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Last Lecture

= What is an interval estimator?

= What is the coverage probability, confidence coefficient, and
confidence interval?

= How can a 1 — « confidence interval typically be constructed?

= To obtain a lower-bounded (upper-tail) Cl, whose acceptance region
of a test should be inverted?
(a) Hy:0=0yvs H :0 >0
(b) Hy:0=09vs H :0 <06

Hyun Min Kang Biostatistics 602 - Lecture 24 April 16th, 2013 2 /33



Recap
(o] lelele]

Interval Estimation

0(X) is usually represented as a point estimator

Hyun Min Kang Biostatistics 602 - Lecture 24 April 16th, 2013 3/33



Recap

[e] le]e]e}

Interval Estimation

6(X) is usually represented as a point estimator

Interval Estimator
Let [L(X), U(X)], where L(X) and U(X) are functions of sample X and
L(X) < U(X). Based on the observed sample x, we can make an inference

that

Hyun Min Kang Biostatistics 602 - Lecture 24 April 16th, 2013 3/33



Recap
(o] lelele]

Interval Estimation

6(X) is usually represented as a point estimator

Interval Estimator
Let [L(X), U(X)], where L(X) and U(X) are functions of sample X and
L(X) < U(X). Based on the observed sample x, we can make an inference

that

0 € [L(X), UX)]

Hyun Min Kang Biostatistics 602 - Lecture 24 April 16th, 2013

3/33



Recap
(o] lelele]

Interval Estimation

6(X) is usually represented as a point estimator

Interval Estimator
Let [L(X), U(X)], where L(X) and U(X) are functions of sample X and
L(X) < U(X). Based on the observed sample x, we can make an inference

that

0 € [L(X), UX)]

Then we call [L(X), U(X)] an interval estimator of 6.

Hyun Min Kang Biostatistics 602 - Lecture 24 April 16th, 2013 3/33



Recap
(o] lelele]

Interval Estimation

6(X) is usually represented as a point estimator

Interval Estimator

Let [L(X), U(X)], where L(X) and U(X) are functions of sample X and
L(X) < U(X). Based on the observed sample x, we can make an inference

that

0 € [L(X), UX)]

Then we call [L(X), U(X)] an interval estimator of 6.

Three types of intervals

Hyun Min Kang Biostatistics 602 - Lecture 24 April 16th, 2013 3/33



Recap
(o] lelele]

Interval Estimation

6(X) is usually represented as a point estimator

Interval Estimator

Let [L(X), U(X)], where L(X) and U(X) are functions of sample X and
L(X) < U(X). Based on the observed sample x, we can make an inference

that

0 € [L(X), UX)]

Then we call [L(X), U(X)] an interval estimator of 6.

Three types of intervals
= Two-sided interval [L(X), U(X)]

Hyun Min Kang Biostatistics 602 - Lecture 24 April 16th, 2013 3/33



Recap
(o] lelele]

Interval Estimation

6(X) is usually represented as a point estimator

Interval Estimator

Let [L(X), U(X)], where L(X) and U(X) are functions of sample X and
L(X) < U(X). Based on the observed sample x, we can make an inference

that

0 € [L(X), UX)]

Then we call [L(X), U(X)] an interval estimator of 6.

Three types of intervals
= Two-sided interval [L(X), U(X)]
= One-sided (with lower-bound) interval [L(X), c0)

Hyun Min Kang Biostatistics 602 - Lecture 24 April 16th, 2013 3/33



Recap
(o] lelele]

Interval Estimation

6(X) is usually represented as a point estimator

Interval Estimator

Let [L(X), U(X)], where L(X) and U(X) are functions of sample X and
L(X) < U(X). Based on the observed sample x, we can make an inference

that

0 € [L(X), UX)]

Then we call [L(X), U(X)] an interval estimator of 6.

Three types of intervals
= Two-sided interval [L(X), U(X)]
= One-sided (with lower-bound) interval [L(X), c0)
= One-sided (with upper-bound) interval (—oo, U(X)]

Hyun Min Kang Biostatistics 602 - Lecture 24 April 16th, 2013 3/33



Recap
[e]e] Tele]

Definitions

Definition : Coverage Probability

Given an interval estimator [L(X), U(X)] of 0, its coverage probability is
defined as

Hyun Min Kang Biostatistics 602 - Lecture 24 April 16th, 2013 4 /33



Recap
[e]e] Tele]

Definitions

Definition : Coverage Probability

Given an interval estimator [L(X), U(X)] of 0, its coverage probability is
defined as

Pr(0 € [L(X), U(X)])

Hyun Min Kang Biostatistics 602 - Lecture 24 April 16th, 2013 4 /33



Recap
[e]e] Tele]

Definitions

Definition : Coverage Probability

Given an interval estimator [L(X), U(X)] of 0, its coverage probability is
defined as

Pr(0 € [L(X), U(X)])

In other words, the probability of a random variable in interval
[L(X), U(X)] covers the parameter 6.

