
Whole Genome Sequencing 

Biostatistics 666 



Genomewide Association Studies 

• Survey 500,000 SNPs in a large sample 
 

• An effective way to skim the genome and … 
• … find common variants associated with a trait of interest 

 
• Rapid increase in number of known complex disease loci 

– For example, ~50 genes now identified for type 2 diabetes. 
 

• Techniques for genetic analysis are changing rapidly 
– What are some of the potential benefits and challenges for 

replacing genotyping with sequencing in complex trait studies? 



Questions that Might Be Answered 
With Complete Sequence Data… 

• What is the contribution of each identified locus to a trait? 
– Likely that multiple variants, common and rare, will contribute 

 
• What is the mechanism? What happens when we knockout a gene? 

– Most often, the causal variant will not have been examined directly 
– Rare coding variants will provide important insights into mechanisms 

 
• What is the contribution of structural variation to disease? 

– These are hard to interrogate using current genotyping arrays. 
 

• Are there additional susceptibility loci to be found? 
– Only subset of functional elements include common variants … 
– Rare variants are more numerous and thus will point to additional loci 



What Is the Total Contribution of 
Each Locus? 

Evidence that  
Multiple Variants Will be Important 



Evidence for Multiple Variants Per Locus 
Example from Lipid Biology 

Willer et al, Nat Genet, 2008 
Kathiresan et al, Nat Genet, 2008, 2009 



For several loci, there is 
clear evidence for 
independently associated 
common variants – even 
among markers typed in 
GWAS.  
 
Including these in the 
analysis increases variance 
explained by ~10%. 

Evidence for Multiple Variants Per Locus 
Example from Lipid Biology 

Willer et al, Nat Genet, 2008 
Kathiresan et al, Nat Genet, 2008, 2009 



Private mutations in PCSK9 change LDL by >100 mg/dl 
   (Abifadel et al, 2003) 
 
Rare variants (MAF 1%) in PCSK9 can change LDL by ~16 mg/dl  
   (Cohen et al, 2005) 
 
Common variants (MAF 20%) in PCSK9 change LDL by ~3 mg/dl 
   (Willer et al, 2008) 

Evidence for Multiple Variants Per Locus 
Example from Lipid Biology 

Willer et al, Nat Genet, 2008 
Kathiresan et al, Nat Genet, 2008, 2009 



What is The Contribution of 
Structural Variants? 

Current Arrays Interrogate 
1,000,000s of SNPs,  

but 100s of Structural Variants 



Evidence that Copy Number Variants Important 
Example from Genetics of Obesity 

Seven of eight confirmed BMI loci show strongest expression in the brain… 

Willer et al, Nature Genetics,  2009 



Evidence that Copy Number Variants Important 
Example from Genetics of Obesity 

Willer et al, Nature Genetics,  2009 



Note hole in marker 
panels…. 

Willer et al, Nature Genetics,  2009 

Evidence that Copy Number Variants Important 
Example from Genetics of Obesity 



Associated Haplotype Carries Deletion 

Willer et al, Nature Genetics,  2009 



What is the Mechanism? 
What Can We Learn From Rare Knockouts? 

What We’d Like to Know 
Recent Example from John Todd’s Group 



Can Rare Variants Replace Model Systems? 
Example from Type 1 Diabetes 

• Nejentsev, Walker, Riches, Egholm, Todd (2009)  
IFIH1, gene implicated in anti-viral responses, protects against T1D 
Science 324:387-389 
 

• Common variants in IFIH1 previously associated with type 1 diabetes 
 

• Sequenced IFIH1 in ~480 cases and ~480 controls 
• Followed-up of identified variants in >30,000 individuals 

 
• Identified 4 variants associated with type 1 diabetes including: 

– 1 nonsense variant associated with reduced risk 
– 2 variants in conserved splice donor sites associated with reduced risk 
– Result suggests disabling the gene protects against type 1 diabetes 

 



HDL-C Associated Locus 

•  GWAS allele with 40% frequency associated with ±1 mg/dl in HDL-C 
 

• GALNT2 expression in mouse liver (Edmonson, Kathiresan, Rader) 
• Overexpression of GALNT2 or Galnt2 decreases HDL-C ~20% 
• Knockdown of Galnt2 increases HDL-C by ~30% 

 



The Challenge 

• Whole genome sequence data will greatly increase our 
understanding of complex traits 

 
• Although a handful of genomes have been sequenced, 

this remains a relatively expensive enterprise 
 

• Dissecting complex traits will require whole genome 
sequencing of 1,000s of individuals 
 

• How to sequence 1,000s of individuals cost-effectively? 



