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Part |

Estimating (and correcting)
DNA sample contamination



DNA Sample Contamination

*Picture from D. Figarelli, National Forensic Science Tech. Center



Contamination in Sequencing Data

= DNA contamination is common and serious

* Timely feedback could save multi-million dollar project
* Exact estimation and correction could save TB of data

" /n-silico approach can solve In-vitro problems



Reference-Aligned Sequence Reads
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Single-Nucleotide Polymorphism (SNP)

Reference

Sample

5° -AGCT

ATA

cTA CTA|EB:T ACGAGCCCGATC-3?
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Base Distribution in Two Samples

Reference 5? -AGCTGATAGCTAGCTATCTGACGAGCCCGATC-3"

Sample 1 AGCTGATAGCTGGCTAGCT

CTGATAGCTAGCTAGCTGAC

CTGATAGCTGGCTAGCTGAC
ATA-CTA CTA CT-AC A-CCC

> >
(@

AGCTGATAGCTGGCTATCT
CTGACAGCTGGCTATCTGAC
CTGACAGCTGGCTATCTGAC

ATACCTCGCTATCTGACGAGCCC

> >
(@]



Base Distribution in Two Samples

Reference 5? -AGCTGATAGCTAGCTATCTGACGAGCCCGATC-3"

Sample 1 AGCTGATAGCTAGCTACCT

CTGATAGCTAGCTAGCTGACGA

CTGATAGCTC[SCTAGCTEACEAGC
ATAGIAl CTA [CTCACTATCCC

Sample 2 AGCTGATAGC
CTGACAGC A
CTAACAGC AGC
TIAGC AGCCC

Heterozygous Homozygous ALT



Contamination: Mixture of Samples

Reference 53 _AGCT

Sample 1+2
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Contamination: Changes Base Distributions

Reference 5? -AGCTGATAGCTAGCTATCTGACGAGCCCGATC-3"

Sample 1+2
ACCTCATA T
CTGATA TGACGA
CTGATA TGACGAGC
ATA TGACGAGCCC
AGCTGATA T
CTGACA TGACGA
CTGACA TGACGAGC
ATA TGACGAGCCC

More heterozygote SNPs with biased distribution



Likelihood of Base Reads

= M markers
= N:base reads: b; = (bi1, b2, .-, bin,)

M markers

Vs

P(b;|G) o

CT

L

I
L

Likelihood of observed bases at
I-th marker, given

_ G, € {AA, AB, BB}




Two-sample Mixture Model

= Likelihood with mixing proportion o
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Two-sample Mixture Model

= Likelihood with mixing proportion o

=HH (bis|Gi; )
Z H zg‘G'wgza )P(gz)

Z]:[ {(1 = a)P(bi;|Gi) + aP(bij|gi) ; P(gi)

Likelihood from
original sample




Two-sample Mixture Model

= Likelihood with mixing proportion o

:HH (bij|Gis )
Z H (bi;|Gi, gis @) P(g:)

ZI_T (1= )P(by|Gy) + aP(bis|:)} Plg:)

Likelihood from
contaminating sample




Two-sample Mixture Model

= Likelihood with mixing proportion o

Known genotypes for
M sites (CHIPMIX)
A\
— | | | | zj’Gi;O‘

N;
Z H (bij1Gis, gi5 @) P(g5)
A AB j=1

= -I:1i
°M

H {(1 — a)P(bi;|Gs) + aP(bislg9:)} P(gs)



Two-sample Mixture Model

= Likelihood with mixing proportion o

=HH (bis|Gi; )
Z H zg‘G'wgza )P(gz)

Z f_[ {(1 = 0)P(by|G:) + 0P (bislan)} Pg:)

From population allele
freq. under HWE




Two-sample Mixture Model

= Likelihood with mixing proportion o

:HH (bij]Gi; )
:H Z H ZJ‘szgu )P(gz)
@ A,AB,BB} j=1
=HZH {(1— a)P(biy|Gy) + aP(bislg:)} Plgs)

Contamination level: MLE of a



Simple Likelihood Model

= Probability of observing a base ( b ) depends on

* Underlying (true) genotype (G)
* Occurrence of base read error (e )