Hyun Min Kang Biostatistics 602 - Lecture 24 April 16th, 2013 4 /33



Recap
[e]e] Tele]

Definitions

Definition : Coverage Probability

Given an interval estimator [L(X), U(X)] of 0, its coverage probability is
defined as

Pr(6 € [L(X), UX)])

In other words, the probability of a random variable in interval
[L(X), U(X)] covers the parameter 6.

Definition: Confidence Coefficient

Confidence coefficient is defined as

Hyun Min Kang Biostatistics 602 - Lecture 24 April 16th, 2013 4 /33



Recap
[e]e] Tele]

Definitions

Definition : Coverage Probability

Given an interval estimator [L(X), U(X)] of 0, its coverage probability is
defined as

Pr(6 € [L(X), UX)])

In other words, the probability of a random variable in interval
[L(X), U(X)] covers the parameter 6.

Definition: Confidence Coefficient

Confidence coefficient is defined as
inf Pr(6 € [L(X), U(X))
€

Hyun Min Kang Biostatistics 602 - Lecture 24 April 16th, 2013 4 /33



Recap
[e]e]e] o]

Definitions

Definition : Confidence Interval

Given an interval estimator [L(X), U(X)] of 0, if its confidence coefficient
is 1 — «, we call it a (1 — «) confidence interval

Hyun Min Kang Biostatistics 602 - Lecture 24 April 16th, 2013 5/33



Recap
[e]e]e] o]

Definitions

Definition : Confidence Interval

Given an interval estimator [L(X), U(X)] of 6, if its confidence coefficient
is 1 — «, we call it a (1 — «) confidence interval

Definition: Expected Length

Given an interval estimator [L(X), U(X)] of 6, its expected length is
defined as

Hyun Min Kang Biostatistics 602 - Lecture 24 April 16th, 2013 5/33



Recap
[e]e]e] o]

Definitions

Definition : Confidence Interval

Given an interval estimator [L(X), U(X)] of 6, if its confidence coefficient
is 1 — «, we call it a (1 — «) confidence interval

Definition: Expected Length

Given an interval estimator [L(X), U(X)] of 0, its expected length is
defined as

E[UX) = L(X)]

Hyun Min Kang Biostatistics 602 - Lecture 24 April 16th, 2013 5/33



Recap
[e]e]e] o]

Definitions

Definition : Confidence Interval

Given an interval estimator [L(X), U(X)] of 6, if its confidence coefficient
is 1 — «, we call it a (1 — «) confidence interval

Definition: Expected Length

Given an interval estimator [L(X), U(X)] of 0, its expected length is
defined as

E[UX) = L(X)]

where X are random samples from fx(x|#). In other words, it is the
average length of the interval estimator.
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There is no guarantee that the confidence set obtained from Theorem
9.2.2 is an interval, but quite often

@ To obtain (1 — «) two-sided CI [L(X), U(X)], we invert the
acceptance region of a level o test for Hy : 0 =6y vs. Hy : 0 # 0g

@® To obtain a lower-bounded Cl [L(X), c0), then we invert the
acceptance region of a test for Hy: 0 = 6y vs. Hy : 0 > 60y, where
Q={60:0>06}.

©® To obtain a upper-bounded Cl (—oo, U(X)], then we invert the

acceptance region of a test for Hy : 0 = 6y vs. Hy : 0 < 0y, where
Q={0:0<06y}.
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@ Write the joint (log-)likelihood function, L(0|x) = fx(x|0).
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® Find candidates that makes first order derivative to be zero

©® Check second-order derivative to check local maximum.

= For one-dimensional parameter, negative second order derivative
implies local maximum.
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Typical strategies for finding MLEs

@ Write the joint (log-)likelihood function, L(0|x) = fx(x|0).
® Find candidates that makes first order derivative to be zero

©® Check second-order derivative to check local maximum.

= For one-dimensional parameter, negative second order derivative
implies local maximum.