Next Generation Sequencing 



Massive Throughput Sequencing 

• Tools to generate sequence data evolving rapidly 
 

• Commercial platforms produce gigabases of 
sequence rapidly and inexpensively 
– ABI SOLiD, Illumina Solexa, Roche 454, Complete 

Genomics, Ion Torrent, and others… 
 

• Sequence data consist of thousands or millions of 
short sequence reads with moderate accuracy 
– 0.5 – 1.0% error rates per base may be typical 

 
 



Shotgun Sequence Reads 

• Typical short read might be <25-100 bp long and 
not very informative on its own 

  
• Reads must be arranged (aligned) relative to each 

other to reconstruct longer sequences 
 

 
 



Base Qualities 

• Each base is typically associated with a quality value 
 

• Measured on a “Phred” scale, which was introduced by Phil 
Green for his Phred sequence analysis tool 
 

𝐵𝐵 = − log10 𝜖 ,𝑤𝑤𝑤𝑤𝑤 𝜖 𝑖𝑖 𝑡𝑤𝑤 𝑝𝑤𝑝𝑝𝑝𝑝𝑖𝑝𝑖𝑡𝑝 𝑝𝑜 𝑝𝑎 𝑤𝑤𝑤𝑝𝑤 

GCTAGCTGATAGCTAGCTAGCTGATGAGCCCGA 

30.30.28.28.29.27.30.29.28.25.24.26.27.24.24.23.20.21.22.10.25.25.20.20.18.17.16.15.14.14.13.12.10 

Short Read Sequence 

Short Read Base Qualities 



Read Alignment 

• The first step in analysis of human short read data is to align each read to 
genome, typically using a hash table based indexing procedure 
 

• This process now takes no more than a few hours per million reads … 
 

• Analyzing these data without a reference human genome would require 
much longer reads or result in very fragmented assemblies 

5’-ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3’ 

Reference Genome (3,000,000,000 bp) 

GCTAGCTGATAGCTAGCTAGCTGATGAGCCCGA 
Short Read (30-100 bp) 



Read Alignment – Food for Thought 

• Typically, all the words present in the genome 
are indexed to facilitate read mapping … 
– What are the benefits of using short words? 
– What are the benefits of using long words? 

 

• How matches do you expect, on average, for a 
10-base word? 
– Do you expect large deviations from this average? 



Mapping Quality 
• Measures the confidence in an alignment, which 

depends on: 
– Size and repeat structure of the genome 
– Sequence content and quality of the read 
– Number of alternate alignments with few mismatches 

 
• The mapping quality is usually also measured on a 

“Phred” scale 
 

• Idea introduced by Li, Ruan and Durbin (2008) Genome 
Research 18:1851-1858 
 



Mapping Quality Definition 
• Given a particular alignment A, we can calculate 
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• Then, the mapping quality is: 
 

𝑀𝐵 𝐒 𝐀𝑏𝑏𝑚𝑚,𝐐 =
𝑃 𝐒 𝐀𝑏𝑏𝑚𝑚,𝐐
∑ 𝑃 𝐒 𝐀𝑖 ,𝐐𝑖

 

 
• In practice, summing over all possible alignments is too costly and this quantity is 

approximated (for example, by summing over the most likely alignments). 
 



Refinements to Mapping Quality 

• In their simplest form, mapping qualities apply to the 
entire read 
 

• However, in gapped alignments, uncertainty in 
alignment can differ for different portions of the read 
– For example, it has been noted that many wrong variant 

calls are supported by bases near the edges of a read 
 

• Per base alignment qualities were introduced to 
summarize local uncertainty in the alignment 



Per Base Alignment Qualities 

Heng Li 

5’-AGCTGATAGCTAGCTAGCTGATGAGCCCGATC-3’ 
GATAGCTAGCTAGCTG ATGA  G C C G 

Reference Genome 

Short Read 



Per Base Alignment Qualities 

Heng Li 

5’-AGCTGATAGCTAGCTAGCTGATGAGCCCGATC-3’ 
GATAGCTAGCTAGCTGATGAGCC-G 

Reference Genome 

Short Read 

Should we insert a gap? 



