hash table

Dynamic programming

e Divide and conquer vs dynammic programming

Hyun Min Kang Biostatistics 615/815 - Lecture 8 February 1st, 2011 7 /36

Hash Tables O a Summar
€000 0000000C

Two types of containers

Containers for single-valued objects - last lectures

INSERT(T, z) - Insert z to the container.

SEARCH(T, z) - Returns the location/index/existence of z.

REMOVE(T, z) - Delete z from the container if exists

STL examples include std: :vector, std::1ist, std::deque, std::set,
and std::multiset.

v

Containers for (key,value) pairs - this lecture

o INSERT(T, z) - Insert (z.key, z.value) to the container.

e SEARCH(T, k) - Returns the value associated with key £.
e REMOVE(T, z) - Delete element z from the container if exitst

e Examples include std::map, std::multimap, and __gnu_cxx: :hash_map

Hyun Min Kang Biostatistics 615/815 - Lecture 8 February 1st, 2011 8 /36

Hash Tables
[e] le]e}

Direct address tables

An example (key,value) container

e U={0,1,---,N—1} is possible values of keys (N is not huge)
e No two elements have the same key

| \

Direct address table : a constant-time continaer

Let 770,---, N— 1] be an array space that can contain N objects
o INSERT(T,) : T[z.key =z
e SEARCH(T, k) : RETURN TTk]
e REMOVE(T, z) : T[z.key] = NIL

Hyun Min Kang

Biostatistics 615/815 - Lecture 8

February 1st, 2011 9 /36

Hash Tables
[e]e] e}

Analysis of direct address tables

Time complexity

e Requires a single memory access for each operation

e O(1) - constant time complexity

V.

Memory requirement

e Requires to pre-allocate memory space for any possible input value
o 232 = 4(GBx(size of data) for 4 bytes (32 bit) key
264 = 18 EB(1.8 x 107 TB) x (size of data) for 8 bytes (64 bit) key

An infinite amount of memory space needed for storing a set of
arbitrary-length strings (or exponential to the length of the string)

Hyun Min Kang Biostatistics 615/815 - Lecture 8 February 1st, 2011 10 / 36

Hash Tables
[e]ele] }

Hash Tables

Key features
e O(1) complexity for INSERT, SEARCH, and REMOVE

e Requires large memory space than the actual content for maintainng

good performance
e But uses much smaller memory than direct-addres tables

February 1st, 2011 11 / 36

Hyun Min Kang Biostatistics 615/815 - Lecture 8

Hash Tables
[e]ele] }

Hash Tables

Key features
e O(1) complexity for INSERT, SEARCH, and REMOVE
e Requires large memory space than the actual content for maintainng
good performance
e But uses much smaller memory than direct-addres tables

Key components

e Hash function
e h(z.key) mapping key onto smaller 'addressible’ space H
e Total required memory is the possible number of hash values
e Good hash function minimize the possibility of key collisions

e Collision-resolution strategy, when h(k;) = h(kz).

Hyun Min Kang Biostatistics 615/815 - Lecture 8 February 1st, 2011

ChainedHash 0 Summar
0000000 o]

Chained hash : A simple example

A good hash function

e Assume that we have a good hash function h(z.key) that 'fairly
uniformly’ distribute key values to H

e What makes a good hash function will be discussed later today.

A ChainedHash

Each possible hash key contains a linked list

Each linked list is originally empty
e An input (key,value) pair is appened to the linked list when inserted

O(1) time complexity is guaranteed when no collision occurs

When collision occurs, the time complexity is proportional to size of
linked list assocated with h(z.key)

N

Hyun Min Kang Biostatistics 615/815 - Lecture 8 February 1st, 2011 12 / 36

ChainedHash
[e] Jele]ele]e]e]

[llustration of CHAINEDHASH

k] T [k]/]

/Ns] FL (o] T 6]/

/ ks

/]

/| k

o0

<L k| 7]

Hyun Min Kang Biostatistics 615/815 - Lecture 8

February 1st, 2011 13 / 36

ChainedHash
[e]e] le]ele]e]e]

Simplfied algorithms on CHAINEDHASH

e Allocate an array of list of size m as the number of possible key values

INSERT(T, x)
e Insert z at the head of list T[h(z.key)].