O Check boundary points to see whether boundary gives global
maximum.
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Example: A mixture distribution

o
=
L=

Density
0.04
|

Hyun Min Kang Biostatistics 602 - Lecture 24 April 16th, 2013 8 /33



E-M
00®0000000000000

A general mixture distribution

k

f(X’T(, (b: "7) = Z ﬂif(x‘(ﬁi: 77)

i=1

Hyun Min Kang Biostatistics 602 - Lecture 24 April 16th, 2013 9 /33



E-M
00®0000000000000

A general mixture distribution

k
f(X’T(, (b: "7) = Z ﬂif(x‘(ﬁi: 77)

i=1

x observed data

Hyun Min Kang Biostatistics 602 - Lecture 24 April 16th, 2013 9 /33



E-M
00®0000000000000

A general mixture distribution

k

f(X’T(, (b: "7) = Z ﬂif(x‘(ﬁi: 77)

i=1

x observed data

7 mixture proportion of each component

Hyun Min Kang Biostatistics 602 - Lecture 24 April 16th, 2013 9 /33



E-M
00®0000000000000

A general mixture distribution

k

f(X’T(, (b: "7) = Z ﬂif(x‘(ﬁi: 77)

i=1

x observed data
7 mixture proportion of each component

f the probability density function

Hyun Min Kang Biostatistics 602 - Lecture 24 April 16th, 2013 9 /33



E-M
00®0000000000000

A general mixture distribution

k

f(X’T(, ¢7 "7) = Z ﬂif(x‘(ﬁi: 77)

i=1

x observed data
7 mixture proportion of each component
f the probability density function

¢ parameters specific to each component

Hyun Min Kang Biostatistics 602 - Lecture 24 April 16th, 2013 9 /33



E-M
00®0000000000000

A general mixture distribution

k

f(X’T(, ¢7 "7) = Z ﬂif(x‘(ﬁi: 77)

i=1

x observed data

7 mixture proportion of each component
f the probability density function

¢ parameters specific to each component

1 parameters shared among components

Hyun Min Kang Biostatistics 602 - Lecture 24 April 16th, 2013 9 /33



E-M
00®0000000000000

A general mixture distribution

k

f(X’T(, ¢7 "7) = Z ﬂif(x‘(ﬁi: 77)

i=1

x observed data

7 mixture proportion of each component
f the probability density function

¢ parameters specific to each component
7 parameters shared among components

k number of mixture components
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MLE Problem for mixture of normals

k
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k
flalf = (m,1,0%) = Y mifilalui, 0F)

=1
2
Malpso?) = — = exp |4
2mo? 203
n
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MLE Problem for mixture of normals

k
flalf = (m,1,0%) = Y mifilalui, 0F)

=1
e

1
2
. i = — e —
fl(x|:u’b Jz) Xp |: 20.?

—

n
E T, =
=1

Find MLEs for 6 = (7, i, 02).
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Solution when £ =1

f(z]0) = Zmﬁ x|,uz7
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Solution when £ =1

f(z]0) = Zmﬁ x|,uz7

s T=m =1
" p=p=T
= 0¥ =0 =1L, (s—1)%/n
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Incomplete data problem when £ > 1

n k

fxie) = T D mifiailp, o7)

=1 | j=1
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Incomplete data problem when £ > 1

n k

fxie) = T D mifiailp, o7)

=1 | j=1

The MLE solution is not analytically tractable, because it involves multiple
sums of exponential functions.
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Converting to a complete data problem

Let z; € {1,--- , k} denote the source distribution where each z; was
sampled from.
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Converting to a complete data problem

Let z; € {1,--- , k} denote the source distribution where each z; was
sampled from.

n k n
fxlz,0) = T | 1z = dflwlug07) | =[] filwilpezi, 02)
=1 | j=1 =1
- E?:ll(zi:i)

pi = i Lz = i)z
' > iy Lz =)

52 — > iy Lz = 8) (7 — fis)?
' > Az =)

The MLE solution is analytically tractable, if z is known.
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E-M Algorithm

E-M (Expectation-Maximization) algorithm is
= A procedure for typically solving for the MLE.
= Guaranteed to converge the MLE (!)

= Particularly suited to the "missing data” problems where analytic
solution of MLE is not tractable

The algorithm was derived and used in various special cases by a number
of authors, but it was not identified as a general algorithm until the
seminal paper by Dempster, Laird, and Rubin in Journal of Royal
Statistical Society Series B (1977).
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Overview of E-M Algorithm

Basic Structure

= y is observed (or incomplete) data
= z is missing (or augmented) data

= x = (y,z) is complete data
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Basic Structure
= y is observed (or incomplete) data
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= x = (y,z) is complete data

Complete and incomplete data likelihood
= Complete data likelihood : f(x|0) = f(y, z|0)

= Incomplete data likelihood : ¢(y|0) = /f(y,z\&)dz
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Overview of E-M Algorithm

Basic Structure

= y is observed (or incomplete) data
= z is missing (or augmented) data

= x = (y,z) is complete data

Complete and incomplete data likelihood
= Complete data likelihood : f(x|0) = f(y, z|0)

= Incomplete data likelihood : ¢(y|0) = /f(y,z\&)dz

We are interested in MLE for L(f]y) = g(y|0).
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LOly) = g(yl0)
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Maximizing incomplete data likelihood

