Maximum Likelihood Estimation
for Allele Frequencies
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Previous Series of Lectures:
Introduction to Coalescent Models

Computationally efficient framework
Alternative to forward simulations
Amenable to analytical solutions

Predictions about sequence variation
Number of polymorphisms
Frequency of polymorphisms

\ Distribution of polymorphisms across haplotyp?
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Coalescent Models: Key ldeas

~

N

Proceed backwards in time

Genealogies shaped by
Population size
Population structure
Recombination rates

Given a particular genealogy ...
Mutation rate predicts variation
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Next Series of Lectures

Estimating allele and haplotype frequencies
from genotype data

Maximum likelihood approach

Application of an E-M algorithm

Challenges
Using information from related individuals
Allowing for non-codominant genotypes

\ Allowing for ambiguity in haplotype assignmeny
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Objective: Parameter Estimation

o

Learn about population characteristics
E.g. allele frequencies, population size

Using a specific sample
E.g. a set sequences, unrelated individuals, or

even families
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Maximum Likelihood

A general framework for estimating
model parameters

Find the set of parameter values that

maximize the probability of the observed
data

Applicable to many different problems
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Example: Allele Freguencies

N

Consider...
A sample of n chromosomes
X of these are of type “a”
Parameter of interest is allele frequency...

L<p|n,><>=[;jpxa— D)™
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Evaluate for various parameters

~

P 1-p L

0.0 1.0 0.000
0.2 0.8 0.088
0.4 0.6 0.251
0.6 0.4 0.111
0.8 0.2 0.006
1.0 0.0 0.000

FornleandX:4/
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Likelihood Plot

Forn=10and X =4

k Allele Frequency J
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INn this case

~

The likelihood tells us the data is most
probableif p=0.4

The likelihood curve allows us to
evaluate alternatives...

Is p = 0.8 a possibility?

Is p = 0.2 a possibility?
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Example: Estimating 4/Nu

~

Consider S polymorphisms in sample of
n seguences...

L(#|n,S) =P, (5]0)

Where P, is calculated using the Q, and
P, functions defined previously

/
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Likelihood Plot

|
\

Withn=5, S =10

Likelihood
000 001 002 003 004 0.05 0.0
|
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Maximum Likelihood Estimation

N

Two basic steps...

a) Write down likelihood function
L(@|X) o f(X]|6)

b) Find value of & that maximizes L(& | x)

In principle, applicable to any problem
where a likelihood function exists

/
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MLES

Parameter values that maximize likelihood
0 where observations have maximum probability

Finding MLEs is an optimization problem

How do MLEs compare to other estimators?

N\ %
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Comparing Estimators

How do MLEs rate in terms of ...
Unbiasedness
Consistency
Efficiency

For a review, see Garthwaite, Jolliffe,
Jones (1995) Statistical Inference,

Prentice Hall
\_ %
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Analytical Solutions

o

Write out log-likelihood ...
/(6 |data) =In L(€|data)
Calculate derivative of likelihood
d/(6 | data)
do

Find zeros for derivative function
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Information

The second derivative is also extremely useful

’ :_E{dzf(é’ldata)}

do?

The speed at which log-likelihood decreases
Provides an asymptotic variance for estimates /

N
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Allele Frequency Estimation ...

When individual chromosomes are
observed this does not seem tricky...

What about with genotypes?

What about with parent-offspring pairs?

/
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Coming up ...

We will walk through allele frequency
estimation In three distinct settings:

Sam
Sam
Sam

es single chromosomes ...
es of unrelated Individuals ...
es of parents and offspring ...
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. Single Alleles Observed

Consider...
A sample of n chromosomes
X of these are of type “a”
Parameter of interest is allele frequency...

L<p|n,><>=[;jpxa— D)™
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Some Notes

~

The following two likelihoods are just as good:
n X n—X
L(p;x,n){xjp (1-p)

L( P X, X5 X, ,n):H pXi (1_ p)1—xi
=1

For ML estimation, constant factors in likelihood

don’t matter

/
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Analytic Solution

~

The log-likelihood

In L(p|n,X)=In[;j+X Inp+(n—X)In(L— p)

The derivative

dinL(p[X) X
dp P
Find zero ...

