Biostatistics 602 - Statistical Inference Lecture 24 E-M Algorithm & Practice Examples

Hyun Min Kang

April 16th, 2013

Recap

• What is an interval estimator?

- What is an interval estimator?
- What is the coverage probability, confidence coefficient, and confidence interval?

- What is an interval estimator?
- What is the coverage probability, confidence coefficient, and confidence interval?
- How can a $1-\alpha$ confidence interval typically be constructed?

- What is an interval estimator?
- What is the coverage probability, confidence coefficient, and confidence interval?
- How can a $1-\alpha$ confidence interval typically be constructed?
- To obtain a lower-bounded (upper-tail) CI, whose acceptance region of a test should be inverted?
 - (a) $H_0: \theta = \theta_0 \text{ vs } H_1: \theta > \theta_0$
 - (b) $H_0: \theta = \theta_0 \text{ vs } H_1: \theta < \theta_0$

 $\hat{\theta}(\mathbf{X})$ is usually represented as a point estimator

Recap

 $\hat{\theta}(\mathbf{X})$ is usually represented as a point estimator

Interval Estimator

Let $[L(\mathbf{X}),\,U(\mathbf{X})]$, where $L(\mathbf{X})$ and $U(\mathbf{X})$ are functions of sample \mathbf{X} and $L(\mathbf{X}) \leq U(\mathbf{X})$. Based on the observed sample \mathbf{x} , we can make an inference that

Recap

 $\hat{\theta}(\mathbf{X})$ is usually represented as a point estimator

Interval Estimator

Let $[L(\mathbf{X}),\,U(\mathbf{X})]$, where $L(\mathbf{X})$ and $U(\mathbf{X})$ are functions of sample \mathbf{X} and $L(\mathbf{X}) \leq U(\mathbf{X})$. Based on the observed sample \mathbf{x} , we can make an inference that

$$\theta \in [L(\mathbf{X}), U(\mathbf{X})]$$

Recap

 $\hat{\theta}(\mathbf{X})$ is usually represented as a point estimator

Interval Estimator

Let $[L(\mathbf{X}),\,U(\mathbf{X})]$, where $L(\mathbf{X})$ and $U(\mathbf{X})$ are functions of sample \mathbf{X} and $L(\mathbf{X}) \leq U(\mathbf{X})$. Based on the observed sample \mathbf{x} , we can make an inference that

$$\theta \in [L(\mathbf{X}), U(\mathbf{X})]$$

Then we call $[L(\mathbf{X}), U(\mathbf{X})]$ an interval estimator of θ .

Recap

 $\hat{\theta}(\mathbf{X})$ is usually represented as a point estimator

Interval Estimator

Let $[L(\mathbf{X}),\,U(\mathbf{X})]$, where $L(\mathbf{X})$ and $U(\mathbf{X})$ are functions of sample \mathbf{X} and $L(\mathbf{X}) \leq U(\mathbf{X})$. Based on the observed sample \mathbf{x} , we can make an inference that

$$\theta \in [L(\mathbf{X}), U(\mathbf{X})]$$

Then we call $[L(\mathbf{X}), U(\mathbf{X})]$ an interval estimator of θ .

Three types of intervals

Recap

 $\hat{\theta}(\mathbf{X})$ is usually represented as a point estimator

Interval Estimator

Let $[L(\mathbf{X}),\,U(\mathbf{X})]$, where $L(\mathbf{X})$ and $U(\mathbf{X})$ are functions of sample \mathbf{X} and $L(\mathbf{X}) \leq U(\mathbf{X})$. Based on the observed sample \mathbf{x} , we can make an inference that

$$\theta \in [L(\mathbf{X}), U(\mathbf{X})]$$

Then we call $[L(\mathbf{X}), U(\mathbf{X})]$ an interval estimator of θ .

Three types of intervals

• Two-sided interval $[L(\mathbf{X}),\,U(\mathbf{X})]$

Recap

 $\hat{ heta}(\mathbf{X})$ is usually represented as a point estimator

Interval Estimator

Let $[L(\mathbf{X}),\,U(\mathbf{X})]$, where $L(\mathbf{X})$ and $U(\mathbf{X})$ are functions of sample \mathbf{X} and $L(\mathbf{X}) \leq U(\mathbf{X})$. Based on the observed sample \mathbf{x} , we can make an inference that

$$\theta \in [L(\mathbf{X}), U(\mathbf{X})]$$

Then we call $[L(\mathbf{X}), U(\mathbf{X})]$ an interval estimator of θ .

Three types of intervals

- Two-sided interval $[L(\mathbf{X}),\,U(\mathbf{X})]$
- One-sided (with lower-bound) interval $[L(\mathbf{X}), \infty)$

Recap

 $\hat{ heta}(\mathbf{X})$ is usually represented as a point estimator

Interval Estimator

Let $[L(\mathbf{X}),\,U(\mathbf{X})]$, where $L(\mathbf{X})$ and $U(\mathbf{X})$ are functions of sample \mathbf{X} and $L(\mathbf{X}) \leq U(\mathbf{X})$. Based on the observed sample \mathbf{x} , we can make an inference that

$$\theta \in [L(\mathbf{X}), U(\mathbf{X})]$$

Then we call $[L(\mathbf{X}), U(\mathbf{X})]$ an interval estimator of θ .

Three types of intervals

- Two-sided interval $[L(\mathbf{X}), U(\mathbf{X})]$
- One-sided (with lower-bound) interval $[L(\mathbf{X}), \infty)$
- One-sided (with upper-bound) interval $(-\infty, U(\mathbf{X})]$

Definition : Coverage Probability

Given an interval estimator $[L(\mathbf{X}),\,U(\mathbf{X})]$ of θ , its coverage probability is defined as

Definition: Coverage Probability

Given an interval estimator $[L(\mathbf{X}),\,U(\mathbf{X})]$ of θ , its coverage probability is defined as

$$\Pr(\theta \in [L(\mathbf{X}), U(\mathbf{X})])$$

Recap

Definition: Coverage Probability

Given an interval estimator $[L(\mathbf{X}),\,U(\mathbf{X})]$ of θ , its coverage probability is defined as

$$\Pr(\theta \in [L(\mathbf{X}), \mathit{U}(\mathbf{X})])$$

In other words, the probability of a random variable in interval $[L(\mathbf{X}), U(\mathbf{X})]$ covers the parameter θ .

Recap

Definition: Coverage Probability

Given an interval estimator $[L(\mathbf{X}),\,U(\mathbf{X})]$ of θ , its coverage probability is defined as

$$\Pr(\theta \in [L(\mathbf{X}), \mathit{U}(\mathbf{X})])$$

In other words, the probability of a random variable in interval $[L(\mathbf{X}), U(\mathbf{X})]$ covers the parameter θ .

Definition: Confidence Coefficient

Confidence coefficient is defined as

Recap

Definition: Coverage Probability

Given an interval estimator $[L(\mathbf{X}),\,U(\mathbf{X})]$ of θ , its coverage probability is defined as

$$\Pr(\theta \in [L(\mathbf{X}), U(\mathbf{X})])$$

In other words, the probability of a random variable in interval $[L(\mathbf{X}), U(\mathbf{X})]$ covers the parameter θ .