L(0|Y7z> = f(yaz|0)
LOly) = g(yl0)
oy = A0
log L(0ly) = log L(fly,z) —logk(z|0,y)
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Maximizing incomplete data likelihood

L(fly,z) = Afy,z|0)
L(fly) = g(yl0)
B f(y,ZIG)

log L(fly) = logL(é’Iy,Z)—logk(ZIG,y)

Because z is missing data, we replace the right side with its expectation
under k(z|0’,y), creating the new identity

Hyun Min Kang Biostatistics 602 - Lecture 24 April 16th, 2013 16 / 33



E-M
0000000008000000

Maximizing incomplete data likelihood

(0|Y7z) = f(yaz|0)
LOly) = g(yl0)
oy = A0
log L(fly) = log L(fly,z) — log k(z|0,y)

Because z is missing data, we replace the right side with its expectation
under k(z|0’,y), creating the new identity

log L(fly) = E[logL(Aly,Z)|¢',y] — E [log k(Z|0,y)|¢'.y]
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Maximizing incomplete data likelihood

(0|Y72) = f(yaz|0)
LOly) = g(yl0)
oy = A0
log L(fly) = log L(fly,z) — log k(z|0,y)

Because z is missing data, we replace the right side with its expectation
under k(z|0’,y), creating the new identity

log L(fly) = E[logL(Aly,Z)|¢',y] — E [log k(Z|0,y)|¢'.y]

Iteratively maximizing the first term in the right-hand side results in E-M
algorithm.
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Overview of E-M Algorithm (cont'd)

= Maximize L(f]y) or I(A]y).
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Overview of E-M Algorithm (cont'd)

= Maximize L(f]y) or i(f]y).

= Let f(y,z|0) denotes the pdf of complete data. In E-M algorithm,
rather than working with [(f]y) directly, we work with the surrogate
function
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Overview of E-M Algorithm (cont'd)

= Maximize L(f]y) or i(f]y).

= Let f(y,z|0) denotes the pdf of complete data. In E-M algorithm,
rather than working with [(f]y) directly, we work with the surrogate
function
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Overview of E-M Algorithm (cont'd)

= Maximize L(f]y) or i(f]y).

= Let f(y,z|0) denotes the pdf of complete data. In E-M algorithm,
rather than working with [(f]y) directly, we work with the surrogate
function
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where 0(7) is the estimation of @ in r-th iteration.
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Overview of E-M Algorithm (cont'd)

= Maximize L(f]y) or i(f]y).
= Let f(y,z|0) denotes the pdf of complete data. In E-M algorithm,
rather than working with [(f]y) directly, we work with the surrogate

function

QI™) = E [logfly,Z|6)ly,0"]

where 0(7) is the estimation of @ in r-th iteration.

= Q(]6") is the expected log-likelihood of complete data, conditioning
on the observed data and 6("),
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Key Steps of E-M algorithm

= Compute Q(8|6).

= This typically involves in estimating the conditional distribution Z|Y,
assuming 6 = 0(").

= After computing Q(8|6(")), move to the M-step
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Key Steps of E-M algorithm

Expectation Step
= Compute Q(8|6).
= This typically involves in estimating the conditional distribution Z|Y,
assuming 6 = 0(").
= After computing Q(8|6(")), move to the M-step

| N\

Maximization Step
= Maximize Q(0|9(T)) with respect to 6.
= The argmaxy Q(0|0(")) will be the (r+ 1)-th 6 to be fed into the
E-step.
= Repeat E-step until convergence

.
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E-M algorithm for mixture of normals

QUIo™) = E |logly, Z|6)ly,0"]

v,
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E-M algorithm for mixture of normals

Estep
QUI9™) = E [logfly,ZI0)ly, "]
= > k2|6, y)log f(y,2|0)

v,
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E-M algorithm for mixture of normals

QUIo™) = E |logly, Z|6)ly,0"]
= Zk 2|0, y) log f(y, 2|6)

o Z Z k 21‘9 , Yi logf(yu Zz|9)

=1 =

v,
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E-M algorithm for mixture of normals

QUIo™) = E |logly, Z|6)ly,0"]
= Zk 2/6"),y) log fly, 2/6)

o Z Z k 21‘9 , Yi logf(yu Zz|9)

=1 =

z,z 9
sz fnl logfuﬁ, 216)
=1 z;=1 g

v,
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E-M algorithm for mixture of normals

QUIo™) = E |logly, Z|6)ly,0"]
= Zk 2/6"),y) log fly, 2/6)

o Z Z k 21‘9 , Yi logf(yu Zz|9)

=1 =

z,z 9
sz fnl logfuﬁ, 216)
=1 z;=1 g

f(y’w ZZ‘H) ~ '/\/’(NZN O-zi)

v,
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E-M algorithm for mixture of normals

