Biostatistics 615/815 Lecture 13:
R packages, and Matrix Library

Hyun Min Kang

October 18th, 2012

Hyun Min Kang Biostatistics 615/815 - Lecture 13 October 18th, 2012 1/23

Package
900000000000

Writing an R package

Why write a package?

= Package is a good way to publish your software into the world

= Bundled package can be exposed to public repository, such as the
Comprehensive R Archive Network (CRAN).

= >4,000 packages are publicly available at CRAN

Ingredients for making R package

= A set of R functions to include as library
= C+4+ code for increased efficiency, if available

= Documentation of each function provided (with examples)

A,

Hyun Min Kang Biostatistics 615/815 - Lecture 13 October 18th, 2012 2/23

Package
000000000000

Structure of a simple R package logFET

= 1ogFET/DESCRIPTION : Basic description of the package
= 1ogFET/NAMESPACE : Names of public functions to use as library
= 1logFET/R/1ogFET.R : R wrapper of log Fisher's exact test

= logFET/src/RlogFET.cpp : C+-+ implementation of fast Fisher's exact
test

= logFET/man/logFET.Rd : Documentation of logFET function

Hyun Min Kang Biostatistics 615/815 - Lecture 13 October 18th, 2012 3/23

Package
[e]e] lelelelelele]ele]e)

logFET/DESCRIPTION

Package: logFET

Version: 0.0.1

Date: 2012-10-18

Title: Example package for BIOSTAT615/816 at U Michigan
Author: Hyun Min Kang

Maintainer: Hyun Min Kang <hmkang@umich.edu>

Depends: R (>= 2.15.0)

Description: Simple version of fisher's exact test
License: GPL (>= 2)

URL: http://goo.gl/9DoFo

Hyun Min Kang Biostatistics 615/815 - Lecture 13 October 18th, 2012

Package
[e]e]e] lelelelele]ele]e)

logFET/NAMESPACE

export(logFET)
useDynLib(logFET)

Hyun Min Kang Biostatistics 615/815 - Lecture 13 October 18th, 2012 5/23

Package
000080000000

logFET/R/10gFET.R

logFET <- function(a, b, c, d) {
.Call("fastLogFET",a,b,c,d) ## calls a C++ function

Hyun Min Kang Biostatistics 615/815 - Lecture 13 October 18th, 2012 6 /23

Package
000008000000

logFET/man/1ogFET.Rd

\name{logFET}
\alias{logFET}
\title{Fisher's Exact Test returning logl® p-values}
\description{ Compute logl@(p-value) for two-sided Fisher's exact test }
\usage{ logFET (a, b, c, d) }
\arguments{
\item{a}{The first cell count in the 2x2 contingency table}
\item{b}{The second cell count in the 2x2 contingency table}
\item{c}{The third cell count in the 2x2 contingency table}
\item{d}{The last cell count in the 2x2 contingency table}
¥
\details{
All the input arguments are assumed to be integers. Exceptions are not handled.
}
\value{ logl@(p-value) of the two-sided Fisher's exact test }
\author{Hyun Min Kang \email{hmkang@umich.edu}}
\examples{
1ogFET(2,7,8,2) #i# compute Fisher's exact p-value for (2,7)/(8,2)

Hyun Min Kang Biostatistics 615/815 - Lecture 13 October 18th, 2012

Package
000000800000

logFET/src/R1ogFET.cpp

#include <R.h>
#include <Rinternals.h>
#include <Rdefines.h>
#include <cmath>
extern "C" {
double logFac(int n) {
double ret;
for(ret=0.; n > @; --n) { ret += log((double)n); }
return ret;

double logHypergeometricProb(double* logFacs, int a, int b, int ¢, int d) {
return logFacs[a+b] + logFacs[c+d] + logFacs[a+c] + logFacs[b+d] - logFacs[a]
- logFacs[b] - logFacs[c] - logFacs[d] - logFacs[a+b+c+d];

void initLogFacs(double* logFacs, int n) {
logFacs[@] = ©;
for(int i=1; 1 < n+1; ++i) {
logFacs[i] = logFacs[i-1] + log((double)i);