Definition: Confidence Coefficient

Confidence coefficient is defined as

$$\inf_{\theta \in \Omega} \Pr(\theta \in [L(\mathbf{X}), U(\mathbf{X})])$$

Definition: Confidence Interval

Given an interval estimator $[L(\mathbf{X}), U(\mathbf{X})]$ of θ , if its confidence coefficient is $1-\alpha$, we call it a $(1-\alpha)$ confidence interval

Definition: Confidence Interval

Given an interval estimator $[L(\mathbf{X}), U(\mathbf{X})]$ of θ , if its confidence coefficient is $1-\alpha$, we call it a $(1-\alpha)$ confidence interval

Definition: Expected Length

Given an interval estimator $[L(\mathbf{X}),\,U(\mathbf{X})]$ of θ , its expected length is defined as

Definition: Confidence Interval

Given an interval estimator $[L(\mathbf{X}),\,U(\mathbf{X})]$ of θ , if its confidence coefficient is $1-\alpha$, we call it a $(1-\alpha)$ confidence interval

Definition: Expected Length

Given an interval estimator $[L(\mathbf{X}),\,U(\mathbf{X})]$ of θ , its *expected length* is defined as

$$E[U(\mathbf{X}) - L(\mathbf{X})]$$

Definition: Confidence Interval

Given an interval estimator $[L(\mathbf{X}), U(\mathbf{X})]$ of θ , if its confidence coefficient is $1-\alpha$, we call it a $(1-\alpha)$ confidence interval

Definition: Expected Length

Given an interval estimator $[L(\mathbf{X}),\,U(\mathbf{X})]$ of θ , its *expected length* is defined as

$$E[U(\mathbf{X}) - L(\mathbf{X})]$$

where **X** are random samples from $f_{\mathbf{X}}(\mathbf{x}|\theta)$. In other words, it is the average length of the interval estimator.

Confidence set and confidence interval

There is no guarantee that the confidence set obtained from Theorem 9.2.2 is an interval, but quite often

Confidence set and confidence interval

There is no guarantee that the confidence set obtained from Theorem 9.2.2 is an interval, but quite often

1 To obtain $(1 - \alpha)$ two-sided CI $[L(\mathbf{X}), U(\mathbf{X})]$, we invert the acceptance region of a level α test for $H_0: \theta = \theta_0$ vs. $H_1: \theta \neq \theta_0$

Recap

Confidence set and confidence interval

There is no guarantee that the confidence set obtained from Theorem 9.2.2 is an interval, but quite often

- **1** To obtain (1α) two-sided CI $[L(\mathbf{X}), U(\mathbf{X})]$, we invert the acceptance region of a level α test for $H_0: \theta = \theta_0$ vs. $H_1: \theta \neq \theta_0$
- 2 To obtain a lower-bounded CI $[L(\mathbf{X}), \infty)$, then we invert the acceptance region of a test for $H_0: \theta = \theta_0$ vs. $H_1: \theta > \theta_0$, where $\Omega = \{\theta: \theta \geq \theta_0\}$.

Confidence set and confidence interval

There is no guarantee that the confidence set obtained from Theorem 9.2.2 is an interval, but quite often

- **1** To obtain $(1-\alpha)$ two-sided CI $[L(\mathbf{X}),\,U(\mathbf{X})]$, we invert the acceptance region of a level α test for $H_0:\theta=\theta_0$ vs. $H_1:\theta\neq\theta_0$
- 2 To obtain a lower-bounded CI $[L(\mathbf{X}), \infty)$, then we invert the acceptance region of a test for $H_0: \theta = \theta_0$ vs. $H_1: \theta > \theta_0$, where $\Omega = \{\theta: \theta \geq \theta_0\}$.
- 3 To obtain a upper-bounded CI $(-\infty, U(\mathbf{X})]$, then we invert the acceptance region of a test for $H_0: \theta = \theta_0$ vs. $H_1: \theta < \theta_0$, where $\Omega = \{\theta: \theta \leq \theta_0\}$.

1 Write the joint (log-)likelihood function, $L(\theta|\mathbf{x}) = f_{\mathbf{X}}(\mathbf{x}|\theta)$.

- ① Write the joint (log-)likelihood function, $L(\theta|\mathbf{x}) = f_{\mathbf{X}}(\mathbf{x}|\theta)$.
- 2 Find candidates that makes first order derivative to be zero

- **1** Write the joint (log-)likelihood function, $L(\theta|\mathbf{x}) = f_{\mathbf{X}}(\mathbf{x}|\theta)$.
- 2 Find candidates that makes first order derivative to be zero
- 3 Check second-order derivative to check local maximum.
 - For one-dimensional parameter, negative second order derivative implies local maximum.

- ① Write the joint (log-)likelihood function, $L(\theta|\mathbf{x}) = f_{\mathbf{X}}(\mathbf{x}|\theta)$.
- 2 Find candidates that makes first order derivative to be zero
- 3 Check second-order derivative to check local maximum.
 - For one-dimensional parameter, negative second order derivative implies local maximum.
- 4 Check boundary points to see whether boundary gives global maximum.

Example: A mixture distribution

8 / 33

Value

$$f(\mathbf{x}|\pi,\phi,\eta) = \sum_{i=1}^{k} \pi_i f(\mathbf{x}|\phi_i,\eta)$$

$$\mathit{f}(\mathbf{x}|\pi,\phi,\eta) = \sum_{i=1}^{k} \pi_{i} \mathit{f}(\mathbf{x}|\phi_{i},\eta)$$

x observed data

$$f(\mathbf{x}|\pi,\phi,\eta) = \sum_{i=1}^{k} \pi_i f(\mathbf{x}|\phi_i,\eta)$$

- x observed data
- π mixture proportion of each component

$$f(\mathbf{x}|\pi,\phi,\eta) = \sum_{i=1}^{k} \pi_i f(\mathbf{x}|\phi_i,\eta)$$

- x observed data
- π mixture proportion of each component
- f the probability density function

A general mixture distribution

$$f(\mathbf{x}|\pi,\phi,\eta) = \sum_{i=1}^{k} \pi_i f(\mathbf{x}|\phi_i,\eta)$$

- x observed data
- π mixture proportion of each component
- f the probability density function
- ϕ parameters specific to each component

A general mixture distribution

$$f(\mathbf{x}|\pi,\phi,\eta) = \sum_{i=1}^{k} \pi_i f(\mathbf{x}|\phi_i,\eta)$$

- x observed data
- π mixture proportion of each component
- f the probability density function
- ϕ parameters specific to each component
- η parameters shared among components

A general mixture distribution

$$f(\mathbf{x}|\pi,\phi,\eta) = \sum_{i=1}^{k} \pi_i f(\mathbf{x}|\phi_i,\eta)$$

- x observed data
- π mixture proportion of each component
- f the probability density function
- ϕ parameters specific to each component
- η parameters shared among components
- k number of mixture components

Problem

$$f(x|\theta = (\pi, \mu, \sigma^2)) = \sum_{i=1}^k \pi_i f_i(x|\mu_i, \sigma_i^2)$$