Per Base Alignment Qualities 

Heng Li 

5’-AGCTGATAGCTAGCTAGCTGATGAGCCCGATC-3’ 
GATAGCTAGCTAGCTGATGAGCCG 

Reference Genome 

Short Read 

Compensate for Alignment Uncertainty 
With Lower Base Quality 



Calling Consensus Genotype - Details 

• Each aligned read provides a small amount of evidence 
about the underlying genotype 
– Read may be consistent with a particular genotype … 
– Read may be less consistent with other genotypes … 
– A single read is never definitive 

 
• This evidence is cumulated gradually, until we reach a 

point where the genotype can be called confidently 
 

• Let’s outline a simple approach … 



Shotgun Sequence Data 

5’-ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3’ 
Reference Genome 

GCTAGCTGATAGCTAGCTAGCTGATGAGCCCGA 

AGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTG 
ATGCTAGCTGATAGCTAGCTAGCTGATGAGCC 

ATAGCTAGATAGCTGATGAGCCCGATCGCTGCTAGCTC 
TAGCTGATAGCTAGATAGCTGATGAGCCCGAT 

Sequence Reads 

Predicted Genotype A/C 



Shotgun Sequence Data 

5’-ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3’ 
Reference Genome 

Sequence Reads 

Possible Genotypes 

P(reads|A/A, read mapped)= 1.0 
 

P(reads|A/C, read mapped)= 1.0 
 

P(reads|C/C, read mapped)= 1.0 



Shotgun Sequence Data 

5’-ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3’ 
Reference Genome 

GCTAGCTGATAGCTAGCTAGCTGATGAGCCCGA 
Sequence Reads 

Possible Genotypes 

P(reads|A/A, read mapped)= P(C observed|A/A, read mapped)  
 

P(reads|A/C, read mapped)= P(C observed|A/C, read mapped)  
 

P(reads|C/C, read mapped)= P(C observed|C/C, read mapped)  



