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Estimating (and correcting) 
DNA sample contamination 
 

Part I 



DNA Sample Contamination 

*Picture from D. Figarelli, National Forensic Science Tech. Center 



Contamination in Sequencing Data 

 

 DNA contamination is common and serious 

• Timely feedback could save multi-million dollar project 

• Exact estimation and correction could save TB of data 

 

 In-silico approach can solve In-vitro problems 

 



Reference-Aligned Sequence Reads 

Reference 

Sample 

5’-AGCTGATAGCTAGCTACCTGACGAGCCCGATC-3’ 

   AGCTGATAGCTGGCTA           
   AGCTGATAGCTGGCTAACTG 
    GCTGATAGCTAGCTAACTGACGAG 
     CTGATAGCTAGCTAACTGACGAGC 
      TGATAGCTGGCTAACTGACGAGCC 
        ATAGCTAGCTAACTGACGAGCCCG 



Single-Nucleotide Polymorphism (SNP) 

Reference 

Sample 

5’-AGCTGATAGCTAGCTACCTGACGAGCCCGATC-3’ 

   AGCTGATAGCTGGCTA           
   AGCTGATAGCTGGCTAACTG 
    GCTGATAGCTAGCTAACTGACGAG 
     CTGATAGCTAGCTAACTGACGAGC 
      TGATAGCTGGCTAACTGACGAGC 
        ATAGCTAGCTAACTGACGAGCCCG 

Genotype: GA 

(Heterozygote) 

Genotype: AA 

(Homozygote) 



Base Distribution in Two Samples 

Reference 

Sample 1 

5’-AGCTGATAGCTAGCTATCTGACGAGCCCGATC-3’ 

   AGCTGATAGCTGGCTAGCTG 
    GCTGATAGCTAGCTAGCTGACGAG  
     CTGATAGCTGGCTAGCTGACGAGC 
        ATAGCTAGCTAGCTGACGAGCCCG 

Sample 2    AGCTGATAGCTGGCTATCTG 
    GCTGACAGCTGGCTATCTGACGAG 
     CTGACAGCTGGCTATCTGACGAGC 
        ATAGCTGGCTATCTGACGAGCCCG 



Base Distribution in Two Samples 

Reference 

Sample 1 

5’-AGCTGATAGCTAGCTATCTGACGAGCCCGATC-3’ 

   AGCTGATAGCTGGCTAGCTG 
    GCTGATAGCTAGCTAGCTGACGAG  
     CTGATAGCTGGCTAGCTGACGAGC 
        ATAGCTAGCTAGCTGACGAGCCCG 

Sample 2    AGCTGATAGCTGGCTATCTG 
    GCTGACAGCTGGCTATCTGACGAG 
     CTGACAGCTGGCTATCTGACGAGC 
        ATAGCTGGCTATCTGACGAGCCCG 

Heterozygous Homozygous ALT 



Contamination: Mixture of Samples 

Reference 

Sample 1+2 

5’-AGCTGATAGCTAGCTATCTGACGAGCCCGATC-3’ 

   AGCTGATAGCTGGCTAGCTG 
    GCTGATAGCTAGCTAGCTGACGAG  
     CTGATAGCTGGCTAGCTGACGAGC 
        ATAGCTAGCTAGCTGACGAGCCCG 
   AGCTGATAGCTGGCTATCTG 
    GCTGACAGCTGGCTATCTGACGAG 
     CTGACAGCTGGCTATCTGACGAGC 
        ATAGCTGGCTATCTGACGAGCCCG 



Contamination: Changes Base Distributions 

Reference 

Sample 1+2 

5’-AGCTGATAGCTAGCTATCTGACGAGCCCGATC-3’ 

   AGCTGATAGCTGGCTAGCTG 
    GCTGATAGCTAGCTAGCTGACGAG  
     CTGATAGCTGGCTAGCTGACGAGC 
        ATAGCTAGCTAGCTGACGAGCCCG 
   AGCTGATAGCTGGCTATCTG 
    GCTGACAGCTGGCTATCTGACGAG 
     CTGACAGCTGGCTATCTGACGAGC 
        ATAGCTGGCTATCTGACGAGCCCG 

More heterozygote SNPs with biased distribution 



Likelihood of Base Reads 

 M markers 

 Ni base reads:  

 

 

 

 

 

 

 
Likelihood of observed bases at 

i-th marker, given  

AGCTGATAGCTGGCTAGC 
 GCTGATAGCTAGCTAGCTG  
  CTGATAGCTGGCTAGCTGACG 
     ATAGCTAGCTAGCTGACGA 

M markers 

N1 N2 N3 reads 



Two-sample Mixture Model 

 Likelihood with mixing proportion α 

 