Hyun Min Kang Biostatistics 615/815 - Lecture 13 October 18th, 2012

Package
0000000 e0000

logFET/src/RlogFET.cpp (cont'd)

double logFishersExactTest(int a, int b, int c, int d) {
intn=a+b+c+d;

double* logFacs = new double[n+1]; // dynamically allocate memory
initlLogFacs(logFacs, n);

double logpCutoff = logHypergeometricProb(logFacs,a,b,c,d);
double pFraction = 9;
for(int x=0; x <= n; ++x) { // among all possible x
if (a+b-x >= @ &% a+c-x >= @ && d-a+x >=0) { // consider valid x
double 1 = logHypergeometricProb(logFacs,x,a+b-x,a+c-x,d-a+x);
if (1 <= logpCutoff) pFraction += exp(l - logpCutoff);

}
double logpValue = logpCutoff + log(pFraction);

delete [] logFacs;
return (logpValue/log(10.));

Hyun Min Kang Biostatistics 615/815 - Lecture 13 October 18th, 2012

Package
00000000000

logFET/src/RlogFET.cpp (cont'd)

SEXP fastLogFET(SEXP a, SEXP b, SEXP c, SEXP d) {
SEXP out;

PROTECT(a = AS_NUMERIC(a));
PROTECT(b = AS_NUMERIC(b));
PROTECT(c = AS_NUMERIC(c));
PROTECT(d = AS_NUMERIC(d));

PROTECT(out = allocVector(REALSXP,1));

REAL(out)[@] = logFishersExactTest((int)(NUMERIC_POINTER(a)[@]),
(int) (NUMERIC_POINTER(b)[@]),
(int) (NUMERIC_POINTER(c)[@]),
(int) (NUMERIC_POINTER(d)[0]));

UNPROTECT(5);

return (out);

}s

Hyun Min Kang Biostatistics 615/815 - Lecture 13 October 18th, 2012 10 / 23

Package
000000000800

Building an R package

Copying from instructor’s public repository

$

cp -R ~hmkang/Public/615/Rpkg/logFET .

Building your package

$

*
*
*

*

R CMD build logFET

checking for file 'logFET/DESCRIPTION' ... OK
preparing 'logFET':

checking DESCRIPTION meta-information ... OK

cleaning src

checking for LF line-endings in source and make files
checking for empty or unneeded directories

building 'logFET_@.0.1.tar.gz'

Hyun Min Kang Biostatistics 615/815 - Lecture 13

October 18th, 2012

11/ 23

Package Vatri ix Computation
000000000080 O

Installing

If you have a root permission

$ (sudo) R CMD INSTALL logFET_0.0.1.tar.gz

In scs.itd.umich.edu

$ R

> install.packages("logFET_©0.0.1.tar.gz")
Installing package(s) into '/afs/umich.edu/user/h/m/hmkang/R/x86_64-unknown-linux-gnu-1librar
(as 'lib' is unspecified)

inferring ‘repos = NULL' from the file name

* installing *source* package 'logFET'

** libs

g++ -I/usr/local/R-2.15/1ib64/R/include -DNDEBUG -I/usr/local/include -fpic -g -02
-c RlogFET.cpp -o R1logFET.o

g++ -shared -L/usr/local/lib64 -o logFET.so R1logFET.o

installing to /afs/umich.edu/user/h/m/hmkang/R/x86_64-unknown-linux-gnu-library/2.15/10gFE[/
**R

** preparing package for lazy loading
(omitted)

* DONE (logFET)

Hyun Min Kang Biostatistics 615/815 - Lecture 13 October 18th, 2012 12 /23

Package
00000000000

Using logFET package

$ R

> library(logFET)

> logFET(2,7,8,2)

[1] -1.638005

> logFET(2000,7000,8000,2000)
[1] -1466.131

> fisher.test(matrix(c(2000,7000,8000,2000),2,2))$%p.value
[1] o

Hyun Min Kang Biostatistics 615/815 - Lecture 13 October 18th, 2012

13/ 23

Matrix
@00000

Programming with Matrix

Why Matrix matters?