Shotgun Sequence Data 

5’-ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3’ 
Reference Genome 

GCTAGCTGATAGCTAGCTAGCTGATGAGCCCGA 
Sequence Reads 

Possible Genotypes 

P(reads|A/A, read mapped)= 0.01 
 

P(reads|A/C, read mapped)= 0.50 
 

P(reads|C/C, read mapped)= 0.99 



Shotgun Sequence Data 

5’-ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3’ 
Reference Genome 

GCTAGCTGATAGCTAGCTAGCTGATGAGCCCGA 

AGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTG 

Sequence Reads 

Possible Genotypes 

P(reads|A/A, read mapped)= 0.0001 
 

P(reads|A/C , read mapped)= 0.25 
 

P(reads|C/C , read mapped)= 0.98 



Shotgun Sequence Data 

5’-ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3’ 
Reference Genome 

GCTAGCTGATAGCTAGCTAGCTGATGAGCCCGA 

AGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTG 
ATGCTAGCTGATAGCTAGCTAGCTGATGAGCC 

Sequence Reads 

Possible Genotypes 

P(reads|A/A , read mapped)= 0.000001 
 

P(reads|A/C , read mapped)= 0.125 
 

P(reads|C/C , read mapped)= 0.97 



Shotgun Sequence Data 

5’-ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3’ 
Reference Genome 

GCTAGCTGATAGCTAGCTAGCTGATGAGCCCGA 

AGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTG 
ATGCTAGCTGATAGCTAGCTAGCTGATGAGCC 

ATAGCTAGATAGCTGATGAGCCCGATCGCTGCTAGCTC 

Sequence Reads 

Possible Genotypes 

P(reads|A/A , read mapped)= 0.00000099 
 

P(reads|A/C , read mapped)= 0.0625 
 

P(reads|C/C , read mapped)= 0.0097 



Shotgun Sequence Data 

5’-ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3’ 
Reference Genome 

GCTAGCTGATAGCTAGCTAGCTGATGAGCCCGA 

AGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTG 
ATGCTAGCTGATAGCTAGCTAGCTGATGAGCC 

ATAGCTAGATAGCTGATGAGCCCGATCGCTGCTAGCTC 
TAGCTGATAGCTAGATAGCTGATGAGCCCGAT 

Sequence Reads 

Possible Genotypes 

P(reads|A/A , read mapped)= 0.00000098 
 

P(reads|A/C , read mapped)= 0.03125 
 

P(reads|C/C , read mapped)= 0.000097 



Shotgun Sequence Data 

5’-ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3’ 
Reference Genome 

GCTAGCTGATAGCTAGCTAGCTGATGAGCCCGA 

AGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTG 
ATGCTAGCTGATAGCTAGCTAGCTGATGAGCC 

ATAGCTAGATAGCTGATGAGCCCGATCGCTGCTAGCTC 
TAGCTGATAGCTAGATAGCTGATGAGCCCGAT 

Sequence Reads 

Combine these likelihoods with a prior incorporating information from other 
individuals and flanking sites to assign a genotype. 

P(reads|A/A, read mapped)= 0.00000098 
 

P(reads|A/C, read mapped)= 0.03125 
 

P(reads|C/C, read mapped)= 0.000097 



Shotgun Sequence Data 

5’-ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3’ 
Reference Genome 

GCTAGCTGATAGCTAGCTAGCTGATGAGCCCGA 

AGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTG 
ATGCTAGCTGATAGCTAGCTAGCTGATGAGCC 

ATAGCTAGATAGCTGATGAGCCCGATCGCTGCTAGCTC 
TAGCTGATAGCTAGATAGCTGATGAGCCCGAT 

Sequence Reads 

Combine these likelihoods with a prior incorporating information from other 
individuals and flanking sites to assign a genotype. 

𝑃 𝐺𝑤𝑎𝑝𝑡𝑝𝑝𝑤 𝑤𝑤𝑝𝑟𝑖 =
𝑃 𝑤𝑤𝑝𝑟𝑖 𝐺𝑤𝑎𝑝𝑡𝑝𝑝𝑤 𝑃𝑤𝑖𝑝𝑤(𝐺𝑤𝑎𝑝𝑡𝑝𝑝𝑤)

∑ 𝑃 𝑤𝑤𝑝𝑟𝑖 𝐺 𝑃𝑤𝑖𝑝𝑤(𝐺)𝐺
 



Ingredients That Go Into Prior 

• Most sites don’t vary 
– P(non-reference base) ~ 0.001 

 
• When a site does vary, it is usually heterozygous 

– P(non-reference heterozygote) ~ 0.001 * 2/3 
– P(non-reference homozygote) ~ 0.001 * 1/3 

 
• Mutation model 

– Transitions account for most variants (C↔T or A↔G) 
– Transversions account for minority of variants 

 



From Sequence to Genotype: 
Individual Based Prior 

5’-ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3’ 
Reference Genome 

GCTAGCTGATAGCTAGCTAGCTGATGAGCCCGA 

AGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTG 
ATGCTAGCTGATAGCTAGCTAGCTGATGAGCC 

ATAGCTAGATAGCTGATGAGCCCGATCGCTGCTAGCTC 
TAGCTGATAGCTAGATAGCTGATGAGCCCGAT 

Sequence Reads 

Individual Based Prior: Every site has 1/1000 probability of varying. 

P(reads|A/A)= 0.00000098 Prior(A/A) = 0.00034 Posterior(A/A) = <.001 
 

P(reads|A/C)= 0.03125 Prior(A/C) = 0.00066 Posterior(A/C) = 0.175 
 

P(reads|C/C)= 0.000097 Prior(C/C) = 0.99900 Posterior(C/C) = 0.825 



From Sequence to Genotype: 
Individual Based Prior 

5’-ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3’ 
Reference Genome 

GCTAGCTGATAGCTAGCTAGCTGATGAGCCCGA 

AGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTG 
ATGCTAGCTGATAGCTAGCTAGCTGATGAGCC 

ATAGCTAGATAGCTGATGAGCCCGATCGCTGCTAGCTC 
TAGCTGATAGCTAGATAGCTGATGAGCCCGAT 

Sequence Reads 

Individual Based Prior: Every site has 1/1000 probability of varying. 

