Biostatistics 615/815 Lecture 9: Dynamic Programming and Hidden Markov Models

Hyun Min Kang

October 2nd, 2012

 Graphical Models
 Markov Process
 HMM
 Summary

 000000000
 0000
 0
 0

Minimum edit distance problem

Edit distance

Edit Distance

Minimum number of letter insertions, deletions, substitutions required to transform one word into another

An example

 $\underline{F}OOD \rightarrow MO\underline{O}D \rightarrow MO\underline{N}D \rightarrow MON\underline{D} \rightarrow MONEY$

Edit distance is 4 in the example above

More examples of edit distance

F 0 0 D M 0 N E Y A L G 0 R I T H M A L T R U I S T I C

- Similar representation to DNA sequence alignment
- Does the above alignment provides an optimal edit distance?

A dynamic programming solution

		Α	L	G	0	R	I	T	Н	M
П	0 -	→1-	→2-	→3-	→ 4-	→5-	→ 6-	→7-	→8-	→9
A	1	0-	→1-	→2-	→3-	→4-	→5-	→ 6-	→7-	→8
L	2	1	0-	→1-	→2-	→3-	→4-	→5-	→ 6-	→7
Т	↓ 3	$\overset{\downarrow}{2}$	i `	1-	→ 2-	√ 3-	→ 4-	` →4-	→5-	→ 6
R	↓ 4	↓ 3	↓ 2	2	2	2-	→3-	^ -4÷	→5-	√ 6
U	↓ 5	4	3	3	`	3	3-	→4-	→5-	√ 6
I	6	↓ 5	4	4	¥ 4	4	3-	→4-	→5-	√ 6
s	→ 7	6	5	¥↓` 5	↓↓` 5	¥ 5	4	4	`5 (6
Т	8	→ 7	6	6	6	6	5	4-	→5-	√ 6
I	9	8	7	\↓\ 7	`†` 7	à 7	1 6	5	5-	√ 6
С	10	ģ	8	*§	`\\ 8	¥ 8	↓ 7	6 \	, §	6

Recursively formulating the problem

- Input strings are $x[1,\cdots,m]$ and $y[1,\cdots,n]$.
- Let $x_i = x[1, \dots, i]$ and $y_i = y[1, \dots, j]$ be substrings of x and y.
- Edit distance d(x, y) can be recursively defined as follows

$$d(x_i, y_j) = \left\{ \begin{array}{ll} i & j = 0 \\ j & i = 0 \\ \\ \min \left\{ \begin{array}{ll} d(x_{i-1}, y_j) + 1 \\ d(x_i, y_{j-1}) + 1 \\ d(x_{i-1}, y_{i-1}) + I(x[i] \neq y[j]) \end{array} \right\} & otherwise \end{array} \right.$$

- Similar to the Manhattan tourist problem, but with 3-way choice.
- Time complexity is $\Theta(mn)$.

Edit Distance

0000000000

```
#include <iostream>
#include <climits>
#include <string>
#include <vector>
#include "Matrix615.h"
int main(int argc, char** argv) {
  if ( argc != 3 ) {
    std::cerr << "Usage: editDistance [str1] [str2]" << std::endl;</pre>
    return -1;
  std::string s1(argv[1]);
  std::string s2(argv[2]);
  Matrix615<int> cost(s1.size()+1, s2.size()+1, INT MAX);
  Matrix615<int> move(s1.size()+1, s2.size()+1, -1);
  int optDist = editDistance(s1, s2, cost, move, cost.rowNums()-1, cost.colNums()-1);
  std::cout << "EditDistance is " << optDist << std::endl:
  printEdits(s1, s2, move);
  return 0;
```

```
// note to declare the function before main()
int editDistance(std::string& s1, std::string& s2, Matrix615<int>& cost,
                 Matrix615<int>& move, int r, int c) {
  int iCost = 1, dCost = 1, mCost = 1; // insertion, deletion, mismatch cost
  if ( cost.data[r][c] == INT MAX ) {
    if (r == 0 \&\& c == 0) { cost.data[r][c] = 0; }
    else if ( r == 0 ) {
     move.data[r][c] = 0; // only insertion is possible
     cost.data[r][c] = editDistance(s1,s2,cost,move,r,c-1) + iCost;
    else if ( c == 0 ) {
     move.data[r][c] = 1; // only deletion is possible
      cost.data[r][c] = editDistance(s1,s2,cost,move,r-1,c) + dCost;
```

```
else { // compare 3 different possible moves and take the optimal one
  int iDist = editDistance(s1,s2,cost,move,r,c-1) + iCost;
  int dDist = editDistance(s1,s2,cost,move,r-1,c) + dCost;
  int mDist = editDistance(s1,s2,cost,move,r-1,c-1) +
                (s1[r-1] == s2[c-1] ? 0 : mCost);
  if ( iDist < dDist ) {</pre>
    if ( iDist < mDist ) { // insertion is optima</pre>
      move.data[r][c] = 0;
      cost.data[r][c] = iDist;
    else {
      move.data[r][c] = 2; // match is optimal
      cost.data[r][c] = mDist;
```

```
editDistance.cpp
      else {
        if ( dDist < mDist ) {</pre>
          move.data[r][c] = 1; // deletion is optimal
          cost.data[r][c] = dDist;
        else {
          move.data[r][c] = 2; // match is optimal
          cost.data[r][c] = mDist;
  return cost.data[r][c];
```

```
int printEdits(std::string& s1, std::string& s2, Matrix615<int>& move) {
  std::string o1, o2, m; // output string and alignments
 int r = move.rowNums()-1;
 int c = move.colNums()-1;
 while(r >= 0 \&\& c >= 0 \&\& move.data[r][c] >= 0) { // back from the last character
   if ( move.data[r][c] == 0 ) { // insertion
     o1 = "-" + o1; o2 = s2[c-1] + o2; m = "I" + m; --c;
    }
   else if ( move.data[r][c] == 1 ) { // delettion
     o1 = s1[r-1] + o1; o2 = "-" + o2; m = "D" + m; --r;
    }
   else if ( move.data[r][c] == 2 ) { // match or mismatch
     o1 = s1[r-1] + o1; o2 = s2[c-1] + o2;
      m = (s1[r-1] == s2[c-1] ? "-" : "*") + m;
     --r; --c;
   else std::cout << r << " " << c << " " << move.data[r][c] << std::endl;
  std::cout << m << std::endl << o1 << std::endl << o2 << std::endl;
```