.

SEARCH(T, k)

e Search for an element with key & in list TTh(k)].

.

REMOVE(T, z)

e Delete z fom the list T[h(z.key)].

Hyun Min Kang Biostatistics 615/815 - Lecture 8 February 1st, 2011 14 / 36

ChainedHash
[ee]e] lele]e]e]

Analysis of hashing with chaining

Assumptions

e Simple uniform hashing
o Pr(h(ki) = h(k2)) = 1/m input key pairs k; and k.
e 1 is the number of elements stores

e Load factor « = n/m.

Expected time complexity for SEARCH

| \

e X; € {0,1} a random variable of key collision between z; and z;.

T(n):lE S 1+ Zn:(Xij) =0(1+a)

=1 j=it1

Hyun Min Kang Biostatistics 615/815 - Lecture 8 February 1st, 2011 15 / 36

ChainedHash
[ee]e]e] Telele]

Interesting properties (under uniform hash)

Probability of an empty slot

1 n
Pr(ky # ko £ k- kn £ k) = <1—;L> ~ e @

Birthday paradox : expected # of elements before the first collision

Coupon collector problem : expect # of elements to fill every slot

Z— m(ln m + 0.577)

Hyun Min Kang Biostatistics 615/815 - Lecture 8 February 1st, 2011 16 / 36

ChainedHash
[e]e]ele]e] lele]

Hash functions

Making a good hash functions
e A hash function h(k) is a deterministic function from k € K onto
h(k) € H.
e A good hash function distributes map the keys to hash values as
uniform as possible

e The uniformity of hash function should not be affected by the pattern
of input sequences

| \

Example hash functions
e ke0,1), h(k) = | km]
e keN, h(k) =k mod m

.

Hyun Min Kang Biostatistics 615/815 - Lecture 8 February 1st, 2011 17 / 36

ChainedHash O i i Summar
[e]e]e]e]e]e] o] [e]e o]

'Good’ and 'bad’ hash functions

An example : h(k) = | km]

e When the input if uniformly distributed
o h(k) is uniformly distributed between 0 and m — 1.
e h(k) is a good hash function

e When the input is skewed : Pr(k < 1/m)=10.9

e More than 80% of input key pairs will have collisions
o h(k) is a bad hash function
e Time complexity is close to a single linked list

v

Good hash functions

e 'Goodness' of a hash function can be dependent on the data

e If it is hard to create adversary inputs to make the hash function
'bad’, it is generally a good hash function.

Hyun Min Kang Biostatistics 615/815 - Lecture 8 February 1st, 2011 18 / 36

ChainedHash O i i Summar
O000000e [e]e o]

Examples of good hash functions

For integers

e Make the hash size m to be a large prime
e h(k) =k mod m

\

For floating point values k € [0,1)

e Make the hash size m to be a large prime
e h(k) = |k+ N] mod m for a large number N.

| \

For strings

e Pretend the string is a number with numeral system of |X|, where X
is the set of possible characters.

e Apply the same hash function for integers

A,

Hyun Min Kang Biostatistics 615/815 - Lecture 8 February 1st, 2011 19 / 36

OpenHash
00000000

Open Addressing

Chained Hash - Pros and Cons

A Easy to understand

/A Behavior at collision is easy to track
v Every slots maintains pointer - extra memory consumption
v Inefficient to dereference pointers for each access

v Larger and unpredictable memory consumption

Hyun Min Kang Biostatistics 615/815 - Lecture 8 February 1st, 2011

OpenHash Summar
00000000) o]

Open Addressing

Chained Hash - Pros and Cons
A Easy to understand

/A Behavior at collision is easy to track
v Every slots maintains pointer - extra memory consumption
v Inefficient to dereference pointers for each access

v Larger and unpredictable memory consumption

| N\

Open Addressing
e Store all the elements within an array
e Resolve conflicts based on predefined probing rule.
e Avoid using pointers - faster and more memory efficient.

e Implementation of REMOVE can be very complicated

.

