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Estimating (and correcting) 
DNA sample contamination 
 

Part I 



DNA Sample Contamination 

*Picture from D. Figarelli, National Forensic Science Tech. Center 



Contamination in Sequencing Data 

 

 DNA contamination is common and serious 

• Timely feedback could save multi-million dollar project 

• Exact estimation and correction could save TB of data 

 

 In-silico approach can solve In-vitro problems 

 



Reference-Aligned Sequence Reads 

Reference 

Sample 

5’-AGCTGATAGCTAGCTACCTGACGAGCCCGATC-3’ 

   AGCTGATAGCTGGCTA           
   AGCTGATAGCTGGCTAACTG 
    GCTGATAGCTAGCTAACTGACGAG 
     CTGATAGCTAGCTAACTGACGAGC 
      TGATAGCTGGCTAACTGACGAGCC 
        ATAGCTAGCTAACTGACGAGCCCG 



Single-Nucleotide Polymorphism (SNP) 

Reference 

Sample 

5’-AGCTGATAGCTAGCTACCTGACGAGCCCGATC-3’ 

   AGCTGATAGCTGGCTA           
   AGCTGATAGCTGGCTAACTG 
    GCTGATAGCTAGCTAACTGACGAG 
     CTGATAGCTAGCTAACTGACGAGC 
      TGATAGCTGGCTAACTGACGAGC 
        ATAGCTAGCTAACTGACGAGCCCG 

Genotype: GA 

(Heterozygote) 

Genotype: AA 

(Homozygote) 



Base Distribution in Two Samples 

Reference 

Sample 1 

5’-AGCTGATAGCTAGCTATCTGACGAGCCCGATC-3’ 

   AGCTGATAGCTGGCTAGCTG 
    GCTGATAGCTAGCTAGCTGACGAG  
     CTGATAGCTGGCTAGCTGACGAGC 
        ATAGCTAGCTAGCTGACGAGCCCG 

Sample 2    AGCTGATAGCTGGCTATCTG 
    GCTGACAGCTGGCTATCTGACGAG 
     CTGACAGCTGGCTATCTGACGAGC 
        ATAGCTGGCTATCTGACGAGCCCG 



Base Distribution in Two Samples 

Reference 

Sample 1 

5’-AGCTGATAGCTAGCTATCTGACGAGCCCGATC-3’ 

   AGCTGATAGCTGGCTAGCTG 
    GCTGATAGCTAGCTAGCTGACGAG  
     CTGATAGCTGGCTAGCTGACGAGC 
        ATAGCTAGCTAGCTGACGAGCCCG 

Sample 2    AGCTGATAGCTGGCTATCTG 
    GCTGACAGCTGGCTATCTGACGAG 
     CTGACAGCTGGCTATCTGACGAGC 
        ATAGCTGGCTATCTGACGAGCCCG 

Heterozygous Homozygous ALT 



Contamination: Mixture of Samples 

Reference 

Sample 1+2 

5’-AGCTGATAGCTAGCTATCTGACGAGCCCGATC-3’ 

   AGCTGATAGCTGGCTAGCTG 
    GCTGATAGCTAGCTAGCTGACGAG  
     CTGATAGCTGGCTAGCTGACGAGC 
        ATAGCTAGCTAGCTGACGAGCCCG 
   AGCTGATAGCTGGCTATCTG 
    GCTGACAGCTGGCTATCTGACGAG 
     CTGACAGCTGGCTATCTGACGAGC 
        ATAGCTGGCTATCTGACGAGCCCG 



Contamination: Changes Base Distributions 

Reference 

Sample 1+2 

5’-AGCTGATAGCTAGCTATCTGACGAGCCCGATC-3’ 

   AGCTGATAGCTGGCTAGCTG 
    GCTGATAGCTAGCTAGCTGACGAG  
     CTGATAGCTGGCTAGCTGACGAGC 
        ATAGCTAGCTAGCTGACGAGCCCG 
   AGCTGATAGCTGGCTATCTG 
    GCTGACAGCTGGCTATCTGACGAG 
     CTGACAGCTGGCTATCTGACGAGC 
        ATAGCTGGCTATCTGACGAGCCCG 