* Example
= P(b=A ] G =AA, noerror (e=0) ) = 1
= P(b=0G]| G=TT, error (e=s1) ) = 1/3

(In case of base read error, assume all possibilities are equally likely)

P(b |G)=P(b |G, e=0) P(e=0) + P(b |G, e=1) P(e=1)

P(e) from phred-scale base quality for j-th read in i-th site:

Qi
P(Gwzl)zl - 10



Estimation with Sequence Data Only (FREEMIX)

= |f sequenced sample does not have external genotypes

* Model both genotypes from population allele frequency

= | atent variables

* @G, : true genotype of the contaminated sample
* g;:true genotype of the contaminating sample




Results: Simulation

= Simulated contamination from real sequence data

Sequence+Array @ (%)

* Can accurately detect as low as 1% contamination

* Works with or without known genotype data

A. Sequence + Array
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Results: Type-2 Diabetes Sequencing Study

~2800 Whole genome sequences
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Something changed




Results: Type-2 Diabetes Sequencing Study
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Results: Type-2 Diabetes Sequencing Study
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Something changed
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Contamination in Array Intensity Data
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Software for Contamination Problems

= Software tools to check contamination:

* http://genome.sph.umich.edu/wiki/VerifyBamID
* http://genome.sph.umich.edu/wiki/VerifylDintensity

e 00 VerifylDintensity - Genon " 0
<« C f& [9 genome.sph.umich.edu/wiki/VerifylDintensity v ® 0 =
2 Login/create account
page discussion View source history
VerifylDintensity

K

(e
CEMNTEHR e (8] VerifyBamID - Genome A *

STATISTIEAL[(— C ff [} genome.sph.umich.edu/wiki/VerifyBamID o @_-) @

2 Login/create account

quick links
page discussion view source histary
= Abacasis Lab
teaching VerifyBamID
= Biostatistics §

C ENTER FOR
verifyBamlD is a software that verifies whether the reads in particular file match previously known genotypes for an

individual (or group of individuals), and checks whether the reads are contaminated as a mixture of two samples.
verifyBamlD can detect sample contamination and swaps when external genotypes are available. When external

uick links
£ genotypes are not available, verifyBamlID still robustly detects sample swaps.
= Abecasis Lab

Contents [hide]

teaching
= Biostatistics 602

1 Download verifyBamID



http://genome.sph.umich.edu/wiki/VerifyBamID
http://genome.sph.umich.edu/wiki/VerifyIDintensity

Estimation & Correction of DNA Contamination

* Likelihood-based model accurately estimates of % of potential
sample contamination.

American Journal of Human Genetics, 2012
ARTICLE

Detecting and Estimating Contamination of Human DNA
Samples in Sequencing and Array-Based Genotype Data

Goo Jun,'? Matthew Flickinger,' Kurt N. Hetrick,2 Jane M. Romm,?> Kimberly F. Doheny,?
Gongalo R. Abecasis,! Michael Boehnke,! and Hyun Min Kangl*

PR, =i 'Y

DNA sample contamination is a serious problem in DNA sequencing studies and may result in systematic genotype misclassification and
Lol e 2 bl ALl 1 il 2 e - | e 2 e 2 Fi) i il - e e e LFn

= The sample likelihood model can be used to correct genotype
likelihoods, which greatly improves genotype accuracies.

* Manuscript in progress (w/ M. Flickinger)



Part Il

Efficient and Scalable Software Pipeline for
Large-scale Sequence Data



Base Distribution in Two Samples

Reference 5? -AGCTGATAGCTAGCTATCTGACGAGCCCGATC-3"

Sample 1 AGCTGATAGCTAGCTACCT

CTGATAGCTAGCTAGCTGACGA

CTGATAGCTC[SCTAGCTEACEAGC
ATAGIAl CTA [CTCACTATCCC

Sample 2 AGCTGATAGC
CTGACAGC A
CTAACAGC AGC
TIAGC AGCCC

Heterozygous Homozygous ALT



GotCloud SNP Calling Pipeline

»  Pileup

Call variants

Unfiltered
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| )@ Initial filter
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Phasing/Refinement |