QUIo™) = E |logly, Z|6)ly,0"]
= Zk 2/6"),y) log fly, 2/6)

o Z Z k 21‘9 , Yi logf(yu Zz|9)

=1 z;=

z,z 9
sz fnl logfu/i, 216)
=1 z;=1 g

f(y’w ZZ‘H) ~ '/\/’(NZN O-zi)

k
gwil) = D mif(ys, 2= 416)

v,
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E-M algorithm for mixture of normals (cont'd)

n

k
i, 20
Q) = Y > T 10gf(yz', z|0)

=1 z=Il g |0(T

y
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E-M algorithm for mixture of normals (cont'd)

n k
r l,zlﬁr
Q) = 3 >0 ST 0g )
=1 z=Il g |0(T
T 1 - 1 AT — H(T
A = 1S i ) = LS )
=il =1 v

y
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E-M algorithm for mixture of normals (cont'd)

n k
r iy %4 o\
Quie”) = 305 M08 gy, )
=1 z=Il g |0
(r+1) 1 - r f?/zy zz—.]w(r)
m; = ;Zk 2= fly;, 6) 2 TG
M(r+1) _ Zi:l k(2 = jlyi, 6" ) _ Zi:l Tik(z = ]|yia T))
! Z?:l k(zi = jlyi, G(T)) mr](.rﬂ)

y
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E-M algorithm for mixture of normals (cont'd)

n k
r i5 25 o\"
Quie”) = 305 M08 gy, )
=1 z=Il g |0
(r+1)  _ 1 - T f ?/17 Z; = .7|0(T )
7Tj = EZk’ Z; —]‘y’ta ) Zl yzw
M(r+1) _ Zi:l k(2 = jlyi, 6" ) _ Zi:l Tik(z = ]|yia T))
! Z?:l k(zi = jlys, G(T)) mr](.rﬂ)
n r+1 q 7
e _ Sl — )k =l 00)
! iy Bz = lyi, 60)

y
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E-M algorithm for mixture of normals (cont'd)

Summar

v

n k
r Ay, 20\
Quie”) = 305 M08 gy, )
=1 z=Il g |0
(r+1) 1o r) f ?/17 2 = .7|0(T )
o ;Zk %= jlyir 0 2 (o6
(r+1) >y aiklzi = flyi 0)) SR wik(z = ]|yi, ™)
! Z?:l k(zi = jlyi, G(T)) mr](.rﬂ)
n r+1 d 7
aret) _ Dl — )R = s 0)
>y k(zi = flyi, 6)
S (s — Y2 k(2 = i, 00)
nﬂ_](r—i—l)
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Does E-M iteration converge to MLE?

Theorem 7.2.20 - Monotonic EM sequence

The sequence {é(’")} defined by the E-M procedure satisfies
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Does E-M iteration converge to MLE?

Theorem 7.2.20 - Monotonic EM sequence

The sequence {é(’")} defined by the E-M procedure satisfies
L (é(r+1)|y) > L (é(r)|y>
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Does E-M iteration converge to MLE?

Theorem 7.2.20 - Monotonic EM sequence

The sequence {é(’")} defined by the E-M procedure satisfies
L (é(r+1)|y) > L (é(r)|y>

with equality holding if and only if successive iterations yield the same
value of the maximized expected complete-data log likelihood, that is
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Does E-M iteration converge to MLE?

Theorem 7.2.20 - Monotonic EM sequence

The sequence {é(’")} defined by the E-M procedure satisfies
L (é(r+1)|y) > L (é(r)|y>

with equality holding if and only if successive iterations yield the same
value of the maximized expected complete-data log likelihood, that is

Bllog L (00 )y, 2)100,y] = E[losL (0Vly,2) 00),y]
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Does E-M iteration converge to MLE?

Theorem 7.2.20 - Monotonic EM sequence

The sequence {é(’")} defined by the E-M procedure satisfies
L (é(r+1)|y) > L (é(r)|y)

with equality holding if and only if successive iterations yield the same
value of the maximized expected complete-data log likelihood, that is

Bllog L (00 )y, 2)100,y] = E[losL (0Vly,2) 00),y]

Theorem 7.5.2 further guarantees that L(H( ly) converges monotonically
to L(A|y) for some stationary point .
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A working example (from BIOSTAT615/815 Fall 2012)

Example Data (n=1,500)
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A working example (from BIOSTAT615/815 Fall 2012)

Example Data (n=1,500)

Frequency

v

Running example of implemented software

user@host~/> ./mixEM ./mix.dat
Maximum log-1likelihood = 3043.46, at pi = (0.667842,0.332158)
between N(-0.0299457,1.00791) and N(5.0128,0.913825)
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Practice Problem 1