Running example

```
$ ./editDistance FOOD MONEY
EditDistance is 4
*-I**
FO-OD
MONEY
```

Graphical Model 101

- Graphical model is marriage between probability theory and graph theory (Michiael I. Jordan)
- Each random variable is represented as vertex
- Dependency between random variables is modeled as edge
 - Directed edge : conditional distribution
 - Undirected edge : joint distribution
- Unconnected pair of vertices (without path from one to another) is independent
- An effective tool to represent complex structure of dependence / independence between random variables.

• Are H and P independent?

An example graphical model

- Are H and P independent?
- Are H and P independent given S?

Pr(H)

Value (H)	Description (H)	Pr(H)	
0	Low	0.3	
1	High	0.7	

Pr(S|H)

S	Description (S)		Description (H)	Pr(S H)
0	Cloudy	0	Low	0.7
1	Sunny	0	Low	0.3
0	Cloudy	1	High	0.1
1	Sunny	1	High	0.9

Pr(P|S)

Р	Description (P)	S	Description (S)	$\Pr(P S)$
0	Absent	0	Cloudy	0.5
1	Present	0	Cloudy	0.5
0	Absent	1	Sunny	0.1
1	Present	1	Sunny	0.9

Markov Process Hi

Full joint distribution

Pr(H, S, P)

Н	S	Р	Pr(H, S, P)
0	0	0	0.105
0	0	1	0.105
0	1	0	0.009
0	1	1	0.081
1	0	0	0.035
1	0	1	0.035
1	1	0	0.063
1	1	1	0.567

- With a full join distribution, any type of inference is possible
- As the number of variables grows, the size of full distribution table increases exponentially

Pr(H, P|S)

)	$\Pr(H, P S)$	S	Р	Н	
	0.3750	0	0	0	
	0.3750	0	1	0	
	0.1250	0	0	1	
	0.1250	0	1	1	
	0.0125	1	0	0	
	0.1125	1	1	0	
	0.0875	1	0	1	
	0.7875	1	1	1	
	0.1250 0.1250 0.0125 0.1125 0.0875	0 0 1 1	0 1 0 1 0	1 1 0 0	

Pr(H|S), Pr(P|S)

Н	S	Pr(H S)	Р	S	Pr(P S)
0	0	0.750	0	0	0.500
1	0	0.250	1	0	0.500
0	1	0.125	0	1	0.100
1	1	0.875	1	1	0.900

H and P are conditionally independent given S

- H and P do not have direct path one from another
- All path from H to P is connected thru S.
- Conditioning on S separates H and P

Conditional independence in graphical models

• Pr(A, C, D, E|B) = Pr(A|B) Pr(C|B) Pr(D|B) Pr(E|B)

Hyun Min Kang Biostatistics 615/815 - Lecture 11 October 2nd, 2012 19 / 29

Markov Blanket

- If conditioned on the variables in the gray area (variables with direct dependency), A is independent of all the other nodes.
- $A \perp (U-A-\pi_A)|\pi_A$

Markov Process : An example

Mathematical representation of a Markov Process

$$\pi = \begin{pmatrix} \Pr(q_1 = S_1 = \mathsf{Sunny}) \\ \Pr(q_1 = S_2 = \mathsf{Cloudy}) \\ \Pr(q_1 = S_3 = \mathsf{Rainy}) \end{pmatrix} = \begin{pmatrix} 0.7 \\ 0.2 \\ 0.1 \end{pmatrix}$$

$$A_{ij} = \Pr(q_{t+1} = S_j | q_t = S_i)$$

$$A = \begin{pmatrix} 0.5 & 0.3 & 0.2 \\ 0.4 & 0.3 & 0.3 \\ 0.1 & 0.5 & 0.4 \end{pmatrix}$$

What is the chance of rain in the day 2?