Filtered




Variant Calling From Sequence Reads

Call variants \

Unfiltered

Genotype VCF

Likelihood

| )@ Initial filter
k Features

Hard-filtered
VCF

Optional LD-aware Step @ SVM filter
Phasing/Refinement |

Filtered




Calling Consensus Genotypes

= Each aligned read provides a small amount of evidence
about the underlying genotype

* Read may be consistent with a particular genotype ...
* Read may be less consistent with other genotypes ...
* Assingle read is never definitive

= This evidence is cumulated gradually, until we reach a
point where the genotype can be called confidently



Shotgun Sequence Data

TAGCTGATAGCTAGATAGCTGATGAGCCCGAT

ATAGCTAGATAGCTGATGAGCCCGATCGCTGCTAGCTC
ATGCTAGCTGATAGCTAGCTAGCTGATGAGCC
AGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCT

CTAGCTGATAGCTAGCTAGCTGATGAGCCCGA Sequence Reads

5 -ACTGGTCGATGCTAGCTGATAGCTAG CTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3’
Reference Genome

P(reads|A/A , read mapped)= 0.00000098
P(reads|A/C, read mapped)= 0.03125
P(reads|C/C, read mapped)=0.000097  Possible Genotypes

Combine these likelihoods with a prior incorporating information from other
individuals and flanking sites to assign a genotype.



Individual Based Prior

TAGCTGATAGCTAGATAGCTGATGAGCCCGAT

ATAGCTAGATAGCTGATGAGCCCGATCGCTGCTAGCTC
ATGCTAGCTGATAGCTAGCTAGCTGATGAGCC
AGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCT

CTAGCTGATAGCTAGCTAGCTGATGAGCCCGA Sequence Reads

5’-ACTGGTCGATGCTAGCTGATAGCTAG CTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3’
Reference Genome

P(reads|A/A)= 0.00000098 Prior(A/A) =0.00034 Posterior(A/A) = <.001

P(reads|A/C)= 0.03125 Prior(A/C) = 0.00066  Posterior(A/C)=0.175

P(reads|C/C)= 0.000097 Prior(C/C) = 0.99900 { Posterior(C/C)=0.825

Individual Based Prior: Every site has 1/1000 probability of varying.



Population Based Prior

TAGCTGATAGCTAGATAGCTGATGAGCCCGAT

ATAGCTAGATAGCTGATGAGCCCGATCGCTGCTAGCTC
ATGCTAGCTGATAGCTAGCTAGCTGATGAGCC
AGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCT

CTAGCTGATAGCTAGCTAGCTGATGAGCCCGA Sequence Reads

5’-ACTGGTCGATGCTAGCTGATAGCTAG CTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3’
Reference Genome

P(reads|A/A)= 0.00000098 Prior(A/A)=0.04 Posterior(A/A) = <.001
P(reads|A/C)= 0.03125 Prior(A/C) = 0.32 Posterior(A/C) = 0.999
P(reads|C/C)= 0.000097 Prior(C/C) = 0.64 Posterior(C/C) = <.001

Population Based Prior: Use frequency information from examining others at the same site.
In the example above, we estimated P(A) = 0.20



Sequence Based Genotype Calls

= |ndividual Based Prior

* Assumes all sites have an equal probability of showing polymorphism

Specifically, assumption is that about 1/1000 bases differ from reference

If reads where error free and sampling Poisson ...

