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Previous Series of Lectures:
Introduction to Coalescent Models

 Computationally efficient framework
• Alternative to forward simulations
• Amenable to analytical solutions

 Predictions about sequence variation
• Number of polymorphisms
• Frequency of polymorphisms
• Distribution of polymorphisms across haplotypes



Coalescent Models: Key Ideas

 Proceed backwards in time

 Genealogies shaped by
• Population size
• Population structure
• Recombination rates

 Given a particular genealogy ...
• Mutation rate predicts variation



Next Series of Lectures

 Estimating allele and haplotype frequencies 
from genotype data
• Maximum likelihood approach
• Application of an E-M algorithm

 Challenges
• Using information from related individuals
• Allowing for non-codominant genotypes
• Allowing for ambiguity in haplotype assignments



Objective: Parameter Estimation

 Learn about population characteristics
• E.g. allele frequencies, population size

 Using a specific sample
• E.g. a set sequences, unrelated individuals, or 

even families



Maximum Likelihood

 A general framework for estimating 
model parameters

 Find the set of parameter values that 
maximize the probability of the observed 
data

 Applicable to many different problems



Example: Allele Frequencies

 Consider…
• A sample of n chromosomes
• X of these are of type “a”
• Parameter of interest is allele frequency…
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Evaluate for various parameters

p 1-p L
0.0 1.0 0.000
0.2 0.8 0.088
0.4 0.6 0.251
0.6 0.4 0.111
0.8 0.2 0.006
1.0 0.0 0.000

For n = 10 and X = 4



Likelihood Plot
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In this case

 The likelihood tells us the data is most 
probable if p = 0.4

 The likelihood curve allows us to 
evaluate alternatives…
• Is p = 0.8 a possibility?
• Is p = 0.2 a possibility?



Example: Estimating 4N

 Consider S polymorphisms in sample of 
n sequences…

 Where Pn is calculated using the Qn and 
P2 functions defined previously
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Likelihood Plot
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Maximum Likelihood Estimation

 Two basic steps…

 In principle, applicable to any problem 
where a likelihood function exists
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MLEs

 Parameter values that maximize likelihood
•  where observations have maximum probability

 Finding MLEs is an optimization problem

 How do MLEs compare to other estimators?



Comparing Estimators

 How do MLEs rate in terms of …
• Unbiasedness 
• Consistency
• Efficiency

 For a review, see Garthwaite, Jolliffe, 
Jones (1995) Statistical Inference, 
Prentice Hall



Analytical Solutions

 Write out log-likelihood …

 Calculate derivative of likelihood

 Find zeros for derivative function
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Information

 The second derivative is also extremely useful

 The speed at which log-likelihood decreases
 Provides an asymptotic variance for estimates
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Allele Frequency Estimation …

 When individual chromosomes are 
observed this does not seem tricky…

 What about with genotypes?

 What about with parent-offspring pairs?



Coming up …

 We will walk through allele frequency 
estimation in three distinct settings:

• Samples single chromosomes …
• Samples of unrelated Individuals …
• Samples of parents and offspring …



I. Single Alleles Observed

 Consider…
• A sample of n chromosomes
• X of these are of type “a”
• Parameter of interest is allele frequency…

XnX pp
X
n

XnpL 







 )1(),|(



Some Notes

 The following two likelihoods are just as good:

 For ML estimation, constant factors in likelihood 
don’t matter
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Analytic Solution

 The log-likelihood

 The derivative

 Find zero …
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Samples of 
Individual Chromosomes

 The natural estimator (where we count the 
proportion of sequences of a particular 
type) and the MLE give identical solutions

 Maximum likelihood provides a justification 
for using the “natural” estimator



II. Genotypes Observed

 Use notation nij to denote the number of 
individuals with genotype i / j

 Sample of n individuals

Genotype Counts
Genotype A1A1 A1A2 A2A2 Total

Observed Counts n11 n12 n22 n=n11+n12+n22

Frequency p11 p12 p22 1.0



Allele Frequencies by Counting…

 A natural estimate for allele frequencies is to 
calculate the proportion of individuals carrying 
each allele

Allele Counts
Genotype A1 A2 Total

Observed Counts n1 = 2n11 + n12 n2 = 2n22 + n12 2n=n1+n2

Frequency p1=n1/2n p2=n2/2n 1.0



MLE using genotype data…

 Consider a sample such as ...