What is the chance of rain in the day 2?

$$Pr(q_2 = S_3) = (A^T \pi)_3 = 0.24$$

What is the chance of rain in the day 2?

$$\Pr(q_2 = S_3) = (A^T \pi)_3 = 0.24$$

If it rains today, what is the chance of rain on the day after tomorrow?

What is the chance of rain in the day 2?

$$Pr(q_2 = S_3) = (A^T \pi)_3 = 0.24$$

If it rains today, what is the chance of rain on the day after tomorrow?

$$\Pr(q_3 = S_3 | q_1 = S_3) = \left[(A^T)^2 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right]_2 = 0.33$$

What is the chance of rain in the day 2?

$$Pr(q_2 = S_3) = (A^T \pi)_3 = 0.24$$

If it rains today, what is the chance of rain on the day after tomorrow?

$$\Pr(q_3 = S_3 | q_1 = S_3) = \left[(A^T)^2 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right]_3 = 0.33$$

Stationary distribution

$$\mathbf{p} = A^T \mathbf{p}$$

$$p = (0.346, 0.359, 0.295)^T$$

inting 615 /015 | Lanting 11 | Ontober 2nd 2012

Markov process is only dependent on the previous state

If it rains today, what is the chance of rain on the day after tomorrow?

$$\Pr(q_3 = S_3 | q_1 = S_3) = \left[(A^T)^2 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right]_3 = 0.33$$

Markov Process

If it rains today, what is the chance of rain on the day after tomorrow?

$$\Pr(q_3 = S_3 | q_1 = S_3) = \left[(A^T)^2 \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right]_3 = 0.33$$

If it has rained for the past three days, what is the chance of rain on the day after tomorrow?

$$Pr(q_5 = S_3 | q_1 = q_2 = q_3 = S_3) = Pr(q_5 = S_3 | q_3 = S_3) = 0.33$$

Hidden Markov Models (HMMs)

- A Markov model where actual state is unobserved
 - Transition between states are probablistically modeled just like the Markov process
- Typically there are observable outputs associated with hidden states
 - The probability distribution of observable outputs given an hidden states can be obtained.

 Graphical Models
 Markov Process
 HMM
 Summary

 000000000
 0000
 0 000
 0

An example of HMM

- Direct Observation : (SUNNY, CLOUDY, RAINY)
 - Hidden States : (HIGH, LOW)

States
$$S = \{S_1, S_2\} = (HIGH, LOW)$$

States
$$S = \{S_1, S_2\} = (\mathsf{HIGH, LOW})$$

Outcomes $O = \{O_1, O_2, O_3\} = (\mathsf{SUNNY, CLOUDY, RAINY})$

States
$$S = \{S_1, S_2\} = (\mathsf{HIGH, LOW})$$

Outcomes $O = \{O_1, O_2, O_3\} = (\mathsf{SUNNY, CLOUDY, RAINY})$
Initial States $\pi_i = \Pr(g_1 = S_i), \, \pi = \{0.7, 0.3\}$

States
$$S = \{S_1, S_2\} = (\mathsf{HIGH, LOW})$$

Outcomes $O = \{O_1, O_2, O_3\} = (\mathsf{SUNNY, CLOUDY, RAINY})$
Initial States $\pi_i = \Pr(q_1 = S_i), \ \pi = \{0.7, 0.3\}$
Transition $A_{ij} = \Pr(q_{t+1} = S_j | q_t = S_i)$

$$A = \left(\begin{array}{cc} 0.8 & 0.2\\ 0.4 & 0.6 \end{array}\right)$$

Emission
$$B_{ij} = b_{q_t}(o_t) = b_{S_i}(O_j) = \Pr(o_t = O_j | q_t = S_i)$$

$$B = \left(\begin{array}{ccc} 0.88 & 0.10 & 0.02\\ 0.10 & 0.60 & 0.30 \end{array}\right)$$

Unconditional marginal probabilities

What is the chance of rain in the day 4?

$$\mathbf{f}(\mathbf{q}_4) = \begin{pmatrix} \Pr(q_4 = S_1) \\ \Pr(q_4 = S_2) \end{pmatrix} = (A^T)^3 \pi = \begin{pmatrix} 0.669 \\ 0.331 \end{pmatrix}$$

$$\mathbf{g}(o_4) = \begin{pmatrix} \Pr(o_4 = O_1) \\ \Pr(o_4 = O_2) \\ \Pr(o_4 = O_3) \end{pmatrix} = B^T \mathbf{f}(\mathbf{q}_4) = \begin{pmatrix} 0.621 \\ 0.266 \\ 0.233 \end{pmatrix}$$

The chance of rain in day 4 is 23.3%

s Markov Process HMM
0000 0000

Summary

Edit Distance

- Alignment between two strings
- Can be converted to a problem similar to MTP

Hidden Markov Models

- Graphical models
- Conditional independence and Markov blankets
- Markov process
- Introduction to hidden Markov models

Next lectures

More hidden Markov Models

Summary