... 14x coverage would allow for 99.8% genotype accuracy

... 30x coverage of the genome needed to allow for errors and clustering

= Population Based Prior

* Uses frequency information obtained from examining other individuals
* Calling very rare polymorphisms still requires 20-30x coverage of the genome
* Calling common polymorphisms requires much less data



Population-based Prior for a Bi-allelic SNP

" Prior probability of a site being a SNP with alleles {a,b}:
2n 1
_ - _ —3
Pr(SNP) = 9; -, =10

* n:number of individuals
 Based on neutral coalescence model

= Simple prior for each {a,b} pair

2n
1 1/3 for SNP REF,ALT
Pr(SNPy, ) =0 - x {103 { J
=1

all others



Posterior Probability of Being an Bi-allelic SNP

= Posterior probability of being a SNP with reads / Prior

Pr(reads|SNP, 3;) Pr(SNP, 1))

Pr(SNP ads) =
r(SNP (g 5} [reads) > o) Pr(reads|SNP (4 5}) Pr(SNP 4 4)

Pr(reads|SNPy,5}) = || ) Pr(G: = g|SNP{, 3}) Pr(reads;|G; = g)

=1 g

From HWE at MLE of allele freq. Genotype Likelihood

= Multi-sample statistic minimizes false discoveries!

*Other toolsets have different models for likelihood and posterior



Variant Filtering

Call var(nts

Unfiltered

»  Pileup

Genotype VCF

Likelihood

| )@ Initial filter
Features

Hard-filtered

VCF

Optional LD-aware Step @ SVM filter
Phasing/Refinement |

Filtered
VCF

/)




VCF (Variant Call Format)

#Hf 1 leformat=\CFw4 .1

FRINFO==ID=LD&F ,Number=1,Tvpe=F loat ,Description="MLE Allele Frequency Accounting for LD"=

FHHINFO=<ID=AVGPOST ,Number=1,Tvpe=F logt. ,Dezcription="4verage posterior probability from MaCHThunder"=

HHINFO=<I0=R5] ,Number =1 , Tvpe=F loat ,Description="Genotype imputation quality from MaCHAThunder "=

FHHINFO==ID=ERATE ,Mumber=1, Tvpe=F loat ,Description="Per-marker Mutotion rate from MaCH/Thunder":

HRINFO==ID=THETA ,Mumber=1, Tvpe=F loat ,Description="Per-marker Tranzition rate from MaCH/Thunder" =

FRINFO==ID=CIEMD ,Humber=2, Type=Integer ,Dezscription="Conf idence interval around END for imprecize warionts"=

FRINFO==ID=CIPOS ,Number=2 , Type=Integer ,Dezcription="Conf idence interval around PFOS for imprecise wvariaonts">

FRINFO==ID=END ,Mumber =1, Tvpe=Integer ,Dezcription="End position of the wariant described in thiz record"-

FHHINFO==ID=HOMLEN ,Mumber=. ,Tvpe=Integer ,Description="Length of boze pair identical micro-homology at event breakpoints"=

FHINFO==ID=HOMSE] ,Munmber=. ,Tvpe=5tring,lezscription="5equence of base pair identical micro-homology at event breakpoints"=

FHINFO==ID=SVLEN ,Mumber=1,Tvpe=Integer ,Dezscription="0ifference in length between REF and ALT alleles":=

HRINFO==ID=SVTYPE ,Mumber =1, Tvpe=5tring,lescription="Tvpe of structural variant"=

FRINFO==ID=AC ,Mumber=. ,Tvpe=Integer ,Description="Alternate Allele Count"=

FRINFO=<ID=AN Humber=1, Tvpe=Integer ,Description="Total Allele Count"=

FHALT==ID=DEL ,Description="Deletion"=

FHFORMAT=<ID=GT ,Number=1 , Type=String,Description="Genotvpe" =

FHFORMAT=<I0=D5 ,Number=1 ,Tyvpe=F loat ,Description="Genotype dosage from MaCH/Thunder "=

FHFORMAT==<I D=6 ,Number=. ,Tyvpe=F loat ,Description="Genotype Likelihoods"=

HRINFO==ID=Ad Mumber=1, Tvpe=5tring,Dezcription="Ancestral Allele, ftp://ftp.188Agenomes .ebi .oc.uk voll ftpdpi lot _datoltechnical frefe

FHINFO=<ID=AF ,Mumber=1, Tvpe=F loat ,Description="Global Allele Frequency based on ACAAN"=

FRINFO=<ID=AMR_AF ,Mumber=1,Tvpe=F logt ,Description="Allele Frequency for samples from AMRE bosed on ACSAN":