Problem

$$f(x|\theta = (\pi, \mu, \sigma^2)) = \sum_{i=1}^k \pi_i f_i(x|\mu_i, \sigma_i^2)$$
$$f_i(x|\mu_i, \sigma_i^2) = \frac{1}{\sqrt{2\pi\sigma_i^2}} \exp\left[-\frac{(x-\mu_i)^2}{2\sigma_i^2}\right]$$

Problem

$$f(x|\theta = (\pi, \mu, \sigma^2)) = \sum_{i=1}^k \pi_i f_i(x|\mu_i, \sigma_i^2)$$

$$f_i(x|\mu_i, \sigma_i^2) = \frac{1}{\sqrt{2\pi\sigma_i^2}} \exp\left[-\frac{(x-\mu_i)^2}{2\sigma_i^2}\right]$$

$$\sum_{i=1}^n \pi_i = 1$$

Problem

$$f(x|\theta = (\pi, \mu, \sigma^2)) = \sum_{i=1}^k \pi_i f_i(x|\mu_i, \sigma_i^2)$$

$$f_i(x|\mu_i, \sigma_i^2) = \frac{1}{\sqrt{2\pi\sigma_i^2}} \exp\left[-\frac{(x-\mu_i)^2}{2\sigma_i^2}\right]$$

$$\sum_{i=1}^n \pi_i = 1$$

Find MLEs for $\theta = (\pi, \mu, \sigma^2)$.

Solution when k=1

$$f(x|\theta) = \sum_{i=1}^{k} \pi_i f_i(x|\mu_i, \sigma_i^2)$$

Solution when k=1

$$f(x|\theta) = \sum_{i=1}^{k} \pi_i f_i(x|\mu_i, \sigma_i^2)$$

- $\pi = \pi_1 = 1$
- $\mu = \mu_1 = \overline{x}$
- $\sigma^2 = \sigma_1^2 = \sum_{i=1}^n (x_i \overline{x})^2 / n$

Incomplete data problem when k > 1

$$f(\mathbf{x}|\theta) = \prod_{i=1}^{n} \left[\sum_{j=1}^{k} \pi_i f_i(x_i|\mu_j, \sigma_j^2) \right]$$

Incomplete data problem when k > 1

$$f(\mathbf{x}|\theta) = \prod_{i=1}^{n} \left[\sum_{j=1}^{k} \pi_i f_i(x_i|\mu_j, \sigma_j^2) \right]$$

The MLE solution is not analytically tractable, because it involves multiple sums of exponential functions.

$$f(\mathbf{x}|\mathbf{z}, \theta) = \prod_{i=1}^{n} \left[\sum_{j=1}^{k} I(z_i = j) f_i(x_i | \mu_j, \sigma_j^2) \right]$$

$$f(\mathbf{x}|\mathbf{z},\theta) = \prod_{i=1}^{n} \left[\sum_{j=1}^{k} I(z_i = j) f_i(x_i | \mu_j, \sigma_j^2) \right] = \prod_{i=1}^{n} f_i(x_i | \mu_{z_i}, \sigma_{z_i}^2)$$

$$f(\mathbf{x}|\mathbf{z},\theta) = \prod_{i=1}^{n} \left[\sum_{j=1}^{k} I(z_{i} = j) f_{i}(x_{i}|\mu_{j}, \sigma_{j}^{2}) \right] = \prod_{i=1}^{n} f_{i}(x_{i}|\mu_{z_{i}}, \sigma_{z_{i}}^{2})$$

$$\hat{\pi}_{i} = \frac{\sum_{i=1}^{n} I(z_{i} = i)}{n}$$

$$f(\mathbf{x}|\mathbf{z},\theta) = \prod_{i=1}^{n} \left[\sum_{j=1}^{k} I(z_{i} = j) f_{i}(x_{i}|\mu_{j}, \sigma_{j}^{2}) \right] = \prod_{i=1}^{n} f_{i}(x_{i}|\mu_{z_{i}}, \sigma_{z_{i}}^{2})$$

$$\hat{\pi}_{i} = \frac{\sum_{i=1}^{n} I(z_{i} = i)}{n}$$

$$\hat{\mu}_{i} = \frac{\sum_{i=1}^{n} I(z_{i} = i) x_{i}}{\sum_{i=1}^{n} I(z_{i} = i)}$$

$$f(\mathbf{x}|\mathbf{z},\theta) = \prod_{i=1}^{n} \left[\sum_{j=1}^{k} I(z_{i} = j) f_{i}(x_{i}|\mu_{j}, \sigma_{j}^{2}) \right] = \prod_{i=1}^{n} f_{i}(x_{i}|\mu_{z_{i}}, \sigma_{z_{i}}^{2})$$

$$\hat{\pi}_{i} = \frac{\sum_{i=1}^{n} I(z_{i} = i)}{n}$$

$$\hat{\mu}_{i} = \frac{\sum_{i=1}^{n} I(z_{i} = i) x_{i}}{\sum_{i=1}^{n} I(z_{i} = i)}$$

$$\hat{\sigma}_{i}^{2} = \frac{\sum_{i=1}^{n} I(z_{i} = i) (x_{i} - \hat{\mu}_{i})^{2}}{\sum_{i=1}^{n} I(z_{i} = i)}$$

Let $z_i \in \{1, \dots, k\}$ denote the source distribution where each x_i was sampled from.

$$f(\mathbf{x}|\mathbf{z},\theta) = \prod_{i=1}^{n} \left[\sum_{j=1}^{k} I(z_{i} = j) f_{i}(x_{i}|\mu_{j}, \sigma_{j}^{2}) \right] = \prod_{i=1}^{n} f_{i}(x_{i}|\mu_{z_{i}}, \sigma_{z_{i}}^{2})$$

$$\hat{\pi}_{i} = \frac{\sum_{i=1}^{n} I(z_{i} = i)}{n}$$

$$\hat{\mu}_{i} = \frac{\sum_{i=1}^{n} I(z_{i} = i) x_{i}}{\sum_{i=1}^{n} I(z_{i} = i)}$$

$$\hat{\sigma}_{i}^{2} = \frac{\sum_{i=1}^{n} I(z_{i} = i) (x_{i} - \hat{\mu}_{i})^{2}}{\sum_{i=1}^{n} I(z_{i} = i)}$$

The MLE solution is analytically tractable, if z is known.

E-M (Expectation-Maximization) algorithm is

E-M (Expectation-Maximization) algorithm is

• A procedure for typically solving for the MLE.

E-M (Expectation-Maximization) algorithm is

- A procedure for typically solving for the MLE.
- Guaranteed to converge the MLE (!)

E-M (Expectation-Maximization) algorithm is

- A procedure for typically solving for the MLE.
- Guaranteed to converge the MLE (!)
- Particularly suited to the "missing data" problems where analytic solution of MLE is not tractable

E-M (Expectation-Maximization) algorithm is

- A procedure for typically solving for the MLE.
- Guaranteed to converge the MLE (!)
- Particularly suited to the "missing data" problems where analytic solution of MLE is not tractable

The algorithm was derived and used in various special cases by a number of authors, but it was not identified as a general algorithm until the seminal paper by Dempster, Laird, and Rubin in Journal of Royal Statistical Society Series B (1977).