 

 

 

 

 



Two-sample Mixture Model 

 Likelihood with mixing proportion α 

 

 

 

 

 

 
Likelihood from 

original sample 



Two-sample Mixture Model 

 Likelihood with mixing proportion α 

 

 

 

 

 

 
Likelihood from 

contaminating sample 



Two-sample Mixture Model 

 Likelihood with mixing proportion α 

 

 

 

 

 

 

Known genotypes for 

M sites (CHIPMIX) 



Two-sample Mixture Model 

 Likelihood with mixing proportion α 

 

 

 

 

 

 

From population allele 

freq. under HWE 



Two-sample Mixture Model 

 Likelihood with mixing proportion α 

 

 

 

 

 

 

Contamination level: MLE of α 



Simple Likelihood Model 

 Probability of observing a base ( b ) depends on 

• Underlying (true) genotype  ( G ) 

• Occurrence of base read error ( e ) 

• Example 
 P( b = A | G = AA, no error (e=0) ) = 1 

 P( b = G | G = TT,  error (e=1) ) = 1/3   

(In case of base read error, assume all possibilities are equally likely) 

• P(b |G ) = P(b |G, e=0) P(e=0) + P(b |G, e=1) P(e=1) 

 

• P(e) from phred-scale base quality for j-th read in i-th site: 



Estimation with Sequence Data Only (FREEMIX) 

 If sequenced sample does not have external genotypes 

• Model both genotypes from population allele frequency 

 

 Latent variables 

• Gi : true genotype of the contaminated sample 

• gi : true genotype of the contaminating sample 



Results: Simulation 

 Simulated contamination from real sequence data 

• Can accurately detect as low as 1% contamination 

• Works with or without known genotype data 



Results: Type-2 Diabetes Sequencing Study 

# of HETs 

#HETs/#HOMs 

Sequencing Date in 2010 

Feb    Mar   Apr         May            Jun       Jul   Sep      Nov                                Dec 

Something changed 

~2800 Whole genome sequences  



Results: Type-2 Diabetes Sequencing Study 

# of HETs 

#HETs/#HOMs 

Estimated % contamination 

Sequencing Date 
Something changed 



Results: Type-2 Diabetes Sequencing Study 

# of HETs 

#HETs/#HOMs 

Estimated % contamination 

Sequencing Date No contamination after 
a protocol change 

Something changed 



Contamination in Array Intensity Data 



Software for Contamination Problems 

 Software tools to check contamination: 

• http://genome.sph.umich.edu/wiki/VerifyBamID 

• http://genome.sph.umich.edu/wiki/VerifyIDintensity 

http://genome.sph.umich.edu/wiki/VerifyBamID
http://genome.sph.umich.edu/wiki/VerifyIDintensity


Estimation & Correction of DNA Contamination 

 Likelihood-based model accurately estimates of % of potential 
sample contamination.  

 

 

 

 

 

 The sample likelihood model can be used to correct genotype 
likelihoods, which greatly improves genotype accuracies. 

• Manuscript in progress (w/ M. Flickinger) 

 

 

American Journal of Human Genetics, 2012  



Efficient and Scalable Software Pipeline for 
Large-scale Sequence Data 

Part II 



Base Distribution in Two Samples 

Reference 

Sample 1 

5’-AGCTGATAGCTAGCTATCTGACGAGCCCGATC-3’ 

   AGCTGATAGCTGGCTAGCTG 
    GCTGATAGCTAGCTAGCTGACGAG  
     CTGATAGCTGGCTAGCTGACGAGC 
        ATAGCTAGCTAGCTGACGAGCCCG 

Sample 2    AGCTGATAGCTGGCTATCTG 
    GCTGACAGCTGGCTATCTGACGAG 
     CTGACAGCTGGCTATCTGACGAGC 
        ATAGCTGGCTATCTGACGAGCCCG 

Heterozygous Homozygous ALT 



GotCloud SNP Calling Pipeline 
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Variant Calling From Sequence Reads 

Optional LD-aware Step 
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Calling Consensus Genotypes 

 Each aligned read provides a small amount of evidence 
about the underlying genotype 

• Read may be consistent with a particular genotype … 

• Read may be less consistent with other genotypes … 

• A single read is never definitive 

 

 This evidence is cumulated gradually, until we reach a 
point where the genotype can be called confidently 

 



Shotgun Sequence Data 

5’-ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3’ 
Reference Genome 

GCTAGCTGATAGCTAGCTAGCTGATGAGCCCGA 

AGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTG 

ATGCTAGCTGATAGCTAGCTAGCTGATGAGCC 

ATAGCTAGATAGCTGATGAGCCCGATCGCTGCTAGCTC 

TAGCTGATAGCTAGATAGCTGATGAGCCCGAT 

Sequence Reads 

Possible Genotypes 

P(reads|A/A , read mapped)= 0.00000098 

P(reads|A/C , read mapped)= 0.03125 

P(reads|C/C , read mapped)= 0.000097 

Combine these likelihoods with a prior incorporating information from other 

individuals and flanking sites to assign a genotype. 