FHINFO==ID=ASM_AF ,Mumber=1,Tvpe=F logt ,Dezcription="Allele Frequency for samples from ASN bazed on ACSAN":

HHINFO=<ID=AFR_AF ,Mumber=1,Type=F logt ,Description="Allele Frequency for samples from AFR bozed on AC/AN"=

FHRINFO==ID=EUR_AF ,Mumber=1,Tvpe=F logt ,Dezcription="Allele Frequency for samples from EUR based on AC/AN":

HRINFO==ID=NT ,Mumber=1, Tvpe=5tring,lezcription="indicates what twvpe of variant the line represents"=-

FRINFO==ID=SNPSOURCE ,Mumbet=. ,Type=String,Description="indicates if a snp was called when analysing the low coverage or exome alighm

Hreference=GRCh3Y

iHtreference=GRCh3Y

#CHREOM  POS I REF ALT QUAL FILTER INFO FORMAT  HGEBAIS HGAEEI? HGEEESS HGEE188 HGEA181 HGEALRZ HGEE1A3 HGER
18853  rshSlegida G 188 Pags AVGPOST=8.7787 ;R50=0 45319 ;LDAF=A . 2327 ;ERATE=0 . 8161 ; AN=2154 ;¥ T=3HF ; 44
1A611  r=1891A7123 C 1A8 PASS AN=2154 ; THETA=H .BB77 ;¥ T=5NP ; Ab=. ;AC=41 ;ERATE=A .AB45 ; SNPSOURCE=LOWCOY
13382 rs18A734495 C 1A8 PASS THETA=A . 8545 ; AM=2184 ; AC=249 ;Y T=5NP ;Ak=. ;R50=0 .52531 ;LDAF=A 1575 ; SHPS0
13327 rs144762171 B 188 PASS AVGPOST=A.9695 ; AN=2154 ;WT=5NF ; Ab=. ;R50=A .6432 ; AC=59 ; SNPSOURCE=LOWCOY
13957 . TC T PASS Ah=TC ;AC=35 ;AN=2154 ;¥T=INDEL ; AYGPOST=A.5711 ;R50=0 . 2501 ;LDAF =B .A735 ; THETA=E .9
153958  rs1R1276475 T 188 PASS AN=2154 ; AC=45 ;ERATE=R .8A54 ; THETA=A .A139 ;R50=H . 3683 ; LDAF=A .B5 25 ;' T=5N
38923 rzld483579R5 B 188 PaSS AC=1554 ; AA=T ;AN=2154 ;RS0=A .5451 ;"YT=5NP ; THETA=8 .B162 ; SNPSOURCE=LOWCOY




SNP Filtering

= Even with proper modeling of population-based prior,
false discoveries do occur

= False discoveries affects the overall quality, not only for
the problematic sites but many other sites in LD

= There are many indicators

* Base read distribution, base quality, mapping quality, ...
* Multi-sample statistics are often more informative



chr20

1 o | | I | |
pis p123 piz2 plzl pil.z3 pIlal = plld qiil.z1 qil.23 qlz ql3il qi313 ql3.]
- 40 bp
25,292,450 bp 25,292,460 bp 25,292,470 bp

ALT alleles only in low mapping quality reads

[IGV pictures from Eric Banks]




— | 1 | [ [ I | [ I |
] pl23 piz2 pl2l piiz3 pilzl_ plll qil.21 qil.23 ql2 ql3al qi3is q13.2 qi3.31
52 bp
4,434,710 bp 4,434,720 bp 4,434,730 bp 4,434,740 bp

All reads with ALT alleles have deletions

'IGEETGTGTGTGTGT:&T;ﬂ.TATGTﬁ.TGTGTGTATﬁ.TATATATAG:&G




How to Tell Good from Bad: Example

Reference : .. AGGTCTAA .. .. GAATTACA ..
samplel | Ty Tl
. o
. T . - I

.T. 06 BT

We expect 50:50 read distribution for HET sites




How to Tell Good from Bad: Example

Reference: /.. AGGTCTAA .. ) /.. GAATTACA .. )
sample1l | Ty Tl
. T
“w T . N
.T. 06 .T. 038

\ Good / \ Bad /




How to Tell Good from Bad: Example

Hard to tell whether it’s random deviation or not on a

single sample

Sample N

444NN
A== -N




Multi-sample Filtering is Informative

Reference : .. AGATETAA .. .. GAATTACA ..