Let X7,---, X, be a random sample from a population with pdf
1
f(a:|0):% —0<z<0,0>0

Find, if one exists, a best unbiased estimator of 6.
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Practice Problem 1

Problem

Let X7,---, X, be a random sample from a population with pdf
1
f(a:|0):% —0<z<0,0>0

Find, if one exists, a best unbiased estimator of 6.

v

Strategy to solve the problem

= Can we use the Cramer-Rao bound?

y
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Practice Problem 1

Problem

Let X7,---, X, be a random sample from a population with pdf
1
f(a:|0):% —0<z<0,0>0

Find, if one exists, a best unbiased estimator of 6.

| \

Strategy to solve the problem

= Can we use the Cramer-Rao bound? No, because the
interchangeability condition does not hold

y
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Practice Problem 1

Problem

Let X7,---, X, be a random sample from a population with pdf
1
f(a:|0):% —0<z<0,0>0

Find, if one exists, a best unbiased estimator of 6.

Strategy to solve the problem

| \

= Can we use the Cramer-Rao bound? No, because the
interchangeability condition does not hold

= Then, can we use complete sufficient statistics?

y
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Practice Problem 1

Problem

Let X7,---, X, be a random sample from a population with pdf
1
f(a:|0):% —0<z<0,0>0

Find, if one exists, a best unbiased estimator of 6.

Strategy to solve the problem

| \

= Can we use the Cramer-Rao bound? No, because the
interchangeability condition does not hold

= Then, can we use complete sufficient statistics?
@ Find a complete sufficient statistic 7.

y
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Practice Problem 1

Problem

Let X7,---, X, be a random sample from a population with pdf
1
f(a:|0):% —0<z<0,0>0

Find, if one exists, a best unbiased estimator of 6.

Strategy to solve the problem

| \

= Can we use the Cramer-Rao bound? No, because the
interchangeability condition does not hold

= Then, can we use complete sufficient statistics?
@ Find a complete sufficient statistic 7.

@ For a trivial unbiased estimator W for 6, and compute ¢(7T) = E[W|T]

y
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Practice Problem 1

Problem

Let X7,---, X, be a random sample from a population with pdf
1
f(a:|0):% —0<z<0,0>0

Find, if one exists, a best unbiased estimator of 6.

Strategy to solve the problem

| \

= Can we use the Cramer-Rao bound? No, because the
interchangeability condition does not hold
= Then, can we use complete sufficient statistics?
@ Find a complete sufficient statistic 7.

@ For a trivial unbiased estimator W for 6, and compute ¢(7T) = E[W|T]
© or Make a function ¢(T) such that E[¢(T)] = 6.

y
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Solution

First, we need to find a complete sufficient statistic.
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Solution

First, we need to find a complete sufficient statistic.

xlal) = 50l <)
1
Xx(x]0) = Wl(m?x\xi|<9)
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Solution

First, we need to find a complete sufficient statistic.

1
fx(alf) = or(ef <6)
x(xlo) = (2é)nl(m?x\xi| <0)
Let T(X) = max;|X;|, then fr(t6) = "2 1(0 < ¢ < 6)
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Solution

First, we need to find a complete sufficient statistic.

1
Fu(al) = 5oHel < 0)
x(xlo) = @é)nf(m?xw <0)
Let T(X) = max;|X;|, then fr(t6) = "2 1(0 < ¢ < 6)
nt"™Lg(t)

Hg(T)] = /Ogdt_o
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Solution

First, we need to find a complete sufficient statistic.

xlal) = 50l <)
x(xlo) = (2é)nl(m?x\xi|<9)
Let T(X) = max;|X;|, then fr(t6) = "2 1(0 < ¢ < 6)
_ [Tt
Ay = [ =g

0
/t”lg(t)dt =0
0
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Solution

First, we need to find a complete sufficient statistic.

fx(ado) = o5l <o)
K(x0) = s Tmax ] < 0)
Let T(X) = max;|X;|, then fr(t6) = "2 1(0 < ¢ < 6)
Ay = [ =g
/Oetnlg(t)dt =0
0" 1g(6) = 0
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Solution

First, we need to find a complete sufficient statistic.

xlal) = 50l <)
K(xl0) = (2é)nl(m?x\xi|<9)
Let T(X) = max;|X;|, then fr(t6) = "2 1(0 < ¢ < 6)
nt" 1
(1)) = /O’Wdt—o
/etnlg(t)dt =0
0
0" lg(0) = 0
9(0) =

Therefore the family of T is complete.
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Solution

We need to make a ¢(7) such that E[¢(T)] = 6.
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Solution

We need to make a ¢(7) such that E[¢(T)] = 6.
First, let's see what the expectation of T is
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Solution

We need to make a ¢(7) such that E[¢(T)] = 6.
First, let's see what the expectation of T is