Basic Structure

- y is observed (or incomplete) data
- z is missing (or augmented) data
- $\mathbf{x} = (\mathbf{y}, \mathbf{z})$ is complete data

Basic Structure

- y is observed (or incomplete) data
- z is missing (or augmented) data
- $\mathbf{x} = (\mathbf{y}, \mathbf{z})$ is complete data

Complete and incomplete data likelihood

• Complete data likelihood : $f(\mathbf{x}|\theta) = f(\mathbf{y}, \mathbf{z}|\theta)$

Basic Structure

- y is observed (or incomplete) data
- z is missing (or augmented) data
- $\mathbf{x} = (\mathbf{y}, \mathbf{z})$ is complete data

Complete and incomplete data likelihood

- Complete data likelihood : $f(\mathbf{x}|\theta) = f(\mathbf{y}, \mathbf{z}|\theta)$
- Incomplete data likelihood : $g(\mathbf{y}|\theta) = \int f(\mathbf{y},\mathbf{z}|\theta) d\mathbf{z}$

Basic Structure

- y is observed (or incomplete) data
- z is missing (or augmented) data
- $\mathbf{x} = (\mathbf{y}, \mathbf{z})$ is complete data

Complete and incomplete data likelihood

- Complete data likelihood : $f(\mathbf{x}|\theta) = f(\mathbf{y}, \mathbf{z}|\theta)$
- Incomplete data likelihood : $g(\mathbf{y}|\theta) = \int f(\mathbf{y}, \mathbf{z}|\theta) d\mathbf{z}$

We are interested in MLE for $L(\theta|\mathbf{y}) = q(\mathbf{y}|\theta)$.

$$L(\boldsymbol{\theta}|\mathbf{y},\mathbf{z}) = f(\mathbf{y},\mathbf{z}|\boldsymbol{\theta})$$

$$L(\theta|\mathbf{y}, \mathbf{z}) = f(\mathbf{y}, \mathbf{z}|\theta)$$

 $L(\theta|\mathbf{y}) = g(\mathbf{y}|\theta)$

$$\begin{array}{rcl} L(\theta|\mathbf{y},\mathbf{z}) & = & f(\mathbf{y},\mathbf{z}|\theta) \\ L(\theta|\mathbf{y}) & = & g(\mathbf{y}|\theta) \\ k(\mathbf{z}|\theta,\mathbf{y}) & = & \frac{f(\mathbf{y},\mathbf{z}|\theta)}{g(\mathbf{y}|\theta)} \end{array}$$

$$\begin{array}{rcl} L(\theta|\mathbf{y},\mathbf{z}) & = & f(\mathbf{y},\mathbf{z}|\theta) \\ L(\theta|\mathbf{y}) & = & g(\mathbf{y}|\theta) \\ k(\mathbf{z}|\theta,\mathbf{y}) & = & \frac{f(\mathbf{y},\mathbf{z}|\theta)}{g(\mathbf{y}|\theta)} \\ \log L(\theta|\mathbf{y}) & = & \log L(\theta|\mathbf{y},\mathbf{z}) - \log k(\mathbf{z}|\theta,\mathbf{y}) \end{array}$$

$$\begin{array}{rcl} L(\theta|\mathbf{y},\mathbf{z}) & = & f(\mathbf{y},\mathbf{z}|\theta) \\ L(\theta|\mathbf{y}) & = & g(\mathbf{y}|\theta) \\ k(\mathbf{z}|\theta,\mathbf{y}) & = & \frac{f(\mathbf{y},\mathbf{z}|\theta)}{g(\mathbf{y}|\theta)} \\ \log L(\theta|\mathbf{y}) & = & \log L(\theta|\mathbf{y},\mathbf{z}) - \log k(\mathbf{z}|\theta,\mathbf{y}) \end{array}$$

Because **z** is missing data, we replace the right side with its expectation under $k(\mathbf{z}|\theta',\mathbf{y})$, creating the new identity

$$\begin{array}{rcl} L(\theta|\mathbf{y},\mathbf{z}) & = & f(\mathbf{y},\mathbf{z}|\theta) \\ L(\theta|\mathbf{y}) & = & g(\mathbf{y}|\theta) \\ k(\mathbf{z}|\theta,\mathbf{y}) & = & \frac{f(\mathbf{y},\mathbf{z}|\theta)}{g(\mathbf{y}|\theta)} \\ \log L(\theta|\mathbf{y}) & = & \log L(\theta|\mathbf{y},\mathbf{z}) - \log k(\mathbf{z}|\theta,\mathbf{y}) \end{array}$$

Because **z** is missing data, we replace the right side with its expectation under $k(\mathbf{z}|\theta',\mathbf{y})$, creating the new identity

$$\log L(\theta|\mathbf{y}) = \mathrm{E}\left[\log L(\theta|\mathbf{y},\mathbf{Z})|\theta',\mathbf{y}\right] - \mathrm{E}\left[\log k(\mathbf{Z}|\theta,\mathbf{y})|\theta',\mathbf{y}\right]$$

$$\begin{array}{rcl} L(\theta|\mathbf{y},\mathbf{z}) & = & f(\mathbf{y},\mathbf{z}|\theta) \\ L(\theta|\mathbf{y}) & = & g(\mathbf{y}|\theta) \\ k(\mathbf{z}|\theta,\mathbf{y}) & = & \frac{f(\mathbf{y},\mathbf{z}|\theta)}{g(\mathbf{y}|\theta)} \\ \log L(\theta|\mathbf{y}) & = & \log L(\theta|\mathbf{y},\mathbf{z}) - \log k(\mathbf{z}|\theta,\mathbf{y}) \end{array}$$

Because \mathbf{z} is missing data, we replace the right side with its expectation under $k(\mathbf{z}|\theta',\mathbf{y})$, creating the new identity

$$\log L(\boldsymbol{\theta}|\mathbf{y}) = \mathrm{E}\left[\log L(\boldsymbol{\theta}|\mathbf{y},\mathbf{Z})|\boldsymbol{\theta}',\mathbf{y}\right] - \mathrm{E}\left[\log k(\mathbf{Z}|\boldsymbol{\theta},\mathbf{y})|\boldsymbol{\theta}',\mathbf{y}\right]$$

Iteratively maximizing the first term in the right-hand side results in E-M algorithm.

Objective

• Maximize $L(\theta|\mathbf{y})$ or $l(\theta|\mathbf{y})$.