More heterozygote SNPs with biased distribution 



Likelihood of Base Reads 

 M markers 

 Ni base reads:  

 

 

 

 

 

 

 
Likelihood of observed bases at 

i-th marker, given  

AGCTGATAGCTGGCTAGC 
 GCTGATAGCTAGCTAGCTG  
  CTGATAGCTGGCTAGCTGACG 
     ATAGCTAGCTAGCTGACGA 

M markers 

N1 N2 N3 reads 



Two-sample Mixture Model 

 Likelihood with mixing proportion α 

 

 

 

 

 

 



Two-sample Mixture Model 

 Likelihood with mixing proportion α 

 

 

 

 

 

 
Likelihood from 

original sample 



Two-sample Mixture Model 

 Likelihood with mixing proportion α 

 

 

 

 

 

 
Likelihood from 

contaminating sample 



Two-sample Mixture Model 

 Likelihood with mixing proportion α 

 

 

 

 

 

 

Known genotypes for 

M sites (CHIPMIX) 



Two-sample Mixture Model 

 Likelihood with mixing proportion α 

 

 

 

 

 

 

From population allele 

freq. under HWE 



Two-sample Mixture Model 

 Likelihood with mixing proportion α 

 

 

 

 

 

 

Contamination level: MLE of α 



Simple Likelihood Model 

 Probability of observing a base ( b ) depends on 

• Underlying (true) genotype  ( G ) 

• Occurrence of base read error ( e ) 

• Example 
 P( b = A | G = AA, no error (e=0) ) = 1 

 P( b = G | G = TT,  error (e=1) ) = 1/3   

(In case of base read error, assume all possibilities are equally likely) 

• P(b |G ) = P(b |G, e=0) P(e=0) + P(b |G, e=1) P(e=1) 

 

• P(e) from phred-scale base quality for j-th read in i-th site: 



Estimation with Sequence Data Only (FREEMIX) 

 If sequenced sample does not have external genotypes 

• Model both genotypes from population allele frequency 

 

 Latent variables 

• Gi : true genotype of the contaminated sample 

• gi : true genotype of the contaminating sample 



Results: Simulation 

 Simulated contamination from real sequence data 

• Can accurately detect as low as 1% contamination 

• Works with or without known genotype data 



Results: Type-2 Diabetes Sequencing Study 

# of HETs 

#HETs/#HOMs 

Sequencing Date in 2010 

Feb    Mar   Apr         May            Jun       Jul   Sep      Nov                                Dec 

Something changed 

~2800 Whole genome sequences  



Results: Type-2 Diabetes Sequencing Study 

# of HETs 

#HETs/#HOMs 

Estimated % contamination 

Sequencing Date 
Something changed 



Results: Type-2 Diabetes Sequencing Study 

# of HETs 

#HETs/#HOMs 

Estimated % contamination 

Sequencing Date No contamination after 
a protocol change 

Something changed 



Contamination in Array Intensity Data 



Software for Contamination Problems 

 Software tools to check contamination: 

• http://genome.sph.umich.edu/wiki/VerifyBamID 

• http://genome.sph.umich.edu/wiki/VerifyIDintensity 

http://genome.sph.umich.edu/wiki/VerifyBamID
http://genome.sph.umich.edu/wiki/VerifyIDintensity


Estimation & Correction of DNA Contamination 

 Likelihood-based model accurately estimates of % of potential 
sample contamination.  

 

 

 

 

 

 The sample likelihood model can be used to correct genotype 
likelihoods, which greatly improves genotype accuracies. 