0 n—1
t
BT = /tn dt
o "
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Solution

We need to make a ¢(7) such that E[¢(T)] = 6.
First, let's see what the expectation of T is

6 n—1
t
1 = /tngn dt

tn
- / L
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Solution

We need to make a ¢(7) such that E[¢(T)] = 6.
First, let's see what the expectation of T is

0 n—1
t
BT = /tn dt
o o7
0 n
t
= | Zoa
0o 0"
n

n—+1
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Solution

We need to make a ¢(7) such that E[¢(T)] = 6.
First, let's see what the expectation of T is

6 n—1
t
1 = /tngn dt

tn
- / L

n—|—1

o(T) = %T is an unbiased estimator and a function of a complete
sufficient statistic.
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Solution

We need to make a ¢(7) such that E[¢(T)] = 6.
First, let's see what the expectation of T is

0 n—1
t
BT = /tn dt
o o7
0 n
t
= | Zoa
0o 0"
n

n—+1

o(T) = %T is an unbiased estimator and a function of a complete
sufficient statistic.
Therefore, ¢(T) is the best unbiased estimator by Theorem 7.3.23.
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Practice Problem 2

Let X1, -, X,41 be the iid Bernoulli(p), and define the function h(p) by
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Practice Problem 2

Let X1, -, X,41 be the iid Bernoulli(p), and define the function h(p) by

hp) = Pr(ZXi>Xn+1

=1

)
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Practice Problem 2

Let X1, -, X,41 be the iid Bernoulli(p), and define the function h(p) by

h(p) = Pr (Z Xi> Xn+1 p)

i=1
the probability that the first n observations exceed the (n + 1)-st.
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Practice Problem 2

Let X1, -, X,41 be the iid Bernoulli(p), and define the function h(p) by

h(p) = Pr (i Xi> Xn+1 p)

i=1
the probability that the first n observations exceed the (n + 1)-st.
® Show that

WX, Xnr) = I(Z Xi > Xn+1>

=1

is an unbiased estimator of A(p).
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Practice Problem 2

Let X1, -, X,41 be the iid Bernoulli(p), and define the function h(p) by

h(p) = Pr (i Xi> Xn+1 p)

i=1
the probability that the first n observations exceed the (n + 1)-st.
® Show that

WX, Xnr) = I(Z Xi > Xn+1>

i=1
is an unbiased estimator of A(p).

@® Find the best unbiased estimator of A(p).
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Solution for (a)
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Solution for (a)

= > I (ZX > Xn+1) Pr(X)
X

=1

Hyun Min Kang Biostatistics 602 - Lecture 24 April 16th, 2013 27 / 33



Solution for (a)

Hyun Min Kang

= > I (ZX >Xn+1> Pr(X)
X
= > Pr(X)

Z?:l Xi>Xn+1
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Solution for (a)

= > I (ZX >Xn+1> Pr(X)
X
= > Pr(X)

Z?:l Xi>Xn+1

= Pr (Z X; > Xn+1) = h(p)

=1
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Solution for (a)

= > I (ZX >Xn+1> Pr(X)
X
= > Pr(X)

Z?:l Xi>Xn+1

= Pr (Z X; > Xn+1) = h(p)

=1

Therefore T is an unbiased estimator of A(p).
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Solution for (b)

T =" X, is complete sufficient statistic for p.
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Solution for (b)

T =" X, is complete sufficient statistic for p.

¢(T) = E[WT =Pr(W=1[T)
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Solution for (b)

T =" X, is complete sufficient statistic for p.
o(1) = EWT=Pe(W=1[T)

n
= Pr <Z X; > Xn+1|T>

=1
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Solution for (b)

T =" X, is complete sufficient statistic for p.
o(1) = EWT=Pe(W=1[T)

n
= Pr <Z X; > Xn+1|T>

=1

= If T=0,then >0 | X; = X,
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Solution for (b)

T =" X, is complete sufficient statistic for p.
o(1) = EWT=Pe(W=1[T)

n
= Pr <Z X; > Xn+1|T>

=1

= If T=0,then >0 | X; = X,

= |f T=1, then
= Pr(>r X =1> X401 =0)=n/(n+1)
= Pr(>r X, =0< X1 =1)=1/(n+1)
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Solution for (b)

T= Z"H X; is complete sufficient statistic for p.