/




/Samples of \

Individual Chromosomes

The natural estimator (where we count the
proportion of sequences of a particular
type) and the MLE give identical solutions

Maximum likelihood provides a justification
for using the “natural”’ estimator

N\ %
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Il. Genotypes Observed

Use notation n; to denote the number of
iIndividuals with genotype i/ |

Sample of n individuals

Genotype AA; AA, ALA, Total
Observed Counts Ny, Ny, N,, n=n,;+N,+N,,
Frequency P11 P12 P22 1.0

o
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Allele Frequencies by Counting...

o

A natural estimate for allele frequencies is to
calculate the proportion of individuals carrying
each allele

Genotype A, A, Total
Observed Counts n; =2n;; + Ny, N, =2n,, + Ny, 2n=n,+n,
Frequency p,=n,/2n pP,=N,/2n 1.0
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MLE using genotype data...

~

Consider a sample such as ...

Genotype AA; AA, ALA, Total
Observed Counts Ny Ny, N,, n=n,;+N,+N,,
Frequency P11 P12 P22 1.0

The likelihood as a function of allele
frequencies is ...

nl n n n
| ; _ 2\ (9 12 ((~2 \N22
\ (p;n) nll!nlzlnzz!(p) (2pa)™(q2)
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Which gives...

Log-likelihood and its derivative

¢=InL=(2n,+n,)Inp,+(2n,, +n,)In(l—p,)+C
d/  2n,+n, _2ny, +ny,
dpl Py (1_ pl)

Giving the MLE as ...

A (2n11 + n12)

\ 1 2(nll + n12 + n22) /
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Samples of \
Unrelated Individuals

Again, natural estimator (where we count
the proportion of alleles of a particular
type) and the MLE give identical solutions

Maximum likelihood provides a justification
for using the “natural”’ estimator

N\ %
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[1l. Parent-Offspring Pairs

~

N

Parent
A A, a, a, 0 a,;+a,
AA, A, a, as a;ta,tag
A A, 0 Ag a- agta,
N pairs
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Probability for Each Observation

~

Parent

A1A

A1A;

AA;

-

1.0
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Probability for Each Observation

~

N

Parent
AlA p.3 P1°P, 0 0,°
AA, P1°P, P1P2 P1P,° 2P1P,
AA, 0 P1P,° p,’ 0,7
1.0
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Which gives...
InL =
p2:1— Py

B=3a, +2(a,+a,)+a, +(a; +a,)
C=(a,+a,)+a, +2(a +a,)+3a,
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Which gives...

InL=aIn p; +(a, +a,)In(p? p, )+ a, In(p, p,)
+(a, +a,)In(p,p2)+a, In ps +constant
=BlInp,+CIn(l-p,)

p,=1-p
B=3a +2(a,+a,)+a, +(a; +a,)
C=(a,+a,)+a,+2(a +a,)+3a,




/Samples of \

Parent Offspring-Pairs

The natural estimator (where we count the
proportion of alleles of a particular type)
and the MLE no longer give identical
solutions

In this case, we expect the MLE to be
more accurate

N\ %
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Comparing Sampling Strategies

We can compare sampling strategies by
calculating the information for each one

d“/(6|data)
dé

Which one to you expect to be most
iInformative?

/
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How informative Is each setting?