Overview of E-M Algorithm (cont'd)

Objective

- Maximize $L(\theta|\mathbf{y})$ or $l(\theta|\mathbf{y})$.
- Let $f(\mathbf{y}, \mathbf{z}|\theta)$ denotes the pdf of complete data. In E-M algorithm, rather than working with $l(\theta|\mathbf{y})$ directly, we work with the surrogate function

Overview of E-M Algorithm (cont'd)

Objective

- Maximize $L(\theta|\mathbf{y})$ or $l(\theta|\mathbf{y})$.
- Let $f(\mathbf{y}, \mathbf{z}|\theta)$ denotes the pdf of complete data. In E-M algorithm, rather than working with $l(\theta|\mathbf{y})$ directly, we work with the surrogate function

$$Q(\theta|\theta^{(r)}) = \mathbb{E}\left[\log f(\mathbf{y}, \mathbf{Z}|\theta)|\mathbf{y}, \theta^{(r)}\right]$$

Overview of E-M Algorithm (cont'd)

Objective

- Maximize $L(\theta|\mathbf{y})$ or $l(\theta|\mathbf{y})$.
- Let $f(\mathbf{y}, \mathbf{z}|\theta)$ denotes the pdf of complete data. In E-M algorithm, rather than working with $l(\theta|\mathbf{y})$ directly, we work with the surrogate function

$$Q(\theta|\theta^{(r)}) = \mathrm{E}\left[\log f(\mathbf{y}, \mathbf{Z}|\theta)|\mathbf{y}, \theta^{(r)}\right]$$

where $\theta^{(r)}$ is the estimation of θ in r-th iteration.

Overview of E-M Algorithm (cont'd)

Objective

- Maximize $L(\theta|\mathbf{y})$ or $l(\theta|\mathbf{y})$.
- Let $f(\mathbf{y}, \mathbf{z}|\theta)$ denotes the pdf of complete data. In E-M algorithm, rather than working with $l(\theta|\mathbf{y})$ directly, we work with the surrogate function

$$Q(\theta|\theta^{(r)}) = \mathrm{E}\left[\log f(\mathbf{y}, \mathbf{Z}|\theta)|\mathbf{y}, \theta^{(r)}\right]$$

where $\theta^{(r)}$ is the estimation of θ in r-th iteration.

• $Q(\theta|\theta^{(r)})$ is the expected log-likelihood of complete data, conditioning on the observed data and $\theta^{(r)}$.

Key Steps of E-M algorithm

Expectation Step

- Compute $Q(\theta|\theta^{(r)})$.
- This typically involves in estimating the conditional distribution $\mathbf{Z}|\mathbf{Y}$, assuming $\theta=\theta^{(r)}$.
- After computing $Q(\theta|\theta^{(r)})$, move to the M-step

Key Steps of E-M algorithm

Expectation Step

- Compute $Q(\theta|\theta^{(r)})$.
- This typically involves in estimating the conditional distribution $\mathbf{Z}|\mathbf{Y}$, assuming $\theta=\theta^{(r)}$.
- After computing $Q(\theta|\theta^{(r)})$, move to the M-step

Maximization Step

- Maximize $Q(\theta|\theta^{(r)})$ with respect to θ .
- The $\arg\max_{\theta} Q(\theta|\theta^{(r)})$ will be the (r+1)-th θ to be fed into the E-step.
- Repeat E-step until convergence

18 / 33

$$Q(\theta|\theta^{(r)}) = \mathrm{E}\left[\log f(\mathbf{y}, \mathbf{Z}|\theta)|\mathbf{y}, \theta^{(r)}\right]$$

$$Q(\theta|\theta^{(r)}) = \operatorname{E}\left[\log f(\mathbf{y}, \mathbf{Z}|\theta)|\mathbf{y}, \theta^{(r)}\right]$$
$$= \sum_{\mathbf{z}} k(\mathbf{z}|\theta^{(r)}, \mathbf{y}) \log f(\mathbf{y}, \mathbf{z}|\theta)$$

$$Q(\theta|\theta^{(r)}) = \operatorname{E}\left[\log f(\mathbf{y}, \mathbf{Z}|\theta)|\mathbf{y}, \theta^{(r)}\right]$$
$$= \sum_{\mathbf{z}} k(\mathbf{z}|\theta^{(r)}, \mathbf{y}) \log f(\mathbf{y}, \mathbf{z}|\theta)$$
$$= \sum_{i=1}^{n} \sum_{z_{i}=1}^{k} k(z_{i}|\theta^{(r)}, y_{i}) \log f(y_{i}, z_{i}|\theta)$$

$$Q(\theta|\theta^{(r)}) = \operatorname{E}\left[\log f(\mathbf{y}, \mathbf{Z}|\theta)|\mathbf{y}, \theta^{(r)}\right]$$

$$= \sum_{\mathbf{z}} k(\mathbf{z}|\theta^{(r)}, \mathbf{y}) \log f(\mathbf{y}, \mathbf{z}|\theta)$$

$$= \sum_{i=1}^{n} \sum_{z_i=1}^{k} k(z_i|\theta^{(r)}, y_i) \log f(y_i, z_i|\theta)$$

$$= \sum_{i=1}^{n} \sum_{z_i=1}^{k} \frac{f(y_i, z_i|\theta^{(r)})}{g(y_i|\theta^{(r)})} \log f(y_i, z_i|\theta)$$

$$Q(\theta|\theta^{(r)}) = \operatorname{E}\left[\log f(\mathbf{y}, \mathbf{Z}|\theta)|\mathbf{y}, \theta^{(r)}\right]$$

$$= \sum_{\mathbf{z}} k(\mathbf{z}|\theta^{(r)}, \mathbf{y}) \log f(\mathbf{y}, \mathbf{z}|\theta)$$

$$= \sum_{i=1}^{n} \sum_{z_i=1}^{k} k(z_i|\theta^{(r)}, y_i) \log f(y_i, z_i|\theta)$$

$$= \sum_{i=1}^{n} \sum_{z_i=1}^{k} \frac{f(y_i, z_i|\theta^{(r)})}{g(y_i|\theta^{(r)})} \log f(y_i, z_i|\theta)$$

$$f(y_i, z_i|\theta) \sim \mathcal{N}(\mu_{z_i}, \sigma_{z_i}^2)$$

$$Q(\theta|\theta^{(r)}) = \operatorname{E}\left[\log f(\mathbf{y}, \mathbf{Z}|\theta)|\mathbf{y}, \theta^{(r)}\right]$$

$$= \sum_{\mathbf{z}} k(\mathbf{z}|\theta^{(r)}, \mathbf{y}) \log f(\mathbf{y}, \mathbf{z}|\theta)$$

$$= \sum_{i=1}^{n} \sum_{z_{i}=1}^{k} k(z_{i}|\theta^{(r)}, y_{i}) \log f(y_{i}, z_{i}|\theta)$$

$$= \sum_{i=1}^{n} \sum_{z_{i}=1}^{k} \frac{f(y_{i}, z_{i}|\theta^{(r)})}{g(y_{i}|\theta^{(r)})} \log f(y_{i}, z_{i}|\theta)$$

$$f(y_{i}, z_{i}|\theta) \sim \mathcal{N}(\mu_{z_{i}}, \sigma_{z_{i}}^{2})$$

$$g(y_{i}|\theta) = \sum_{i=1}^{k} \pi_{i} f(y_{i}, z_{i} = j|\theta)$$

$$Q(\theta|\theta^{(r)}) = \sum_{i=1}^{n} \sum_{z_{i}=1}^{k} \frac{f(y_{i}, z_{i}|\theta^{(r)})}{g(y_{i}|\theta^{(r)})} \log f(y_{i}, z_{i}|\theta)$$

$$Q(\theta|\theta^{(r)}) = \sum_{i=1}^{n} \sum_{z_{i}=1}^{k} \frac{f(y_{i}, z_{i}|\theta^{(r)})}{g(y_{i}|\theta^{(r)})} \log f(y_{i}, z_{i}|\theta)$$