Hyun Min Kang Biostatistics 615/815 - Lecture 8 February 1st, 2011 20 / 36

OpenHash
0e000000

Probing in open hash

Modified hash functions
e h: KxH—H
e For every k € K, the probe sequence
< Wk, 0), h(k,1),--- , h(k,m —1) > must be a permutation of
<0,1,--- ,m—1>.

Hyun Min Kang Biostatistics 615/815 - Lecture 8 February 1st, 2011

OpenHash
[e]e] lelelele]e]

Algorithm OPENHASHINSERT

Data: T': hash, k: key value to insert
Result: % is inserted to T
fori=0tom—1do
j = h(k, 1) if T[j) ==NIL then
T = k.
return j;
end
end
error "hash table overflow”;

Hyun Min Kang Biostatistics 615/815 - Lecture 8 February 1st, 2011

OpenHash
[e]e]e] lelele]e]

Algorithm OPENHASHSEARCH

Data: 7T': hash, k: key value to search
Result: Return TT[k| if exist, otherwise return NIL
for i=0tom—1do
Jj= h(ka i);
if 77j] == k then
‘ return j;
end
else if 7[j] ==NIL then
‘ return NIL;
end
end
return NIL;

Hyun Min Kang Biostatistics 615/815 - Lecture 8 February 1st, 2011

OpenHash
[e]e]e]e] Telele]

Strategies for Probing

Linear Probing
o h(k, i) = (W (k) + 1) mod m

e Easy to implement

e Suffer from primary clustering, increasing the average search time

Hyun Min Kang Biostatistics 615/815 - Lecture 8 February 1st, 2011 24 / 36

OpenHash
[e]e]e]e] Telele]

Strategies for Probing

Linear Probing
o h(k, i) = (W (k) + 1) mod m
e Easy to implement

e Suffer from primary clustering, increasing the average search time

Quadratic Probing
o (ki) = (K(k) + c1i+ coi?) mod m
e Beter than linear probing
e Seconary clustering : h(k1,0) = h(kz,0) implies h(ki, ©) = k(ke, @)

Hyun Min Kang Biostatistics 615/815 - Lecture 8 February 1st, 2011 24 / 36

OpenHash

[e]e]e]e]e] lele)

Strategies for Probing

h(k, i) = (h1(k) + iha(k)) mod m

The probe sequence depends in two ways upon k.

For example, hi(k) = k mod m, he(k) =1+ (k mod m')
Avoid clustering problem

Performance close to ideal scheme of uniform hashing.

Hyun Min Kang Biostatistics 615/815 - Lecture 8 February 1st, 2011

OpenHash
00000080

Hash tables : summary

Linear-time performance container with larger storage
e Key components

e Hash function

e Conflict-resolution strategy
Chained hash

e Linked list for every possible key values
e Large memory consumption + deferencing overhead

Open Addressing

e Probing strategy is important
e Double hashing is close to ideal hashing

Hyun Min Kang Biostatistics 615/815 - Lecture 8 February 1st, 2011

OpenHash
0000000e

When are binary search trees better than hash tables?

Hyun Min Kang Biostatistics 615/815 - Lecture 8 February 1st, 2011 27 / 36

OpenHash
0000000e

When are binary search trees better than hash tables?

e When the memory efficiency is more important than the search
efficiency

Hyun Min Kang Biostatistics 615/815 - Lecture 8 February 1st, 2011

OpenHash
0000000e

When are binary search trees better than hash tables?

e When the memory efficiency is more important than the search
efficiency

e When many input key values are not unique

Hyun Min Kang Biostatistics 615/815 - Lecture 8 February 1st, 2011

OpenHash
0000000e

When are binary search trees better than hash tables?

e When the memory efficiency is more important than the search
efficiency

e When many input key values are not unique

e When querying by ranges or trying to find closest value.