P(reads|A/A)= 0.00000098 Prior(A/A) = 0.00034 Posterior(A/A) = <.001 
 

P(reads|A/C)= 0.03125 Prior(A/C) = 0.00066 Posterior(A/C) = 0.175 
 

P(reads|C/C)= 0.000097 Prior(C/C) = 0.99900 Posterior(C/C) = 0.825 



Sequence Based Genotype Calls 
• Individual Based Prior 

– Assumes all sites have an equal probability of showing polymorphism 
– Specifically, assumption is that about 1/1000 bases differ from reference 
– If reads where error free and sampling Poisson … 
– … 14x coverage would allow for 99.8% genotype accuracy 
– … 30x coverage of the genome needed to allow for errors and clustering 

 
• Population Based Prior 

– Uses frequency information obtained from examining other individuals 
– Calling very rare polymorphisms still requires 20-30x coverage of the genome 
– Calling common polymorphisms requires much less data 

 
• Haplotype Based Prior or Imputation Based Analysis 

– Compares individuals with similar flanking haplotypes 
– Calling very rare polymorphisms still requires 20-30x coverage of the genome 
– Can make accurate genotype calls with 2-4x coverage of the genome 
– Accuracy improves as more individuals are sequenced 



From Sequence to Genotype: 
Population Based Prior 

5’-ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3’ 
Reference Genome 

GCTAGCTGATAGCTAGCTAGCTGATGAGCCCGA 

AGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTG 
ATGCTAGCTGATAGCTAGCTAGCTGATGAGCC 

ATAGCTAGATAGCTGATGAGCCCGATCGCTGCTAGCTC 
TAGCTGATAGCTAGATAGCTGATGAGCCCGAT 

Sequence Reads 

Population Based Prior: Use frequency information from examining others at the same site. 
In the example above, we estimated P(A) = 0.20 

P(reads|A/A)= 0.00000098 Prior(A/A) = 0.04  Posterior(A/A) = <.001 
 

P(reads|A/C)= 0.03125 Prior(A/C) = 0.32  Posterior(A/C) = 0.999 
 

P(reads|C/C)= 0.000097 Prior(C/C) = 0.64  Posterior(C/C) = <.001 



From Sequence To Genotype: 
Population Based Prior 

5’-ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3’ 
Reference Genome 

GCTAGCTGATAGCTAGCTAGCTGATGAGCCCGA 

AGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTG 
ATGCTAGCTGATAGCTAGCTAGCTGATGAGCC 

ATAGCTAGATAGCTGATGAGCCCGATCGCTGCTAGCTC 
TAGCTGATAGCTAGATAGCTGATGAGCCCGAT 

Sequence Reads 

Population Based Prior: Use frequency information from examining others at the same site. 
In the example above, we estimated P(A) = 0.20 

P(reads|A/A)= 0.00000098 Prior(A/A) = 0.04  Posterior(A/A) = <.001 
 

P(reads|A/C)= 0.03125 Prior(A/C) = 0.32  Posterior(A/C) = 0.999 
 

P(reads|C/C)= 0.000097 Prior(C/C) = 0.64  Posterior(C/C) = <.001 



Sequence Based Genotype Calls 
• Individual Based Prior 

– Assumes all sites have an equal probability of showing polymorphism 
– Specifically, assumption is that about 1/1000 bases differ from reference 
– If reads where error free and sampling Poisson … 
– … 14x coverage would allow for 99.8% genotype accuracy 
– … 30x coverage of the genome needed to allow for errors and clustering 

 
• Population Based Prior 

– Uses frequency information obtained from examining other individuals 
– Calling very rare polymorphisms still requires 20-30x coverage of the genome 
– Calling common polymorphisms requires much less data 

 
• Haplotype Based Prior or Imputation Based Analysis 

– Compares individuals with similar flanking haplotypes 
– Calling very rare polymorphisms still requires 20-30x coverage of the genome 
– Can make accurate genotype calls with 2-4x coverage of the genome 
– Accuracy improves as more individuals are sequenced 



Shotgun Sequence Data 
Haplotype Based Prior 

5’-ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3’ 
Reference Genome 

GCTAGCTGATAGCTAGCTAGCTGATGAGCCCGA 

AGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTG 
ATGCTAGCTGATAGCTAGCTAGCTGATGAGCC 

ATAGCTAGATAGCTGATGAGCCCGATCGCTGCTAGCTC 
TAGCTGATAGCTAGATAGCTGATGAGCCCGAT 

Sequence Reads 

Haplotype Based Prior: Examine other chromosomes that are similar at locus of interest. 
In the example above, we estimated that 90% of similar chromosomes carry allele A. 