$$\pi_{j}^{(r+1)} = \frac{1}{n} \sum_{i=1}^{n} k(z_{i} = j|y_{i}, \theta^{(r)}) = \frac{1}{n} \sum_{i=1}^{n} \frac{f(y_{i}, z_{i} = j|\theta^{(r)})}{g(y_{i}|\theta^{(r)})}$$

$$Q(\theta|\theta^{(r)}) = \sum_{i=1}^{n} \sum_{z_{i}=1}^{k} \frac{f(y_{i}, z_{i}|\theta^{(r)})}{g(y_{i}|\theta^{(r)})} \log f(y_{i}, z_{i}|\theta)$$

$$\pi_{j}^{(r+1)} = \frac{1}{n} \sum_{i=1}^{n} k(z_{i} = j|y_{i}, \theta^{(r)}) = \frac{1}{n} \sum_{i=1}^{n} \frac{f(y_{i}, z_{i} = j|\theta^{(r)})}{g(y_{i}|\theta^{(r)})}$$

$$\mu_{j}^{(r+1)} = \frac{\sum_{i=1}^{n} x_{i}k(z_{i} = j|y_{i}, \theta^{(r)})}{\sum_{i=1}^{n} k(z_{i} = j|y_{i}, \theta^{(r)})} = \frac{\sum_{i=1}^{n} x_{i}k(z_{i} = j|y_{i}, \theta^{(r)})}{n\pi_{j}^{(r+1)}}$$

$$Q(\theta|\theta^{(r)}) = \sum_{i=1}^{n} \sum_{z_{i}=1}^{k} \frac{f(y_{i}, z_{i}|\theta^{(r)})}{g(y_{i}|\theta^{(r)})} \log f(y_{i}, z_{i}|\theta)$$

$$\pi_{j}^{(r+1)} = \frac{1}{n} \sum_{i=1}^{n} k(z_{i} = j|y_{i}, \theta^{(r)}) = \frac{1}{n} \sum_{i=1}^{n} \frac{f(y_{i}, z_{i} = j|\theta^{(r)})}{g(y_{i}|\theta^{(r)})}$$

$$\mu_{j}^{(r+1)} = \frac{\sum_{i=1}^{n} x_{i}k(z_{i} = j|y_{i}, \theta^{(r)})}{\sum_{i=1}^{n} k(z_{i} = j|y_{i}, \theta^{(r)})} = \frac{\sum_{i=1}^{n} x_{i}k(z_{i} = j|y_{i}, \theta^{(r)})}{n\pi_{j}^{(r+1)}}$$

$$\sigma_{j}^{2,(r+1)} = \frac{\sum_{i=1}^{n} (x_{i} - \mu_{j}^{(r+1)})^{2}k(z_{i} = j|y_{i}, \theta^{(r)})}{\sum_{i=1}^{n} k(z_{i} = j|y_{i}, \theta^{(r)})}$$

$$Q(\theta|\theta^{(r)}) = \sum_{i=1}^{n} \sum_{z_{i}=1}^{k} \frac{f(y_{i}, z_{i}|\theta^{(r)})}{g(y_{i}|\theta^{(r)})} \log f(y_{i}, z_{i}|\theta)$$

$$\pi_{j}^{(r+1)} = \frac{1}{n} \sum_{i=1}^{n} k(z_{i} = j|y_{i}, \theta^{(r)}) = \frac{1}{n} \sum_{i=1}^{n} \frac{f(y_{i}, z_{i} = j|\theta^{(r)})}{g(y_{i}|\theta^{(r)})}$$

$$\mu_{j}^{(r+1)} = \frac{\sum_{i=1}^{n} x_{i}k(z_{i} = j|y_{i}, \theta^{(r)})}{\sum_{i=1}^{n} k(z_{i} = j|y_{i}, \theta^{(r)})} = \frac{\sum_{i=1}^{n} x_{i}k(z_{i} = j|y_{i}, \theta^{(r)})}{n\pi_{j}^{(r+1)}}$$

$$\sigma_{j}^{2,(r+1)} = \frac{\sum_{i=1}^{n} (x_{i} - \mu_{j}^{(r+1)})^{2}k(z_{i} = j|y_{i}, \theta^{(r)})}{\sum_{i=1}^{n} k(z_{i} = j|y_{i}, \theta^{(r)})}$$

$$= \frac{\sum_{i=1}^{n} (x_{i} - \mu_{j}^{(r+1)})^{2}k(z_{i} = j|y_{i}, \theta^{(r)})}{n\pi_{j}^{(r+1)}}$$

Theorem 7.2.20 - Monotonic EM sequence

The sequence $\{\hat{\theta}^{(r)}\}$ defined by the E-M procedure satisfies

Theorem 7.2.20 - Monotonic EM sequence

The sequence $\{\hat{\theta}^{(r)}\}$ defined by the E-M procedure satisfies $L\left(\hat{\theta}^{(r+1)}|\mathbf{y}\right) \geq L\left(\hat{\theta}^{(r)}|\mathbf{y}\right)$

Theorem 7.2.20 - Monotonic EM sequence

The sequence $\{\hat{\theta}^{(r)}\}$ defined by the E-M procedure satisfies

$$L\left(\hat{\theta}^{(r+1)}|\mathbf{y}\right) \geq L\left(\hat{\theta}^{(r)}|\mathbf{y}\right)$$

with equality holding if and only if successive iterations yield the same value of the maximized expected complete-data log likelihood, that is

Theorem 7.2.20 - Monotonic EM sequence

The sequence $\{\hat{\theta}^{(r)}\}$ defined by the E-M procedure satisfies

$$L\left(\hat{\theta}^{(r+1)}|\mathbf{y}\right) \geq L\left(\hat{\theta}^{(r)}|\mathbf{y}\right)$$

with equality holding if and only if successive iterations yield the same value of the maximized expected complete-data log likelihood, that is

$$E\left[\log L\left(\hat{\theta}^{(r+1)}|\mathbf{y},\mathbf{Z}\right)|\hat{\theta}^{(r)},\mathbf{y}\right] = E\left[\log L\left(\hat{\theta}^{(r)}|\mathbf{y},\mathbf{Z}\right)|\hat{\theta}^{(r)},\mathbf{y}\right]$$

Theorem 7.2.20 - Monotonic EM sequence

The sequence $\{\hat{\theta}^{(r)}\}$ defined by the E-M procedure satisfies

$$L\left(\hat{\theta}^{(r+1)}|\mathbf{y}\right) \geq L\left(\hat{\theta}^{(r)}|\mathbf{y}\right)$$

with equality holding if and only if successive iterations yield the same value of the maximized expected complete-data log likelihood, that is

$$E\left[\log L\left(\hat{\theta}^{(r+1)}|\mathbf{y},\mathbf{Z}\right)|\hat{\theta}^{(r)},\mathbf{y}\right] = E\left[\log L\left(\hat{\theta}^{(r)}|\mathbf{y},\mathbf{Z}\right)|\hat{\theta}^{(r)},\mathbf{y}\right]$$

Theorem 7.5.2 further guarantees that $L(\hat{\theta}^{(r)}|\mathbf{y})$ converges monotonically to $L(\hat{\theta}|\mathbf{y})$ for some stationary point $\hat{\theta}$.