 The likelihood as a function of allele 
frequencies is …
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Genotype Counts
Genotype A1A1 A1A2 A2A2 Total

Observed Counts n11 n12 n22 n=n11+n12+n22

Frequency p11 p12 p22 1.0



Which gives…

 Log-likelihood and its derivative

 Giving the MLE as …
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Samples of
Unrelated Individuals

 Again, natural estimator (where we count 
the proportion of alleles of a particular 
type) and the MLE give identical solutions

 Maximum likelihood provides a justification 
for using the “natural” estimator



III. Parent-Offspring Pairs

Child
Parent A1A1 A1A2 A2A2

A1A1 a1 a2 0 a1+a2

A1A2 a3 a4 a5 a3+a4+a5

A2A2 0 a6 a7 a6+a7

a1+a3 a2+a4+a6 a5+a7 N pairs



Probability for Each Observation

Child
Parent A1A1 A1A2 A2A2
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Probability for Each Observation

Child
Parent A1A1 A1A2 A2A2

A1A1 p1
3 p1

2p2 0 p1
2

A1A2 p1
2p2 p1p2 p1p2

2 2p1p2

A2A2 0 p1p2
2 p2

3 p2
2
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2 2p1p2 p2

2 1.0



Which gives…
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Which gives…
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Samples of
Parent Offspring-Pairs

 The natural estimator (where we count the 
proportion of alleles of a particular type) 
and the MLE no longer give identical 
solutions

 In this case, we expect the MLE to be 
more accurate



Comparing Sampling Strategies
 We can compare sampling strategies by 

calculating the information for each one

 Which one to you expect to be most 
informative?
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How informative is each setting?

 Single chromosomes

 Unrelated individuals

 Parent offspring pairs 43
)(

2
)(

)(

aN
pqpVar

N
pqpVar

N
pqpVar

pairs

sindividual

schromosome










Other Likelihoods

 Allele frequencies when individuals are…
• Diagnosed for Mendelian disorder
• Genotyped at two neighboring loci
• Phenotyped for the ABO blood groups

 Many other interesting problems…
 … but some have no analytical solution



Today’s Summary

 Examples of Maximum Likelihood

 Allele Frequency Estimation
• Allele counts
• Genotype counts
• Pairs of Individuals



Take home reading

 Excoffier and Slatkin (1995)
• Mol Biol Evol 12:921-927

 Introduces the E-M algorithm
 Widely used for maximizing likelihoods in 

genetic problems



Properties of Estimators

For Review



Unbiasedness

 An estimator is unbiased if

 Multiple unbiased estimators may exist
 Other properties may be desirable
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Consistency

 An estimator is consistent if

 for any 

 Estimate converges to true value in 
probability with increasing sample size
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Mean Squared Error

 MSE is defined as

 If MSE  0 as n   then the estimator 
must be consistent
• The reverse is not true



Efficiency

 The relative efficiency of two estimators 
is the ratio of their variances

 Comparison only meaningful for 
estimators with equal biases

efficient more is ˆ    then1
)ˆvar(
)ˆvar( if 1

1

2 







Sufficiency

 Consider…
• Observations X1, X2, … Xn

• Statistic T(X1, X2, … Xn)

 T is a sufficient statistic if it includes all information 
about parameter  in the sample
• Distribution of Xi conditional on T is independent of 
• Posterior distribution of  conditional on T is independent of Xi



Minimal Sufficient Statistic

 There can be many alternative sufficient 
statistics.

 A statistic is a minimal sufficient statistic 
if it can be expressed as a function of 
every other sufficient statistic.



Typical Properties of MLEs

 Bias
• Can be biased or unbiased

 Consistency
• Subject to regularity conditions, MLEs are consistent 

 Efficiency
• Typically, MLEs are asymptotically efficient estimators

 Sufficiency
• Often, but not always

 Cox and Hinkley, 1974



Strategies for Likelihood 
Optimization

For Review



Generic Approaches

 Suitable for when analytical solutions are 
impractical

 Bracketing
 Simplex Method
 Newton-Rhapson



Bracketing

 Find 3 points such that 
• a < b < c

• L(b) > L(a) and L(b) > L(c)

 Search for maximum by
• Select trial point in interval
• Keep maximum and flanking points



Bracketing
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The Simplex Method

 Calculate likelihoods at simplex vertices
• Geometric shape with k+1 corners
• E.g. a triangle in k = 2 dimensions

 At each step, move the high vertex in the 
direction of lower points



The Simplex Method II
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One parameter maximization

 Simple but inefficient approach

 Consider
• Parameters  = (1, 2, …, k)
• Likelihood function L (; x)

 Maximize  with respect to each i in turn
• Cycle through parameters



The Inefficiency…
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Steepest Descent

 Consider
• Parameters  = (1, 2, …, k)
• Likelihood function L (; x)

 Score vector

• Find maximum along  + S
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Still inefficient…

Consecutive steps are perpendicular!



Local Approximations to 
Log-Likelihood Function
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Newton’s Method
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Fisher Scoring

 Use expected information matrix instead of 
observed information:
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Converges faster when estimates
are poor.

Converges slower when close to
MLE.