P(reads|A/A)= 0.00000098 Prior(A/A) = 0.81  Posterior(A/A) = <.001 
 

P(reads|A/C)= 0.03125 Prior(A/C) = 0.18  Posterior(A/C) = 0.999 
 

P(reads|C/C)= 0.000097 Prior(C/C) = 0.01  Posterior(C/C) = <.001 



Shotgun Sequence Data 
Haplotype Based Prior 

5’-ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3’ 
Reference Genome 

GCTAGCTGATAGCTAGCTAGCTGATGAGCCCGA 

AGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTG 
ATGCTAGCTGATAGCTAGCTAGCTGATGAGCC 

ATAGCTAGATAGCTGATGAGCCCGATCGCTGCTAGCTC 
TAGCTGATAGCTAGATAGCTGATGAGCCCGAT 

Sequence Reads 

Haplotype Based Prior: Examine other chromosomes that are similar at locus of interest. 
In the example above, we estimated that 90% of similar chromosomes carry allele A. 

P(reads|A/A)= 0.00000098 Prior(A/A) = 0.81  Posterior(A/A) = <.001 
 

P(reads|A/C)= 0.03125 Prior(A/C) = 0.18  Posterior(A/C) = 0.999 
 

P(reads|C/C)= 0.000097 Prior(C/C) = 0.01  Posterior(C/C) = <.001 



Sequence Based Genotype Calls 
• Individual Based Prior 

– Assumes all sites have an equal probability of showing polymorphism 
– Specifically, assumption is that about 1/1000 bases differ from reference 
– If reads where error free and sampling Poisson … 
– … 14x coverage would allow for 99.8% genotype accuracy 
– … 30x coverage of the genome needed to allow for errors and clustering 

 
• Population Based Prior 

– Uses frequency information obtained from examining other individuals 
– Calling very rare polymorphisms still requires 20-30x coverage of the genome 
– Calling common polymorphisms requires much less data 

 
• Haplotype Based Prior or Imputation Based Analysis 

– Compares individuals with similar flanking haplotypes 
– Calling very rare polymorphisms still requires 20-30x coverage of the genome 
– Can make accurate genotype calls with 2-4x coverage of the genome 
– Accuracy improves as more individuals are sequenced 



Paired End Sequencing 

Population of DNA fragments of known size (mean + stdev) 
Paired end sequences 



Paired End Sequencing 
Paired Reads 

Initial alignment to the reference genome 

Paired end resolution 



Detecting Structural Variation 
• Read depth 

– Regions where depth is different from expected 
• Expectation defined by comparing to rest of genome … 
• … or, even better, by comparing to other individuals 

 
• Split reads 

– If reads are longer, it may be possible to find reads that span the 
structural variation 
 

• Discrepant pairs 
– If we find pairs of reads that appear to map significantly closer or 

further apart than expected, could indicate an insertion or deletion 
 

– For this approach, “physical coverage” which is the sum of read length 
and insert size is key 
 

• De Novo Assembly 
 



How Much Variation is There? 

• An average genome includes: 
– 3.6M SNPs 
– 350K indels 
– 700 large deletions 

 
• Numbers are probably underestimates … 
• … some variants are hard to call with short reads 

 
• 1000 Genomes Project (2012) Nature 491:56-65 



How Much Variation is There? 
SNPs Per Individual in Gene Regions  

European 
Ancestry # SNP # HET # ALT # Singletons Ts/Tv 

SILENT 10127 6174 3953 38.2 5.10 
MISSENSE 8541 5184 3357 72.2 2.16 
NONSENSE 86 57 29 2.1 1.70 

African 
Ancestry # SNP # HET # ALT # Singletons Ts/Tv 

SILENT 12028 8038 3990 53.2 5.19 
MISSENSE 9870 6502 3367 94.2 2.16 
NONSENSE 92 57 35 2.4 1.57 

Primarily European Ancestry 

Primarily African Ancestry 

NHLBI Exome Sequencing Project 



Lots of Rare Functional Variants to Discover 

SET # SNPs Singletons Doubletons Tripletons >3 Occurrences 

Synonymous 270,263 128,319 
(47%) 