-

Sample 1

0.6 0.8

Sample 2

—“nnn-H A-n-n o
A A--4-0N

0.4 0.8

Sample N

0.67

== =N N
A== =N

0.67

Overall Balance: 0.56 Overall Balance: 0.75



Filtering Criteria Examples
e | oeion

Depth Overall depth across samples

QUAL Overall genotype confidence

Call Rate Proportion of genotyped samples
Allele Balance (# REF)/(# ALT) in HET sites

Strand Bias Correlation of ALT allele with +/- strand
Cycle Bias Correlation of ALT allele with read cycle

Etc. And many more...



Hard Filtering by Individual Thresholds

= Problems

Inverse—Normalized Features

* False negative increases
with number of filters

* Too many knobs to turn
(thresholds)

Strand Bias

0 1

Allele Balance



Filtering by Supervised Learning

= Use features to train a support vector machine (SVM)

* Can be trained using suspected positive/negative examples
* Provides single score from all features combined

= Training

* Positive examples
= Known polymorphic sites

* Negative examples
= Filtered out by multiple hard filters
* Input
= Allindividual features collected for each site




Filtering by Supervised Learning

= Use features to train a support vector machine (SVM)

* Can be trained using suspected positive/negative examples
* Provides single score from all features combined

= Training

* Positive examples
= Known polymorphic sites

* Negative examples
= Filtered out by multiple hard filters

* Input
= All individual features collected for each site



Training SVM with Examples

Training SVM Filter

* HapMap3 + OMNI-Poly | *
* Filtered by 3+ b’

Strand Bias

x
Maximize margin

* Positive example
* Negative example

Allele Balance

>20 dimensional feature set was used for final filtering under nonlinear kernel space



SVM Output in Multi-dimensional Space

Strand Bias

Strand Bias

Allele Balance

Allele Balance

e Filter PASS
* Filter FAIL

Most of FAIL SNPs are outliers in higher-dimensional view




Improved Sensitivity by SVM

0.95 —
0.9
0.85
2 0.8 —=Chr20 unfiltered
=0.75 = Chr20 hardfilter
% 0.7 +++-Chr20 SVM
D 565 - [Exome unfiltered
- = Exome hardfilter
0.6 «««+«EXome SVM
0.55
0.5 | . .

10 100 1000
Number of Samples



Evaluation of SNP Callsets

= Sensitivity on known SNP data
* dbSNP, HapMap, 1000G, etc.

= Transition to transversion ratio (Ts/Tv) 1. cition

L . A€e—QG
* Transition is easier to occur.

* Typical Ts/Tv values
* Whole genome: 2.2~2.4
= Whole exome: 2.7~3.0

<>
_— —>
Trans-version

C e¥—



Results: Exome Sequencing Project (GO-ESP)

In Variants with AF > 1%

100.00%
99.50%
99.00%
98.50%
98.00%
97.50%
97.00%
96.50%
96.00%

2.65

.

Unfiltered

Ts/Tv
0.64

Ts/Tv
2.78

Ts/Tv

Filtered

Ts/Tv 2.29

i Not in 1000G
w In 1000G



LD-aware Genotype Refinement

Call variants

Unfiltered

Genotype VCF

Likelihood

| )@ Initial filter
Features

Hard-filtered
VCF

4 Optional LD-aware Step SVM flter

Phasing/Refinement

Filtered

VCF

J




Sequence Based Genotype Calls - Haplotypes

* Individual Based Prior
= Population Based Prior

= Haplotype Based Prior or Imputation Based Analysis

* Compares individuals with similar flanking haplotypes

* Calling very rare polymorphisms still requires 20-30x coverage of
the genome

* Can make accurate genotype calls with 2-4x coverage of the
genome

* Accuracy improves as more individuals are sequenced



Haplotype-aware Genotype Refinement

People share ‘blocks’ of genotypes

Haplotype-phasing improves genotype accuracy by
correcting unlikely genotypes and filling in missing

genotypes

gotCloud takes two-steps ®-©- W -6

* Beagle (Step 1)
* ThunderVCF (Step 2)
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Does Haplotype Information Really Help?