• Manuscript in progress (w/ M. Flickinger) 

 

 

American Journal of Human Genetics, 2012  



Efficient and Scalable Software Pipeline for 
Large-scale Sequence Data 

Part II 



Base Distribution in Two Samples 

Reference 

Sample 1 

5’-AGCTGATAGCTAGCTATCTGACGAGCCCGATC-3’ 

   AGCTGATAGCTGGCTAGCTG 
    GCTGATAGCTAGCTAGCTGACGAG  
     CTGATAGCTGGCTAGCTGACGAGC 
        ATAGCTAGCTAGCTGACGAGCCCG 

Sample 2    AGCTGATAGCTGGCTATCTG 
    GCTGACAGCTGGCTATCTGACGAG 
     CTGACAGCTGGCTATCTGACGAGC 
        ATAGCTGGCTATCTGACGAGCCCG 

Heterozygous Homozygous ALT 



GotCloud SNP Calling Pipeline 
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Variant Calling From Sequence Reads 

Optional LD-aware Step 

Genotype 
Likelihood 

BAM  Unfiltered 
VCF 

Hard-filtered 
VCF 

Genotype 
Likelihood 

BAM  Genotype 
Likelihood 

BAM  

Pileup Call variants 

Features 
Initial filter 

Filtered 
VCF 

SVM filter 

Filtered/Phased 
VCF 

Phasing/Refinement 



Calling Consensus Genotypes 

 Each aligned read provides a small amount of evidence 
about the underlying genotype 

• Read may be consistent with a particular genotype … 

• Read may be less consistent with other genotypes … 

• A single read is never definitive 

 

 This evidence is cumulated gradually, until we reach a 
point where the genotype can be called confidently 

 



Shotgun Sequence Data 

5’-ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3’ 
Reference Genome 

GCTAGCTGATAGCTAGCTAGCTGATGAGCCCGA 

AGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTG 

ATGCTAGCTGATAGCTAGCTAGCTGATGAGCC 

ATAGCTAGATAGCTGATGAGCCCGATCGCTGCTAGCTC 

TAGCTGATAGCTAGATAGCTGATGAGCCCGAT 

Sequence Reads 

Possible Genotypes 

P(reads|A/A , read mapped)= 0.00000098 

P(reads|A/C , read mapped)= 0.03125 

P(reads|C/C , read mapped)= 0.000097 

Combine these likelihoods with a prior incorporating information from other 

individuals and flanking sites to assign a genotype. 



Individual Based Prior 

5’-ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3’ 

Reference Genome 

GCTAGCTGATAGCTAGCTAGCTGATGAGCCCGA 

AGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTG 

ATGCTAGCTGATAGCTAGCTAGCTGATGAGCC 

ATAGCTAGATAGCTGATGAGCCCGATCGCTGCTAGCTC 

TAGCTGATAGCTAGATAGCTGATGAGCCCGAT 

Sequence Reads 

Individual Based Prior: Every site has 1/1000 probability of varying. 

P(reads|A/A)= 0.00000098 Prior(A/A) = 0.00034 Posterior(A/A) = <.001 
 

P(reads|A/C)= 0.03125  Prior(A/C) = 0.00066 Posterior(A/C) = 0.175 
 

P(reads|C/C)= 0.000097  Prior(C/C) = 0.99900 Posterior(C/C) = 0.825 



Population Based Prior 

5’-ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3’ 

Reference Genome 

GCTAGCTGATAGCTAGCTAGCTGATGAGCCCGA 

AGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTG 

ATGCTAGCTGATAGCTAGCTAGCTGATGAGCC 

ATAGCTAGATAGCTGATGAGCCCGATCGCTGCTAGCTC 

TAGCTGATAGCTAGATAGCTGATGAGCCCGAT 

Sequence Reads 

Population Based Prior: Use frequency information from examining others at the same site. 
In the example above, we estimated P(A) = 0.20 