29,340 
(11%) 

13,129 
(5%) 

99,475 
(37%) 

Nonsynonymous 410,956 234,633 
(57%) 

46,740 
(11%) 

19,274 
(5%) 

110,309 
(27%) 

Nonsense 8,913 6,196 
(70%) 

926 
(10%) 

326 
(4%) 

1,465 
(16%) 

Non-Syn / Syn 
Ratio 1.8 to 1 1.6 to 1 1.4 to 1 1.1 to 1 

There is  a very large reservoir of extremely rare, likely functional, coding variants. 
(Results above correspond to approximately 5,000 individuals) 

NHLBI Exome Sequencing Project 



Allele Frequency Spectrum 
(After Sequencing 12,000+ Individuals) 
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Minor Allele Count 

NonSynonymous
Splice Variants
Stop

http://genome.sph.umich.edu/wiki/Exome_Chip_Design  

http://genome.sph.umich.edu/wiki/Exome_Chip_Design


Summary 

• Introduction to whole genome sequencing 
– Read mapping 
– Genotype calling 
– Analysis of structural variation 

 
• Sequencing and the genetics of complex traits 

– Advantages and disadvantages versus genotyping 
– What sorts of things might we learn? 



Recommended Reading 

• The 1000 Genomes Project (2010) A map of 
human genome variation from population-
scale sequencing. Nature 467:1061-73  


	Whole Genome Sequencing
	Genomewide Association Studies
	Questions that Might Be Answered With Complete Sequence Data…
	What Is the Total Contribution of Each Locus?
	Evidence for Multiple Variants Per Locus�Example from Lipid Biology
	Evidence for Multiple Variants Per Locus�Example from Lipid Biology
	Evidence for Multiple Variants Per Locus�Example from Lipid Biology
	What is The Contribution of Structural Variants?
	Evidence that Copy Number Variants Important�Example from Genetics of Obesity
	Evidence that Copy Number Variants Important�Example from Genetics of Obesity
	Evidence that Copy Number Variants Important�Example from Genetics of Obesity
	Associated Haplotype Carries Deletion
	What is the Mechanism?�What Can We Learn From Rare Knockouts?
	Can Rare Variants Replace Model Systems?�Example from Type 1 Diabetes
	HDL-C Associated Locus
	The Challenge
	Next Generation Sequencing
	Massive Throughput Sequencing
	Shotgun Sequence Reads
	Base Qualities
	Read Alignment
	Read Alignment – Food for Thought
	Mapping Quality
	Mapping Quality Definition
	Refinements to Mapping Quality
	Per Base Alignment Qualities
	Per Base Alignment Qualities
	Per Base Alignment Qualities
	Calling Consensus Genotype - Details
	Shotgun Sequence Data
	Shotgun Sequence Data
	Shotgun Sequence Data
	Shotgun Sequence Data
	Shotgun Sequence Data
	Shotgun Sequence Data
	Shotgun Sequence Data
	Shotgun Sequence Data
	Shotgun Sequence Data
	Shotgun Sequence Data
	Ingredients That Go Into Prior
	From Sequence to Genotype:�Individual Based Prior
	From Sequence to Genotype:�Individual Based Prior
	Sequence Based Genotype Calls
	From Sequence to Genotype:�Population Based Prior
	From Sequence To Genotype:�Population Based Prior
	Sequence Based Genotype Calls
	Shotgun Sequence Data�Haplotype Based Prior
	Shotgun Sequence Data�Haplotype Based Prior
	Sequence Based Genotype Calls
	Paired End Sequencing
	Paired End Sequencing
	Detecting Structural Variation
	How Much Variation is There?
	How Much Variation is There?�SNPs Per Individual in Gene Regions 
	Lots of Rare Functional Variants to Discover
	Allele Frequency Spectrum�(After Sequencing 12,000+ Individuals)
	Summary
	Recommended Reading