Individual Based Prior 

5’-ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3’ 

Reference Genome 

GCTAGCTGATAGCTAGCTAGCTGATGAGCCCGA 

AGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTG 

ATGCTAGCTGATAGCTAGCTAGCTGATGAGCC 

ATAGCTAGATAGCTGATGAGCCCGATCGCTGCTAGCTC 

TAGCTGATAGCTAGATAGCTGATGAGCCCGAT 

Sequence Reads 

Individual Based Prior: Every site has 1/1000 probability of varying. 

P(reads|A/A)= 0.00000098 Prior(A/A) = 0.00034 Posterior(A/A) = <.001 
 

P(reads|A/C)= 0.03125  Prior(A/C) = 0.00066 Posterior(A/C) = 0.175 
 

P(reads|C/C)= 0.000097  Prior(C/C) = 0.99900 Posterior(C/C) = 0.825 



Population Based Prior 

5’-ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3’ 

Reference Genome 

GCTAGCTGATAGCTAGCTAGCTGATGAGCCCGA 

AGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTG 

ATGCTAGCTGATAGCTAGCTAGCTGATGAGCC 

ATAGCTAGATAGCTGATGAGCCCGATCGCTGCTAGCTC 

TAGCTGATAGCTAGATAGCTGATGAGCCCGAT 

Sequence Reads 

Population Based Prior: Use frequency information from examining others at the same site. 
In the example above, we estimated P(A) = 0.20 

P(reads|A/A)= 0.00000098 Prior(A/A) = 0.04  Posterior(A/A) = <.001 
 

P(reads|A/C)= 0.03125  Prior(A/C) = 0.32  Posterior(A/C) = 0.999 
 

P(reads|C/C)= 0.000097  Prior(C/C) = 0.64  Posterior(C/C) = <.001 



Sequence Based Genotype Calls 

 Individual Based Prior 

• Assumes all sites have an equal probability of showing polymorphism 

• Specifically, assumption is that about 1/1000 bases differ from reference 

• If reads where error free and sampling Poisson … 

• … 14x coverage would allow for 99.8% genotype accuracy 

• … 30x coverage of the genome needed to allow for errors and clustering 

 

 Population Based Prior 

• Uses frequency information obtained from examining other individuals 

• Calling very rare polymorphisms still requires 20-30x coverage of the genome 

• Calling common polymorphisms requires much less data 



Population-based Prior for a Bi-allelic SNP 

 Prior probability of a site being a SNP with alleles {a,b}: 

 

 

• n : number of individuals 

• Based on neutral coalescence model 

 Simple prior for each {a,b} pair 

 

 

 

 



Posterior Probability of Being an Bi-allelic SNP 

 Posterior probability of being a SNP with reads 

 

 

 

 

 

 

 Multi-sample statistic minimizes false discoveries! 

Prior 

From HWE at MLE of allele freq. 
Genotype Likelihood 

*Other toolsets have different models for likelihood and posterior 



Variant Filtering 

Optional LD-aware Step 
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VCF (Variant Call Format) 



SNP Filtering 

 Even with proper modeling of population-based prior, 
false discoveries do occur 

 False discoveries affects the overall quality, not only for 
the problematic sites but many other sites in LD 

 

 There are many indicators 

• Base read distribution, base quality, mapping quality, … 

• Multi-sample statistics are often more informative 

 



1 monomorphic site: reads associated with the sample 

called polymorphic have suspicious mapping quality 

ALT alleles only in low mapping quality reads 

[IGV pictures from Eric Banks] 



1 monomorphic site: reads with the alternate allele 

also have a nearby deletion 

All reads with ALT alleles have deletions 



How to Tell Good from Bad: Example 

  … C … 
  … T … 
  … C … 
  … T … 
  … T … 

… AGGTCTAA … Reference : 

Sample 1 
  … C … 
  … T … 
  … T … 
  … T … 
  … T … 

… GAATTACA … 

0.6 0.8 

We expect 50:50 read distribution for HET sites 



How to Tell Good from Bad: Example 

  … C … 
  … T … 
  … C … 
  … T … 
  … T … 

… AGGTCTAA … Reference : 

Sample 1 
  … C … 
  … T … 
  … T … 
  … T … 
  … T … 

… GAATTACA … 

0.6 0.8 

Good Bad 



How to Tell Good from Bad: Example 

Sample N   … C … 
  … C … 
  … T … 
  … T … 
  … T … 
  … T … 

  … C … 
  … T … 
  … T … 
  … T … 
  … C … 
  … T … 0.67 0.67 

? ? 