A working example (from BIOSTAT615/815 Fall 2012)

Example Data (n=1,500)

A working example (from BIOSTAT615/815 Fall 2012)

Example Data (n=1,500)

Running example of implemented software

user@host~/> ./mixEM ./mix.dat

Maximum log-likelihood = 3043.46, at pi = (0.667842, 0.332158)

between N(-0.0299457,1.00791) and N(5.0128,0.913825)

Hyun Min Kang

Problem

Let X_1, \dots, X_n be a random sample from a population with pdf

$$f(x|\theta) = \frac{1}{2\theta} \qquad -\theta < x < \theta, \ \theta > 0$$

Find, if one exists, a best unbiased estimator of θ .

Problem

Let X_1, \dots, X_n be a random sample from a population with pdf

$$f(x|\theta) = \frac{1}{2\theta} \qquad -\theta < x < \theta, \ \theta > 0$$

Find, if one exists, a best unbiased estimator of θ .

Strategy to solve the problem

Can we use the Cramer-Rao bound?

Problem

Let X_1, \cdots, X_n be a random sample from a population with pdf

$$f(x|\theta) = \frac{1}{2\theta}$$
 $-\theta < x < \theta, \ \theta > 0$

Find, if one exists, a best unbiased estimator of θ .

Strategy to solve the problem

 Can we use the Cramer-Rao bound? No, because the interchangeability condition does not hold

Problem

Let X_1, \cdots, X_n be a random sample from a population with pdf

$$f(x|\theta) = \frac{1}{2\theta}$$
 $-\theta < x < \theta, \ \theta > 0$

Find, if one exists, a best unbiased estimator of θ .

- Can we use the Cramer-Rao bound? No, because the interchangeability condition does not hold
- Then, can we use complete sufficient statistics?

Problem

Let X_1, \cdots, X_n be a random sample from a population with pdf

$$f(x|\theta) = \frac{1}{2\theta}$$
 $-\theta < x < \theta, \ \theta > 0$

Find, if one exists, a best unbiased estimator of θ .

- Can we use the Cramer-Rao bound? No, because the interchangeability condition does not hold
- Then, can we use complete sufficient statistics?
 - $oldsymbol{1}$ Find a complete sufficient statistic T.

Problem

Let X_1, \dots, X_n be a random sample from a population with pdf

$$f(x|\theta) = \frac{1}{2\theta}$$
 $-\theta < x < \theta, \ \theta > 0$

Find, if one exists, a best unbiased estimator of θ .

- Can we use the Cramer-Rao bound? No, because the interchangeability condition does not hold
- Then, can we use complete sufficient statistics?
 - $oldsymbol{1}$ Find a complete sufficient statistic T.
 - 2 For a trivial unbiased estimator W for θ , and compute $\phi(\mathit{T}) = \mathrm{E}[\mathit{W}|\mathit{T}]$

Problem

Let X_1, \dots, X_n be a random sample from a population with pdf

$$f(x|\theta) = \frac{1}{2\theta}$$
 $-\theta < x < \theta, \ \theta > 0$

Find, if one exists, a best unbiased estimator of θ .

- Can we use the Cramer-Rao bound? No, because the interchangeability condition does not hold
- Then, can we use complete sufficient statistics?
 - $oldsymbol{1}$ Find a complete sufficient statistic T.
 - 2 For a trivial unbiased estimator W for θ , and compute $\phi(T) = \mathrm{E}[W|T]$
 - **3** or Make a function $\phi(T)$ such that $E[\phi(T)] = \theta$.

$$f_X(x|\theta) = \frac{1}{2\theta}I(|x| < \theta)$$

$$f_X(\mathbf{x}|\theta) = \frac{1}{(2\theta)^n}I(\max_i |x_i| < \theta)$$

$$f_X(x|\theta) = \frac{1}{2\theta}I(|x| < \theta)$$

$$f_{\mathbf{X}}(\mathbf{x}|\theta) = \frac{1}{(2\theta)^n}I(\max_i |x_i| < \theta)$$

Let
$$T(\mathbf{X}) = \max_{i} |X_i|$$
, then $f_T(t|\theta) = \frac{nt^{n-1}}{\theta^n} I(0 \le t < \theta)$

$$f_X(x|\theta) = \frac{1}{2\theta}I(|x| < \theta)$$

$$f_{\mathbf{X}}(\mathbf{x}|\theta) = \frac{1}{(2\theta)^n}I(\max_i |x_i| < \theta)$$

Let
$$T(\mathbf{X}) = \max_{i} |X_{i}|$$
, then $f_{T}(t|\theta) = \frac{nt^{n-1}}{\theta^{n}} I(0 \le t < \theta)$
$$E[g(T)] = \int_{0}^{\theta} \frac{nt^{n-1}g(t)}{\theta^{n}} dt = 0$$

$$f_X(x|\theta) = \frac{1}{2\theta}I(|x| < \theta)$$

$$f_{\mathbf{X}}(\mathbf{x}|\theta) = \frac{1}{(2\theta)^n}I(\max_i |x_i| < \theta)$$

Let
$$T(\mathbf{X}) = \max_i |X_i|$$
, then $f_T(t|\theta) = \frac{nt^{n-1}}{\theta^n} I(0 \le t < \theta)$
$$E[g(T)] = \int_0^\theta \frac{nt^{n-1}g(t)}{\theta^n} dt = 0$$

$$\int_0^\theta t^{n-1}g(t) dt = 0$$

$$f_X(x|\theta) = \frac{1}{2\theta}I(|x| < \theta)$$

$$f_X(\mathbf{x}|\theta) = \frac{1}{(2\theta)^n}I(\max_i |x_i| < \theta)$$

Let
$$T(\mathbf{X}) = \max_i |X_i|$$
, then $f_T(t|\theta) = \frac{nt^{n-1}}{\theta^n} I(0 \le t < \theta)$
$$E[g(T)] = \int_0^\theta \frac{nt^{n-1}g(t)}{\theta^n} dt = 0$$

$$\int_0^\theta t^{n-1}g(t) dt = 0$$

$$\theta^{n-1}g(\theta) = 0$$

First, we need to find a complete sufficient statistic.

$$f_X(x|\theta) = \frac{1}{2\theta}I(|x| < \theta)$$

$$f_X(\mathbf{x}|\theta) = \frac{1}{(2\theta)^n}I(\max_i |x_i| < \theta)$$

Let
$$T(\mathbf{X}) = \max_i |X_i|$$
, then $f_T(t|\theta) = \frac{nt^{n-1}}{\theta^n} I(0 \le t < \theta)$
$$E[g(T)] = \int_0^\theta \frac{nt^{n-1}g(t)}{\theta^n} dt = 0$$

$$\int_0^\theta t^{n-1}g(t) dt = 0$$

$$\theta^{n-1}g(\theta) = 0$$

Therefore the family of T is complete.

We need to make a $\phi(T)$ such that $E[\phi(T)] = \theta$.