Genotype oncordance

Single Site Analysis

— 21.4% HET errors
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Low-pass Sequencing Improves with More Samples

Missing
HapMap Accuracy
AIEWAIS #SNPs dbSNP% % at Hets*
March 2010
Michigan/EUR 60 9,158,226 63.5 7.0 1.91 96.74
August 2010
Michigan/EUR 186 10,537,718 52.5 5.6 2.04 97.56
October 2010 13,276,643  50.1 1.8 220  97.91%

Michigan/EUR 280

Accuracy of Low Pass Genotypes Generated by 1000 Genomes Project,
When Analyzed at the University of Michigan



Low-pass Sequencing Improves with More Samples
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Quality of 1000G Phase 1 Genotypes

#Variants HOMREF HET HOMALT

YRS (Overlap)  (EVAL)  (EVAL)  (EVAL)

SNP Omni2.5 1,092 2.1M 99.87% 99.09%  99.35% 99.65%
SNP CaGl 34 13M 99.87% 98.63% 98.75% 99.60%
INDEL CaGil 34 820k 98.69% 95.64% 96.35% 98.01%
SV Conrad 248 1.1k 99.92% 99.01% 99.47% 99.82%

« Genotype likelihood adjusting for individual BAM’s bias statistic
reduces ~10% of non-ref genotype discordance

« MaCH/Thunder refinement starting with beagle haplotypes provide
an additional ~15% reduction.



Low-pass Sequencing with Many Samples

= For a given budget, should we sequence deeper or
sequence more?

= Analysis of Low Pass Sequence Data

* Single sample analyses produce poor quality variants.
* Single site analyses produce poor quality genotypes.
* Multi sample, multi-site analyses can work quite well.

" |ntuition for why low pass analyses are attractive for co
mplex disease association studies.



Implications for Whole Genome Sequencing Studies

= Suppose we could afford 2,000x data (6,000 GB)

= We could sequence 67 individuals at 30x

Minor Allele Frequency

Proportion of Detected Sites
Genotyping Accuracy

.... Heterozygous Sites Only
Correlation with Truth (%)

Effective Sample Size (n-r?)

Sequencing of 67 individuals at 30x depth

0.5-1.0%

59.3%
100.0%
100.0%

99.8%

67

1.0-2.0%

90.1%
100.0%
100.0%

99.9%

67

2.0-5.0%

96.9%
100.0%
100.0%

99.9%

67

>5%

100.0%
100.0%
100.0%
100.0%

67



Implications for Whole Genome Sequencing Studies

= Suppose we could afford 2,000x data (6,000 GB)

= We could sequence 1,000 individuals at 2x

Minor Allele Frequency

Proportion of Detected Sites
Genotyping Accuracy

.... Heterozygous Sites Only
Correlation with Truth (%)

Effective Sample Size (n-r?)

Sequencing of 1000 individuals at 2x depth

0.5-1.0%

79.6%
99.6%
78.8%
56.7%

567

1.0-2.0%

98.8%
99.5%
89.5%
76.1%

761

2.0-5.0%

100.0%
99.5%
95.9%
88.2%

882

>5%

100.0%
99.8%
99.8%
97.8%

978



Sequencing Study Design - Considerations

= Sequencing Depth

* Improved throughput enables more samples with moderate
(~10x) coverage at reasonable costs

= Whole genome vs Whole Exome vs Targeted Genes

= Sequence + Array

* Which samples to be sequenced?



Suggested Resources

= Michigan Mapping/Variant calling pipeline on the cloud
* http://genome.sph.umich.edu/wiki/GotCloud

= 1000 Genomes Project
http://http://www.1000genomes.org/

* Includes sequence data, variant genotypes, and many more

= VCF and other file formats:
https://github.com/samtools/hts-specs
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