P(reads|A/A)= 0.00000098 Prior(A/A) = 0.04  Posterior(A/A) = <.001 
 

P(reads|A/C)= 0.03125  Prior(A/C) = 0.32  Posterior(A/C) = 0.999 
 

P(reads|C/C)= 0.000097  Prior(C/C) = 0.64  Posterior(C/C) = <.001 



Sequence Based Genotype Calls 

 Individual Based Prior 

• Assumes all sites have an equal probability of showing polymorphism 

• Specifically, assumption is that about 1/1000 bases differ from reference 

• If reads where error free and sampling Poisson … 

• … 14x coverage would allow for 99.8% genotype accuracy 

• … 30x coverage of the genome needed to allow for errors and clustering 

 

 Population Based Prior 

• Uses frequency information obtained from examining other individuals 

• Calling very rare polymorphisms still requires 20-30x coverage of the genome 

• Calling common polymorphisms requires much less data 



Population-based Prior for a Bi-allelic SNP 

 Prior probability of a site being a SNP with alleles {a,b}: 

 

 

• n : number of individuals 

• Based on neutral coalescence model 

 Simple prior for each {a,b} pair 

 

 

 

 



Posterior Probability of Being an Bi-allelic SNP 

 Posterior probability of being a SNP with reads 

 

 

 

 

 

 

 Multi-sample statistic minimizes false discoveries! 

Prior 

From HWE at MLE of allele freq. 
Genotype Likelihood 

*Other toolsets have different models for likelihood and posterior 



Variant Filtering 

Optional LD-aware Step 

Genotype 
Likelihood 

BAM  Unfiltered 
VCF 

Hard-filtered 
VCF 

Genotype 
Likelihood 

BAM  Genotype 
Likelihood 

BAM  

Pileup Call variants 

Features 
Initial filter 

Filtered 
VCF 

SVM filter 

Filtered/Phased 
VCF 
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VCF (Variant Call Format) 



SNP Filtering 

 Even with proper modeling of population-based prior, 
false discoveries do occur 

 False discoveries affects the overall quality, not only for 
the problematic sites but many other sites in LD 

 

 There are many indicators 

• Base read distribution, base quality, mapping quality, … 

• Multi-sample statistics are often more informative 

 



1 monomorphic site: reads associated with the sample 

called polymorphic have suspicious mapping quality 

ALT alleles only in low mapping quality reads 

[IGV pictures from Eric Banks] 



1 monomorphic site: reads with the alternate allele 

also have a nearby deletion 

All reads with ALT alleles have deletions 



How to Tell Good from Bad: Example 

  … C … 
  … T … 
  … C … 
  … T … 
  … T … 

… AGGTCTAA … Reference : 

Sample 1 
  … C … 
  … T … 
  … T … 
  … T … 
  … T … 

… GAATTACA … 

0.6 0.8 

We expect 50:50 read distribution for HET sites 



How to Tell Good from Bad: Example 

  … C … 
  … T … 
  … C … 
  … T … 
  … T … 

… AGGTCTAA … Reference : 

Sample 1 
  … C … 
  … T … 
  … T … 
  … T … 
  … T … 

… GAATTACA … 

0.6 0.8 

Good Bad 



How to Tell Good from Bad: Example 

Sample N   … C … 
  … C … 
  … T … 
  … T … 
  … T … 
  … T … 

  … C … 
  … T … 
  … T … 
  … T … 
  … C … 
  … T … 0.67 0.67 

? ? 

Hard to tell whether it’s random deviation or not on a 

single sample 



Multi-sample Filtering is Informative 

  … T … 
  … C … 
  … C … 
  … C … 
  … T … 

  … C … 
  … T … 
  … C … 
  … T … 
  … T … 

… AGGTCTAA … Reference : 