Hard to tell whether it’s random deviation or not on a 

single sample 



Multi-sample Filtering is Informative 

  … T … 
  … C … 
  … C … 
  … C … 
  … T … 

  … C … 
  … T … 
  … C … 
  … T … 
  … T … 

… AGGTCTAA … Reference : 

Sample 1 

Sample N   … C … 
  … C … 
  … T … 
  … T … 
  … T … 
  … T … 

Sample 2   … T … 
  … T … 
  … T … 
  … C … 
  … T … 

  … C … 
  … T … 
  … T … 
  … T … 
  … T … 

… GAATTACA … 

  … C … 
  … T … 
  … T … 
  … T … 
  … C … 
  … T … 

Overall Balance: 0.75 

0.6 

0.4 

0.67 

0.8 

0.8 

0.67 

Overall Balance: 0.56 



Filtering Criteria Examples 

Feature Description 

Depth Overall depth across samples 

QUAL Overall genotype confidence 

Call Rate Proportion of genotyped samples 

Allele Balance (# REF)/(# ALT) in HET sites 

Strand Bias Correlation of ALT allele with +/- strand 

Cycle Bias Correlation of ALT allele with read cycle 

Etc. And many more… 
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Allele Balance 

Hard Filtering by Individual Thresholds 

 Problems 

• False negative increases 
with number of filters 

 

• Too many knobs to turn 
(thresholds) 



Filtering by Supervised Learning 

 Use features to train a support vector machine (SVM) 

• Can be trained using suspected positive/negative examples 

• Provides single score from all features combined 

 

 Training 

• Positive examples 
 Known polymorphic sites 

• Negative examples 
 Filtered out by multiple hard filters 

• Input 
 All individual features collected for each site 



Filtering by Supervised Learning 

 Use features to train a support vector machine (SVM) 

• Can be trained using suspected positive/negative examples 

• Provides single score from all features combined 

 

 Training 

• Positive examples 
 Known polymorphic sites 

• Negative examples 
 Filtered out by multiple hard filters 

• Input 
 All individual features collected for each site 



Maximize margin 

>20 dimensional feature set was used for final filtering under nonlinear kernel space  

S
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Allele Balance 

•  Positive example 
•  Negative example 

Training SVM with Examples 



•  Filter PASS 
•  Filter FAIL 

SVM Output in Multi-dimensional Space 

Most of FAIL SNPs are outliers in higher-dimensional view 

St
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Allele Balance 
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Allele Balance 



Improved Sensitivity by SVM 
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Chr20 unfiltered
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Chr20 SVM

Exome unfiltered

Exome hardfilter

Exome SVM



Evaluation of SNP Callsets 

 Sensitivity on known SNP data 

• dbSNP, HapMap, 1000G, etc. 

 

 Transition to transversion ratio (Ts/Tv) 

• Transition is easier to occur. 

• Typical Ts/Tv values 
 Whole genome: 2.2~2.4  

 Whole exome: 2.7~3.0 
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Not in 1000G

In 1000G

Ts/Tv 2.29 

Ts/Tv 
2.78 

Ts/Tv 
2.65 

Ts/Tv 
0.64 

In
 V

ar
ia

n
ts

 w
it

h
 A

F 
> 

1
%

 

Results: Exome Sequencing Project (GO-ESP) 



LD-aware Genotype Refinement 

Optional LD-aware Step 
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Sequence Based Genotype Calls - Haplotypes 

 Individual Based Prior 

 Population Based Prior 

 Haplotype Based Prior or Imputation Based Analysis 

• Compares individuals with similar flanking haplotypes 

• Calling very rare polymorphisms still requires 20-30x coverage of 
the genome 

• Can make accurate genotype calls with 2-4x coverage of the 
genome 

• Accuracy improves as more individuals are sequenced 



Haplotype-aware Genotype Refinement 

 People share ‘blocks’ of genotypes 

 Haplotype-phasing improves genotype accuracy by 
correcting unlikely genotypes and filling in missing 
genotypes 

 gotCloud takes two-steps 

• Beagle (Step 1) 

• ThunderVCF (Step 2) 

 



Silly Cartoon View of Shot Gun Data 
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Silly Cartoon View of Shot Gun Data 
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Haplotype Aware Analysis Single Site Analysis 

64 

Does Haplotype Information Really Help? 