= Many statistical models can be well represented as matrix operations

= Linear regression
= Logistic regression
= Mixed models

= Efficient matrix computation can make difference in the practicality of
a statistical method

= Understanding C++ implementation of matrix operation can expedite
the efficiency by orders of magnitude

Biostatistics 615/815 - Lecture 13 October 18th, 2012 14 /23

Hyun Min Kang

Matrix
[o] lelele]e]

Ways for Matrix programming in C4++

= Implementing Matrix libraries on your own
= Implementation can well fit to specific need
= Need to pay for implementation overhead
= Computational efficiency may not be excellent for large matrices

Hyun Min Kang Biostatistics 615/815 - Lecture 13 October 18th, 2012 15 / 23

Matrix
[o] lelele]e]

Ways for Matrix programming in C4++

= Implementin atrix libraries on your own
Impl ting Matrix lib y
= Implementation can well fit to specific need
= Need to pay for implementation overhead
= Computational efficiency may not be excellent for large matrices

= Using BLAS/LAPACK library

= Low-level Fortran/C API

= ATLAS implementation for gcc, MKL library for intel compiler (with
multithread support)

= Used in many statistical packages including R

= Not user-friendly interface use.

= boost supports C++ interface for BLAS

Hyun Min Kang Biostatistics 615/815 - Lecture 13 October 18th, 2012 15 / 23

Matrix
[o] lelele]e]

Ways for Matrix programming in C4++

= Implementing Matrix libraries on your own

Implementation can well fit to specific need
Need to pay for implementation overhead
Computational efficiency may not be excellent for large matrices

= Using BLAS/LAPACK library

Low-level Fortran/C API

ATLAS implementation for gcc, MKL library for intel compiler (with
multithread support)

Used in many statistical packages including R

Not user-friendly interface use.

boost supports C++ interface for BLAS

= Using a third-party library, Eigen package

A convenient C++ interface
Reasonably fast performance

= Supports most functions BLAS/LAPACK provides

Hyun Min Kang Biostatistics 615/815 - Lecture 13 October 18th, 2012

Matrix
[e]e] lele]e]

Using a third party library

Downloading and installing Eigen package

= Download at http://eigen.tuxfamily.org/

= To install - just uncompress it, no need to build

Hyun Min Kang Biostatistics 615/815 - Lecture 13 October 18th, 2012

http://eigen.tuxfamily.org/

Matrix
[e]e] lele]e]

Using a third party library

Downloading and installing Eigen package

= Download at http://eigen.tuxfamily.org/

= To install - just uncompress it, no need to build

| A\,

Using Eigen package
= Add -I ~hmkang/Public/include option (or include directory containing
Eigen/) when compile

= No need to install separate library. Including header files is sufficient

A,

Hyun Min Kang Biostatistics 615/815 - Lecture 13 October 18th, 2012 16 / 23

http://eigen.tuxfamily.org/

Matrix
[e]e]e] le]e]

Example usages of Eigen library

#include <iostream>
#include <Eigen/Dense> // For non-sparse matrix
using namespace Eigen; // avoid using Eigen::
int main()
{
Matrix2d a; // 2x2 matrix type is defined for convenience
a <1, 2,
3, 4;
MatrixXd b(2,2); // but you can define the type from arbitrary-size matrix
b << 2, 3,
1, 4;
std::cout << "a + b =\n" << a + b << std::endl; // matrix addition
std::cout << "a - b =\n" << a - b << std::endl; // matrix subtraction
std::cout << "Doing a += b;" << std::endl;

a += b;
std::cout << "Now a =\n" << a << std::endl;
Vector3d v(1,2,3); // vector operations

Vector3d w(1,0,0);

std::cout << "-v + w - v =\n" << -v + W - Vv << std::endl;