Sample 1 

Sample N   … C … 
  … C … 
  … T … 
  … T … 
  … T … 
  … T … 

Sample 2   … T … 
  … T … 
  … T … 
  … C … 
  … T … 

  … C … 
  … T … 
  … T … 
  … T … 
  … T … 

… GAATTACA … 

  … C … 
  … T … 
  … T … 
  … T … 
  … C … 
  … T … 

Overall Balance: 0.75 

0.6 

0.4 

0.67 

0.8 

0.8 

0.67 

Overall Balance: 0.56 



Filtering Criteria Examples 

Feature Description 

Depth Overall depth across samples 

QUAL Overall genotype confidence 

Call Rate Proportion of genotyped samples 

Allele Balance (# REF)/(# ALT) in HET sites 

Strand Bias Correlation of ALT allele with +/- strand 

Cycle Bias Correlation of ALT allele with read cycle 

Etc. And many more… 
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Allele Balance 

Hard Filtering by Individual Thresholds 

 Problems 

• False negative increases 
with number of filters 

 

• Too many knobs to turn 
(thresholds) 



Filtering by Supervised Learning 

 Use features to train a support vector machine (SVM) 

• Can be trained using suspected positive/negative examples 

• Provides single score from all features combined 

 

 Training 

• Positive examples 
 Known polymorphic sites 

• Negative examples 
 Filtered out by multiple hard filters 

• Input 
 All individual features collected for each site 



Filtering by Supervised Learning 

 Use features to train a support vector machine (SVM) 

• Can be trained using suspected positive/negative examples 

• Provides single score from all features combined 

 

 Training 

• Positive examples 
 Known polymorphic sites 

• Negative examples 
 Filtered out by multiple hard filters 

• Input 
 All individual features collected for each site 



Maximize margin 

>20 dimensional feature set was used for final filtering under nonlinear kernel space  
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Allele Balance 

•  Positive example 
•  Negative example 

Training SVM with Examples 



•  Filter PASS 
•  Filter FAIL 

SVM Output in Multi-dimensional Space 

Most of FAIL SNPs are outliers in higher-dimensional view 
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Allele Balance 



Improved Sensitivity by SVM 
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Number of Samples 

Chr20 unfiltered

Chr20 hardfilter

Chr20 SVM

Exome unfiltered

Exome hardfilter

Exome SVM



Evaluation of SNP Callsets 

 Sensitivity on known SNP data 

• dbSNP, HapMap, 1000G, etc. 

 

 Transition to transversion ratio (Ts/Tv) 

• Transition is easier to occur. 

• Typical Ts/Tv values 
 Whole genome: 2.2~2.4  

 Whole exome: 2.7~3.0 
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99.50%
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Unfiltered Filtered
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Results: Exome Sequencing Project (GO-ESP) 



LD-aware Genotype Refinement 

Optional LD-aware Step 

Genotype 
Likelihood 

BAM  Unfiltered 
VCF 

Hard-filtered 
VCF 

Genotype 
Likelihood 

BAM  Genotype 
Likelihood 

BAM  

Pileup Call variants 

Features 
Initial filter 

Filtered 
VCF 

SVM filter 

Filtered/Phased 
VCF 

Phasing/Refinement 



Sequence Based Genotype Calls - Haplotypes 

 Individual Based Prior 

 Population Based Prior 

 Haplotype Based Prior or Imputation Based Analysis 

• Compares individuals with similar flanking haplotypes 

• Calling very rare polymorphisms still requires 20-30x coverage of 
the genome 

• Can make accurate genotype calls with 2-4x coverage of the 
genome 

• Accuracy improves as more individuals are sequenced 



Haplotype-aware Genotype Refinement 

 People share ‘blocks’ of genotypes 

 Haplotype-phasing improves genotype accuracy by 
correcting unlikely genotypes and filling in missing 
genotypes 

 gotCloud takes two-steps 

• Beagle (Step 1) 

• ThunderVCF (Step 2) 

 



Silly Cartoon View of Shot Gun Data 
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Silly Cartoon View of Shot Gun Data 
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Haplotype Aware Analysis Single Site Analysis 

64 

Does Haplotype Information Really Help? 



