Biostatistics 666 Statistical Models in Human Genetics

Instructor Gonçalo Abecasis

Course Logistics

Grading Office Hours Class Notes

Academic Integrity

- All assignments are made on an individual basis – the solutions you provide must represent your own work.
- Cheating, plagiarism and aiding and abeting these acts constitutes academic misconduct and is a serious offense.
- See also the School policy on academic conduct.

Course Contents

Brief Overview

Genetic Mapping

"Compares the inheritance pattern of a trait with the inheritance pattern of chromosomal regions"

Positional Cloning

"Allows one to find where a gene is, without knowing what it is."

Modeling Genes in Populations

- Hardy Weinberg Equilibrium
- Linkage Disequilibrium
- The Coalescent
- Methods for Haplotyping
- Methods for Handling Shotgun Sequence Data

Modeling Genes within Pedigrees

- Elston-Stewart algorithm
- Lander-Green algorithm
- Checking Genetic Data for Errors
- Genetic Linkage Tests
- Genetic Association Tests

Let's Get Started!

The Basics

DNA – Information Store

- Encodes the information required for cells and organisms to function and produce new cells and organisms.
- DNA variation is responsible for many individual differences, some of which are medically important.

Human Genome

Multiple chromosomes

- 22 autosomes
 - Present in 2 copies per individual
 - One maternally and one paternally inherited copy
- 1 pair of sex chromosomes
 - Females have two X chromosomes
 - Males have one X chromosome and one Y chromosome

Total of ~3 x 10⁹ bases (each A, C, T or G)

Inheritance of DNA

- Through recombination, a new "DNA string" is formed by combining two parental DNA strings
- Thus, each chromosome we carry is a mosaic of the two chromosomes carried by our parents
- Only a small number of changeovers between the two parental chromosomes
 - On average ~1 per Morgan (~10⁸ bases)
- Copying of DNA sequences is imperfect and, for typical sequences, the error rate is about 1 per 10⁸ bases copied

DNA Sequences That Vary...

- Genes (protein coding sequences, which total <2% of all DNA)
 - ~20,000-25,000 in humans
- Pseudogenes
 - Ancient genes, inactivated through mutation
- Promoters and Enhancers
 - Sequences which control gene expression
- Repeat DNA
 - Often more variable than other types of sequences
 - Useful for tracking DNA through families or populations

Packaging sequences, "spacer" DNA, etc.

Important Vocabulary ...

- Locus
- Polymorphism
- Allele
- Mutation
- Linkage
- Genetic Marker
- Genotype

- Phenotype
 - Mendelian Traits
 - Complex Traits
- Chromosomal landmarks
 - Centromeres
 - Telomeres
- Gene
- RNA
- Protein

Data for a Genetic Study

Pedigree

- Set of individuals of known relationship
- Observed marker genotypes
 - SNPs, VNTRs, microsatellites
- Phenotype data for individuals

Genetic Markers

- Genetic variants that can be measured conveniently
- Typically, we characterize them by:
 - Number of alleles
 - Frequency of each allele
 - These are summarized by the heterozygosity
- The most commonly used genetic markers are microsatellites and SNPs

Phenotypes

- Measured characters of individuals
- Mendelian Phenotypes
 - Completely determined by genes
 - e.g. Cystic Fibrosis, Retinoblastoma
- Complex Phenotypes
 - Controlled by multiple genes and environmental factors
 - eg. Diabetes, Inflammatory Bowel Disease

Ultimate Aim of Gene-Mapping Experiments

- Localize and identify variants that control interesting traits
 - Susceptibility to human disease
 - Phenotypic variation in the population

The difficulty...

Testing several million variants is impractical...

3 Common Questions

- Are there "genes" influencing this trait?
 - Epidemiological studies
- Where are those "genes"?
 - Linkage analysis
- What are those "genes"?
 - Association analysis

Is a trait genetic?

 Examine distribution of trait in the population and among relatives

E.g. Inflammatory Bowel Disease (Crohn's)

- General population
 - 1-3 cases per 1,000 individuals
- Twins of affected individuals
 - 44% of monozygotic twins also have Crohn's
 - 3.8% of dizygotic twins also have Crohn's

Where are those genes?

- Find genetic markers that co-segregate with disease
- E.g. D16S3136 co-segregates with Crohn's

What are those genes? Identify genetic variants that are associated with disease...

 E.g. Mutations which disrupt NOD2 are much more common in Crohn's patients

	Crohn's	Controls
Arg702Trp:	11%	4%
Gly908Arg:	4%	2%
Leu1007fs	8%	4%

Common Designs for Genetic Studies

- Parametric Linkage analysis
- Allele-sharing methods
- Association analysis

Parametric Linkage Analysis

- Evaluate a specific model and location
 - Allele frequencies at disease loci
 - Probability of disease for each genotype
- Potentially very powerful
- Vulnerable to heterogeneity, model misspecification

Allele Sharing Analysis

- Reject null hypothesis that sharing is random at a particular region
- Less powerful, but more robust
- Quantitative trait extensions exist

Association Analysis

- Simplest case compares frequency of allele among cases and controls
- Genome-wide search requires hundreds of thousands of markers
- Typically, focuses on candidate genes

The Right Choice Depends on the Alleles We Seek...

Genetic Linkage Studies

- Identify variants with relatively large contributions to disease risk
- Require only a coarse measurement of genetic variation
 - 400 800 microsatellites can extract most of the linkage information in typical pedigrees
 - Until recently, the only option for conducting whole genome studies
- High-throughput SNP genotyping has already sped up and facilitated these studies
 - Data analysis methods must select subset of independent SNPs or model disequilibrium between markers

Genetic Association Studies

- Identify genetic variants with relatively small individual contributions to disease risk
- Require detailed measurement of genetic variation
 - > 10,000,000 catalogued genetic variants, so ...
 - Until recently, limited to candidate genes or regions
 - A hit-and-miss approach...
- SNP resources and decreasing assay costs now make it possible to examine 100,000s of markers

Reading for Next Lecture

- Will be discussing Hardy-Weinberg equilibrium
 - A basic feature of genotypes in human populations
- Wigginton, Cutler, Abecasis (2005)
 A note on exact tests of Hardy-Weinberg equilibrium.
 Am J Hum Genet 76:887-93
- This paper describes an efficient method for testing Hardy-Weinberg equilibrium and includes many important historical references