Low-pass Sequencing Improves with More Samples 

Analysis #SNPs dbSNP% 

Missing 

HapMap 

% Ts/Tv 

Accuracy 

at Hets* 

March 2010 

Michigan/EUR 60 
9,158,226 63.5 7.0 1.91 96.74 

August 2010 

Michigan/EUR 186 
10,537,718 52.5 5.6 2.04 97.56 

October 2010 

Michigan/EUR 280 
13,276,643 50.1 1.8 2.20 97.91** 

 

Accuracy of Low Pass Genotypes Generated by 1000 Genomes Project, 

When Analyzed at the University of Michigan 



Low-pass Sequencing Improves with More Samples 
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LD-refinement steps 

10

100

1000



Quality of 1000G Phase 1 Genotypes 

TYPE EVAL N 
#Variants 

(Overlap) 

HOMREF 

(EVAL) 

HET 

(EVAL) 

HOMALT 

(EVAL) 

OVER- 

ALL 

SNP Omni2.5 1,092 2.1M 99.87% 99.09% 99.35% 99.65% 

SNP CGI 34 13M 99.87% 98.63% 98.75% 99.60% 

INDEL CGI 34 820k 98.69% 95.64% 96.35% 98.01% 

SV Conrad 248 1.1k 99.92% 99.01% 99.47% 99.82% 

• Genotype likelihood adjusting for individual BAM’s bias statistic 

reduces ~10% of non-ref genotype discordance  

 

• MaCH/Thunder refinement starting with beagle haplotypes provide 

an additional ~15% reduction. 

 



Low-pass Sequencing with Many Samples 

 For a given budget, should we sequence deeper or 
sequence more? 

 

 Analysis of Low Pass Sequence Data 

• Single sample analyses produce poor quality variants. 

• Single site analyses produce poor quality genotypes. 

• Multi sample, multi-site analyses can work quite well. 

 

 Intuition for why low pass analyses are attractive for co
mplex disease association studies.  



Implications for Whole Genome Sequencing Studies 

 Suppose we could afford 2,000x data (6,000 GB) 

 We could sequence 67 individuals at 30x 

 Sequencing of 67 individuals at 30x depth 

     

Minor Allele Frequency 0.5 – 1.0% 1.0 – 2.0% 2.0 – 5.0% >5% 

     

Proportion of Detected Sites 59.3% 90.1% 96.9% 100.0% 

Genotyping Accuracy 100.0% 100.0% 100.0% 100.0% 

…. Heterozygous Sites Only 100.0% 100.0% 100.0% 100.0% 

Correlation with Truth (r2) 99.8% 99.9% 99.9% 100.0% 

Effective Sample Size (n·r2) 67 67 67 67 

 



Implications for Whole Genome Sequencing Studies 

 Suppose we could afford 2,000x data (6,000 GB) 

 We could sequence 1,000 individuals at 2x 

     

 Sequencing of 1000 individuals at 2x depth 

     

Minor Allele Frequency 0.5 – 1.0% 1.0 – 2.0% 2.0 – 5.0% >5% 

     

Proportion of Detected Sites 79.6% 98.8% 100.0% 100.0% 

Genotyping Accuracy 99.6% 99.5% 99.5% 99.8% 

…. Heterozygous Sites Only 78.8% 89.5% 95.9% 99.8% 

Correlation with Truth (r2) 56.7% 76.1% 88.2% 97.8% 

Effective Sample Size (n·r2) 567 761 882 978 

 



Sequencing Study Design - Considerations 

 Sequencing Depth 

• Improved throughput enables more samples with moderate 
(~10x) coverage at reasonable costs 

 

 Whole genome vs Whole Exome vs Targeted Genes  

 

 Sequence + Array  

• Which samples to be sequenced? 

 



Suggested Resources 

 Michigan Mapping/Variant calling pipeline on the cloud 

• http://genome.sph.umich.edu/wiki/GotCloud 

 1000 Genomes Project 
http://http://www.1000genomes.org/  

• Includes sequence data, variant genotypes, and many more 

 VCF and other file formats:                   
https://github.com/samtools/hts-specs 
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