Hyun Min Kang Biostatistics 615/ Lecture 13 October 18th, 2012 17 / 23

Matrix
000080

More examples

#include <iostream>
#include <Eigen/Dense>

using namespace Eigen;
int main()
{
Matrix2d mat; // 2*2 matrix
mat << 1, 2,
3, 4;
Vector2d u(-1,1), v(2,0); // 2D vector
std::cout << "Here is mat*mat:\n" << mat*mat << std::endl;
std::cout << "Here is mat*u:\n" << mat*u << std::endl;
std::cout << "Here is u~T*mat:\n" << u.transpose()*mat << std::endl;
std::cout << "Here is u~T*v:\n" << u.transpose()*v << std::endl;
std::cout << "Here is u*v~AT:\n" << u*v.transpose() << std::endl;
std::cout << "Let's multiply mat by itself" << std::endl;
mat = mat*mat;
std::cout << "Now mat is mat:\n" << mat << std::endl;
return 0;

Hyun Min Kang Biostatistics 615/ Lecture 13 October 18th, 2012 18 / 23

Matrix
O0000e

More examples

#include <Eigen/Dense>
#include <iostream>
using namespace Eigen;
int main()
{

MatrixXd m(2,2), n(2,2);

MatrixXd result(2,2);

m<< 1,2,

3,4;
n << 5,6,7,8;
result = m * n;

-- Matrix m*n: --" << std::endl << result << std::endl << std::endl;
result = m.array() * n.array();

std::cout <<

-- Array m*n: --" << std::endl << result << std::endl << std::endl;
result = m.cwiseProduct(n);

std::cout <«

std::cout << "-- With cwiseProduct: --" << std::endl << result << std::endl << std::endl;
result = (m.array() + 4).matrix() * m;
std::cout << "-- (m+4)*m: --" << std::endl << result << std::endl << std::endl;

return 0;

Hyun Min Kang Biostatistics 615/ Lecture 13 October 18th, 2012 19 /23

Matrix Computation
@00

Time complexity of matrix computation

Square matrix multiplication / inversion

= Naive algorithm : O(n?)
2807

= Strassen algorithm : O(

??,2’376)

= Coppersmith-Winograd algorithm : O((with very large

constant factor)

= Laplace expansion : O(n!)

= LU decomposition : O(n?)
= Bareiss algorithm : O(n?)

= Fast matrix multiplication algorithm : O(n?376)

.

Hyun Min Kang Biostatistics 615/815 - Lecture 13 October 18th, 2012 20/ 23

Matrix Computation
oeo

Computational considerations in matrix operations

Avoiding expensive computation

= Computation of u’ABv

Hyun Min Kang Biostatistics 615/815 - Lecture 13 October 18th, 2012 21 /23

Matrix Computation
oeo

Computational considerations in matrix operations

Avoiding expensive computation

= Computation of u’ABv

= If the order is (((u'(ADB))v)
= O(n3) + O(n®) + O(n) operations
= O(n?) overall

Hyun Min Kang Biostatistics 615/815 - Lecture 13 October 18th, 2012 21 /23

Matrix Computation

oeo

Computational considerations in matrix operations

Avoiding expensive computation

= Computation of u’ABv

= If the order is (((u'(ADB))v)
= O(n3) + O(n®) + O(n) operations
= O(n?) overall

= If the order is (((u’"A)B)v)

= Two O(n?) operations and one O(n) operation
= O(n?) overall

Hyun Min Kang Biostatistics 615/815 - Lecture 13 October 18th, 2012

Matrix Computation
ooe

Quadratic multiplication

Same time complexity, but one is slightly more efficient
= Computing x'Ay.
= O(n?) + O(n) if ordered as (x'A)y.
= Can be simplified as >, >, z;4y;

v

A symmetric case

= Computing x'Ax where A = LI/

= u = L/x can be computed more efficiently than Ax.

= x'Ax = u'u

Hyun Min Kang Biostatistics 615/815 - Lecture 13 October 18th, 2012 22 /23

Computation Summary
(]

R/C++ Interface

= Combining C++ code base with R extension

= C++ implementation more efficiently handles loops and complex
algorithms than R

= R is efficient in matrix operation and convenient in data visualization
and statistical tools

= R/C++ interface increases your flexibility and efficiency at the same
time.

Matrix Library

= Eigen library for convenient use and robust performance

= Time complexity of matrix operations

Hyun Min Kang Biostatistics 615/815 - Lecture 13 October 18th, 2012 23 /23

	Package
	Package

	Matrix
	Matrix

	Matrix Computation
	Matrix Computation

	Summary
	Summary