Low-pass Sequencing Improves with More Samples 

Analysis #SNPs dbSNP% 

Missing 

HapMap 

% Ts/Tv 

Accuracy 

at Hets* 

March 2010 

Michigan/EUR 60 
9,158,226 63.5 7.0 1.91 96.74 

August 2010 

Michigan/EUR 186 
10,537,718 52.5 5.6 2.04 97.56 

October 2010 

Michigan/EUR 280 
13,276,643 50.1 1.8 2.20 97.91** 

 

Accuracy of Low Pass Genotypes Generated by 1000 Genomes Project, 

When Analyzed at the University of Michigan 



Low-pass Sequencing Improves with More Samples 
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LD-refinement steps 
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100

1000



Quality of 1000G Phase 1 Genotypes 

TYPE EVAL N 
#Variants 

(Overlap) 

HOMREF 

(EVAL) 

HET 

(EVAL) 

HOMALT 

(EVAL) 

OVER- 

ALL 

SNP Omni2.5 1,092 2.1M 99.87% 99.09% 99.35% 99.65% 

SNP CGI 34 13M 99.87% 98.63% 98.75% 99.60% 

INDEL CGI 34 820k 98.69% 95.64% 96.35% 98.01% 

SV Conrad 248 1.1k 99.92% 99.01% 99.47% 99.82% 

• Genotype likelihood adjusting for individual BAM’s bias statistic 

reduces ~10% of non-ref genotype discordance  

 

• MaCH/Thunder refinement starting with beagle haplotypes provide 

an additional ~15% reduction. 

 



Low-pass Sequencing with Many Samples 

 For a given budget, should we sequence deeper or 
sequence more? 

 

 Analysis of Low Pass Sequence Data 

• Single sample analyses produce poor quality variants. 

• Single site analyses produce poor quality genotypes. 

• Multi sample, multi-site analyses can work quite well. 

 

 Intuition for why low pass analyses are attractive for co
mplex disease association studies.  



Implications for Whole Genome Sequencing Studies 

 Suppose we could afford 2,000x data (6,000 GB) 

 We could sequence 67 individuals at 30x 

 Sequencing of 67 individuals at 30x depth 

     

Minor Allele Frequency 0.5 – 1.0% 1.0 – 2.0% 2.0 – 5.0% >5% 

     

Proportion of Detected Sites 59.3% 90.1% 96.9% 100.0% 

Genotyping Accuracy 100.0% 100.0% 100.0% 100.0% 

…. Heterozygous Sites Only 100.0% 100.0% 100.0% 100.0% 

Correlation with Truth (r2) 99.8% 99.9% 99.9% 100.0% 

Effective Sample Size (n·r2) 67 67 67 67 

 



Implications for Whole Genome Sequencing Studies 

 Suppose we could afford 2,000x data (6,000 GB) 

 We could sequence 1,000 individuals at 2x 

     

 Sequencing of 1000 individuals at 2x depth 

     

Minor Allele Frequency 0.5 – 1.0% 1.0 – 2.0% 2.0 – 5.0% >5% 

     

Proportion of Detected Sites 79.6% 98.8% 100.0% 100.0% 

Genotyping Accuracy 99.6% 99.5% 99.5% 99.8% 

…. Heterozygous Sites Only 78.8% 89.5% 95.9% 99.8% 

Correlation with Truth (r2) 56.7% 76.1% 88.2% 97.8% 

Effective Sample Size (n·r2) 567 761 882 978 

 



Sequencing Study Design - Considerations 

 Sequencing Depth 

• Improved throughput enables more samples with moderate 
(~10x) coverage at reasonable costs 

 

 Whole genome vs Whole Exome vs Targeted Genes  

 

 Sequence + Array  

• Which samples to be sequenced? 

 



Suggested Resources 

 Michigan Mapping/Variant calling pipeline on the cloud 

• http://genome.sph.umich.edu/wiki/GotCloud 

 1000 Genomes Project 
http://http://www.1000genomes.org/  

• Includes sequence data, variant genotypes, and many more 

 VCF and other file formats:                   
https://github.com/samtools/hts-specs 
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