Single chromosomes Var(p)zN PY

chromosomes

Unrelated individuals  Var(p) = N P9

individuals

_ Pg
Parent offspring pairs var(p)= 3N_. —a

pairs 4 /
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Other Likelihoods

N

Allele frequencies when individuals are...
Diagnosed for Mendelian disorder
Genotyped at two neighboring loci
Phenotyped for the ABO blood groups

Many other interesting problems...
... but some have no analytical solution
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Today’s Summary

Examples of Maximum Likelihood

Allele Frequency Estimation
Allele counts
Genotype counts
Pairs of Individuals

o
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Take home reading

Excoffier and Slatkin (1995)
Mol Biol Evol 12:921-927

Introduces the E-M algorithm

Widely used for maximizing likelihoods in
genetic problems

N\ %




Properties of Estimators

For Review
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Unbilasedness

An estimator Is unbiased If
E(9) =6
bias(8) = E(9) - @

Multiple unbiased estimators may exist
Other properties may be desirable

/
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Consistency

N

An estimator Is consistent if
P(6—6> ) 0asn— o

for any ¢

Estimate converges to true value In
probability with increasing sample size
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Mean Squared Error

MSE Is defined as
MsE() =E({(6-8)+@-0))
= var(0) + bias(9)?

If MSE — 0 as n — oo then the estimator
must be consistent
The reverse IS not true

/




Efficiency

N

The relative efficiency of two estimators
IS the ratio of thelr variances
var(H )

1 >1 then 9 IS more efficient
var(é’)

Comparison only meaningful for
estimators with equal biases

/
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Sufficiency

Consider...
Observations X;, X,, ... X
Statistic T(Xy, X,, ... X,)

n

T Is a sufficient statistic If it includes all information
about parameter 0 in the sample
Distribution of X; conditional on T is independent of 0
Posterior distribution of 6 conditional on T is independent of X;

N\ %
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Minimal Sufficient Statistic

There can be many alternative sufficient
statistics.

A statistic Is a minimal sufficient statistic
If It can be expressed as a function of
every other sufficient statistic.
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Typical Properties of MLEs

Bias
Can be biased or unbiased

Consistency
Subject to regularity conditions, MLEs are consistent

Efficiency
Typically, MLEs are asymptotically efficient estimators

Sufficiency
Often, but not always

Cox and Hinkley, 1974




Strategies for Likelihood
Optimization

For Review
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Generic Approaches

Suitable for when analytical solutions are
Impractical

Bracketing
Simplex Method
Newton-Rhapson

\_ /
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Bracketing

N

Find 3 points such that
ea < eb < ec
L(eb) > L(ea) and L(eb) > L(ec)

Search for maximum by
Select trial point in interval
Keep maximum and flanking points
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Bracketing
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The Simplex Method

~

Calculate likelihoods at simplex vertices
Geometric shape with k+1 corners
E.g. atriangle in k = 2 dimensions

At each step, move the high vertex in the
direction of lower points

/
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The Simplex Method Il

Original Simplex

high
low

é> reflection contraction
|

expansion

>_ 7 4 multiple
\ __— reflection and é:ﬂ:fff::j"A contraction/
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One parameter maximization

Simple but inefficient approach

Consider
Parameters 6 = (6,, 0,, ..., 6,)
Likelihood function L (0; x)

Maximize 0 with respect to each 6, in turn

Cycle through parameters

/
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The Inefficiency...

\
N

N

Q
\
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Steepest Descent

Consider
Parameters 6 = (64, 0,, ..., 6,)
Likelihood function L (0; x)

Score vector

S _ din(L) (dIn(L) dlIn(L)
dé dg, =~ dg,
Find maximum along 6 + 0S

/
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Still inefficient...

=

\Consecutive steps are perpendicular!

/
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Local Approximations to \
Log-Likelihood Function

In the neighboorhood of 0.

((0) ~ £(0;,)+S(0-0,) _%(9 -0,)1,(60-6,)
where
7(0) =InL(0) IS the loglikelihood function

S =d/(0.) IS the score vector
I,=-d2/(0,) I1stheobserved information matrix/
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Newton’s Method

Maximize the approximation

((0)~ £(6,)+S(0-0,)— 12 (0-0,)'1(0-90,)
by setting its derivative to zero...
S—-1(0-06.)=0

and get a new trial point

0.,=0+I"S
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Fisher Scoring

o

Use expected information matrix instead of

observed information:

E{_ d?f(e)}
do?

Instead of
~ d*/(0]data)

Compared to Newton-Rhapson:

do’

Converges faster when estimates
are poor.

Converges slower when close to
MLE.