(1) = E[WT] =Pr(W=1[T)
= Pr <ZX1~>XM1|T>

=1

= If T=0,then >0 | X; = X,
= |If T=1, then
= Pr(>r X =1> X401 =0)=n/(n+1)
= Pr(l Xi=0<Xop=1)=1/(n+1)
= |f T=2 then
» Pr(3, Xi=2> Xpp1 =0) (
s ey X =1=Xp = 1) =2

5)/ (") = (n=1)/(n+1)
/(n+1)
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Solution for (b)

T =" X, is complete sufficient statistic for p.
o(1) = EWT=Pe(W=1[T)

n
= Pr <Z X; > Xn+1|T>

=1

If T=0, then > | X; = X,11
If T=1, then
" Pr(Z?:1 Xi=1> Xn+1 = 0) = n/(n+ 1)
= Pr(>r X, =0< X1 =1)=1/(n+1)
If T'= 2 then
= Pr(C Xi=2> X =0) = (3)/("3) = (n=1)/(n+1)
s Py Xi=1=X,01=1)=2/(n+1)

If T> 2, then Z?:l X;>2>1> Xn+1
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Solution for (b) (cont'd)

Therefore, the best unbiased estimator is

(1) = <ZX > Xnt| >
0 T=0
n/(n+1) T=1
(n—1)/(n+1) T=2
1 T>3
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Practice Problem 3

Problem

Suppose X1, - -+, X, are iid samples from f(z|0) = 0 exp(—0z). Suppose
the prior distribution of 6 is
1

_ a—1_-6/p8
w(0) = F(a)ﬁae e

where «, 3 are known.
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Practice Problem 3

Problem
Suppose X1, - -+, X, are iid samples from f(z|0) = 0 exp(—0z). Suppose
the prior distribution of 6 is

_ L a1 —6/8
w(0) = F(a)ﬁae e

where «, 3 are known.

(a) Derive the posterior distribution of 6.
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Practice Problem 3

Problem

Suppose X1, - -+, X, are iid samples from f(z|0) = 0 exp(—0z). Suppose
the prior distribution of 6 is

_ L a1 —6/8
w(0) = F(a)ﬁae e

where «, 3 are known.
(a) Derive the posterior distribution of 6.

(b) If we use the loss function L(6, a) = (a — 0)2, what is the Bayes rule
estimator for 67
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(a) Posterior distribution of 6

fx,0) = m(0)f(x[0)m(0)

_ L et 0/ T b (— Oz
I‘(a)ﬁae e il;[l[ﬁe p (—0x;)]
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(a) Posterior distribution of 6

fx,0) = m(0)f(x[0)m(0)

SRS SRPREURYER & _0s,
= I‘(a)ﬁo‘e le 1_[1[9exp( Ox;)]

1=

1 n
= —— 9 e Bgrexp [ -0
I (a)8° P02
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(a) Posterior distribution of 6

fx,0) = m(0)f(x[0)m(0)

SRS SRPREURYER & _0s,
= I‘(a)ﬁo‘e le 1_[1[9exp( Ox;)]

1=

1 n
= —— 9 e Bgrexp [ -0
I (a)8° P02

1 a+n—
= Tl e [‘9 (1/5 +Z“”i>]
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(a) Posterior distribution of 6

fx,0) = m(0)f(x[0)m(0)

_ L et 0/ T b (— Oz
F(a)ﬁae e il;[l[ﬁe p (—0x;)]

_ 1 a—1_-6/Bpn - )

= 7F(oz)ﬁa9 e 0" exp (—0 E xz>
1 aTNn—

N I‘(a)ﬁae Texp [_0 (Uﬁ * Z xz>]

1
x Gamma|la+n—1,——cF—
< B+ Iz)
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(a) Posterior distribution of 6

fx,0) = m(0)f(x[0)m(0)

- rt e e o)

_ F(al)ﬁaeale@/ﬁgnexp (—Hg;xz-)

_ I‘(cyl)ﬁa 9ot L exp [—0 (1/5 + lzn; Jiz)]

x G (o4 =1, 5o ger )
) = Gomn (1)
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P3
ooe

(b) Bayes' rule estimator with squared error loss

Bayes' rule estimator with squared error loss is posterior mean. Note that
the mean of Gammal(a, ) is af.
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P3
ooe

(b) Bayes' rule estimator with squared error loss

Bayes' rule estimator with squared error loss is posterior mean. Note that
the mean of Gammal(a, ) is af.

1
7T(0|X) = Gamma (Oé + n— ]., W)
=1
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(b) Bayes' rule estimator with squared error loss

Bayes' rule estimator with squared error loss is posterior mean. Note that
the mean of Gammal(a, ) is af.

7T(0|X) = Gamma (O{ +n— ]., m)
Elf]x] = E[x(0]x)]

_ a+n—1

IR D

Hyun Min Kang Biostatistics 602 - Lecture 24 April 16th, 2013 32/33



Summary
[ ]

Summary

= E-M Algorithm
= Practice Problems for the Final Exam
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Summary

= E-M Algorithm
= Practice Problems for the Final Exam

v

Next Lectures

= Bayesian Tests

= Bayesian Intervals

= More practice problems
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