Hyun Min Kang Biostatistics 615/815 - Lecture 8 February 1st, 2011

Fibonacci
0000000

Recap: Divide and conquer algorithms

Good examples of divide and conquer algorithms
TowEROFHANOI

MERGESORT

QUICKSORT

BINARYSEARCHTREE algorithms

These algorithms divide a problem into smaller and disjoint subproblems
until they become trivial.

Hyun Min Kang Biostatistics 615/815 - Lecture 8 February 1st, 2011 28 / 36

Fibonacci
[e] le]e]ele]e]e]

A divide-and-conquer algorithms for Fibonacci numbers

Fibonacci numbers

F,1+F,> n>1
F, = 1 n=1
0 n=>0

Hyun Min Kang Biostatistics 615/815 - Lecture 8

February 1st, 2011

29 / 36

Fibonacci
[e] le]e]ele]e]e]

A divide-and-conquer algorithms for Fibonacci numbers

Fibonacci numbers

F,1+F,> n>1
F, = 1 n=1
0 n=>0

A recursive implementation of fibonacci numbers

int fibonacci(int n) {
if (n < 2) return n;
else return fibonacci(n-1)+fibonacci(n-2);

}

Hyun Min Kang Biostatistics 615/815 - Lecture 8 February 1st, 2011 29 / 36

Fibonacci
[e]e] le]ele]e]e]

Performance of recursive FIBONACCI

Computational time
e 4.4 seconds for calculating Fyg
e 49 seconds for calculating Fy5

e 00 seconds for calculating Figg!

Hyun Min Kang Biostatistics 615/815 - Lecture 8 February 1st, 2011

Fibonacci
[ee]e] lele]e]e]

What is happening is the recursive FIBONACCI

N
ANVAN

Hyun Min Kang Biostatistics 615/815 - Lecture 8 February 1st, 2011

Fibonacci
[ee]e]e] Telele]

Time complexity of redundant FIBONACCI

T(n) = T(n—1)4 T(n—2)
M) = 1

T0) = 1

T(n) = Fnpr

The time complexity is exponential

Hyun Min Kang Biostatistics 615/815 - Lecture 8 February 1st, 2011

Fibonacci
[ee]e]e]e] lele]

A non-redundant FIBONACCI

int fibonacci(int n) {
int* fibs = new int[n+1];

fibs[@] = 0o;
fibs[1] = 1;
for(int i=2; i <= n; ++i) {

fibs[i] = fibs[i-1]+fibs[i-2];
}
int ret = fibs[n];
delete [] fibs;
return ret;

Hyun Min Kang Biostatistics 615/815 - Lecture 8 February 1st, 2011

Fibonacci
[ee]ele]e]e] o]

Key idea in non-redundant FIBONACCI

e Each F,, will be reused to calculate F,,11 and Fi1o

e Store F, into an array so that we don't have to recalculate it

Hyun Min Kang Biostatistics 615/815 - Lecture 8 February 1st, 2011

Fibonacci
[ee]e]e]ee]e]]

A recursive, but non-redundant FIBONACCI

int fibonacci(int* fibs, int n) {
if (fibs[n] > @) {

return fibs[n]; // reuse stored solution if available
}
else if ((n < 2) {

return n; // terminal condition
}

fibs[n] = fibonacci(n-1) + fibonacci(n-2); // store the solution once computed

return fibs[n];

Hyun Min Kang Biostatistics 615/815 - Lecture 8 February 1st, 2011 35/ 36

Summary
[]

Summary

Hashing

e Dynamic programming

More on dynamic programming

Graph algorithms

Reading materials
o CLRS Chapter 15

Hyun Min Kang Biostatistics 615/815 - Lecture 8 February 1st, 2011 36 / 36

	Introduction
	Introduction

	Hash Tables
	Hash Tables

	ChainedHash
	ChainedHash

	OpenHash
	OpenHash

	Fibonacci
	Fibonacci

	Summary
	Summary