We need to make a $\phi(T)$ such that $E[\phi(T)] = \theta$. First, let's see what the expectation of T is

We need to make a $\phi(T)$ such that $E[\phi(T)] = \theta.$ First, let's see what the expectation of T is

$$E[T] = \int_0^\theta t \frac{nt^{n-1}}{\theta^n} dt$$

We need to make a $\phi(T)$ such that $E[\phi(T)] = \theta.$ First, let's see what the expectation of T is

$$E[T] = \int_0^\theta t \frac{nt^{n-1}}{\theta^n} dt$$
$$= \int_0^\theta \frac{nt^n}{\theta^n} dt$$

We need to make a $\phi(\mathit{T})$ such that $E[\phi(\mathit{T})]=\theta.$ First, let's see what the expectation of T is

$$E[T] = \int_0^\theta t \frac{nt^{n-1}}{\theta^n} dt$$
$$= \int_0^\theta \frac{nt^n}{\theta^n} dt$$
$$= \frac{n}{n+1} \theta$$

We need to make a $\phi(T)$ such that $E[\phi(T)] = \theta.$ First, let's see what the expectation of T is

$$E[T] = \int_0^\theta t \frac{nt^{n-1}}{\theta^n} dt$$
$$= \int_0^\theta \frac{nt^n}{\theta^n} dt$$
$$= \frac{n}{n+1} \theta$$

 $\phi(T) = \frac{n+1}{n} T$ is an unbiased estimator and a function of a complete sufficient statistic.

We need to make a $\phi(T)$ such that $E[\phi(T)] = \theta.$ First, let's see what the expectation of T is

$$E[T] = \int_0^\theta t \frac{nt^{n-1}}{\theta^n} dt$$
$$= \int_0^\theta \frac{nt^n}{\theta^n} dt$$
$$= \frac{n}{n+1} \theta$$

 $\phi(\mathit{T}) = \frac{n+1}{n} \mathit{T}$ is an unbiased estimator and a function of a complete sufficient statistic.

Therefore, $\phi(T)$ is the best unbiased estimator by Theorem 7.3.23.

Problem

Let X_1, \dots, X_{n+1} be the iid $\operatorname{Bernoulli}(p)$, and define the function h(p) by

Problem

Let X_1,\cdots,X_{n+1} be the iid $\operatorname{Bernoulli}(p)$, and define the function h(p) by

$$h(p) = \Pr\left(\sum_{i=1}^{n} X_i > X_{n+1} \middle| p\right)$$

Problem

Let X_1,\cdots,X_{n+1} be the iid $\operatorname{Bernoulli}(p)$, and define the function h(p) by

$$h(p) = \Pr\left(\sum_{i=1}^{n} X_i > X_{n+1} \middle| p\right)$$

the probability that the first n observations exceed the (n+1)-st.

Problem

Let X_1, \dots, X_{n+1} be the iid $\operatorname{Bernoulli}(p)$, and define the function h(p) by

$$h(p) = \Pr\left(\sum_{i=1}^{n} X_i > X_{n+1} \middle| p\right)$$

the probability that the first n observations exceed the (n+1)-st.

Show that

$$W(X_1, \dots, X_{n+1}) = I\left(\sum_{i=1}^n X_i > X_{n+1}\right)$$

is an unbiased estimator of h(p).

Problem

Let X_1, \dots, X_{n+1} be the iid $\operatorname{Bernoulli}(p)$, and define the function h(p) by

$$h(p) = \Pr\left(\sum_{i=1}^{n} X_i > X_{n+1} \middle| p\right)$$

the probability that the first n observations exceed the (n+1)-st.

Show that

$$W(X_1, \dots, X_{n+1}) = I\left(\sum_{i=1}^{n} X_i > X_{n+1}\right)$$

is an unbiased estimator of h(p).

2 Find the best unbiased estimator of h(p).

$$E[\,W] \quad = \quad \sum_{\mathbf{X}} \, W(\mathbf{X}) \, \Pr(\mathbf{X})$$

$$E[W] = \sum_{\mathbf{X}} W(\mathbf{X}) \Pr(\mathbf{X})$$
$$= \sum_{\mathbf{X}} I\left(\sum_{i=1}^{n} X_i > X_{n+1}\right) \Pr(\mathbf{X})$$

$$E[W] = \sum_{\mathbf{X}} W(\mathbf{X}) \Pr(\mathbf{X})$$

$$= \sum_{\mathbf{X}} I\left(\sum_{i=1}^{n} X_{i} > X_{n+1}\right) \Pr(\mathbf{X})$$

$$= \sum_{\sum_{i=1}^{n} X_{i} > X_{n+1}} \Pr(\mathbf{X})$$

$$E[W] = \sum_{\mathbf{X}} W(\mathbf{X}) \Pr(\mathbf{X})$$

$$= \sum_{\mathbf{X}} I\left(\sum_{i=1}^{n} X_{i} > X_{n+1}\right) \Pr(\mathbf{X})$$

$$= \sum_{\sum_{i=1}^{n} X_{i} > X_{n+1}} \Pr(\mathbf{X})$$

$$= \Pr\left(\sum_{i=1}^{n} X_{i} > X_{n+1}\right) = h(p)$$

$$E[W] = \sum_{\mathbf{X}} W(\mathbf{X}) \Pr(\mathbf{X})$$

$$= \sum_{\mathbf{X}} I\left(\sum_{i=1}^{n} X_{i} > X_{n+1}\right) \Pr(\mathbf{X})$$

$$= \sum_{\sum_{i=1}^{n} X_{i} > X_{n+1}} \Pr(\mathbf{X})$$

$$= \Pr\left(\sum_{i=1}^{n} X_{i} > X_{n+1}\right) = h(p)$$

Therefore T is an unbiased estimator of h(p).

$$\phi(T) = E[W|T] = \Pr(W=1|T)$$

$$\phi(T) = E[W|T] = \Pr(W = 1|T)$$

$$= \Pr\left(\sum_{i=1}^{n} X_i > X_{n+1}|T\right)$$

 $T = \sum_{i=1}^{n+1} X_i$ is complete sufficient statistic for p.

$$\phi(T) = E[W|T] = \Pr(W=1|T)$$

$$= \Pr\left(\sum_{i=1}^{n} X_i > X_{n+1}|T\right)$$

• If T=0, then $\sum_{i=1}^{n} X_i = X_{n+1}$

$$\phi(T) = E[W|T] = \Pr(W=1|T)$$
$$= \Pr\left(\sum_{i=1}^{n} X_i > X_{n+1}|T\right)$$

- If T = 0, then $\sum_{i=1}^{n} X_i = X_{n+1}$
- If T=1, then
 - $\Pr(\sum_{i=1}^{n} X_i = 1 > X_{n+1} = 0) = n/(n+1)$ $\Pr(\sum_{i=1}^{n} X_i = 0 < X_{n+1} = 1) = 1/(n+1)$

$$\phi(T) = E[W|T] = \Pr(W=1|T)$$

$$= \Pr\left(\sum_{i=1}^{n} X_i > X_{n+1}|T\right)$$

- If T = 0, then $\sum_{i=1}^{n} X_i = X_{n+1}$
- If T=1, then
 - $\Pr(\sum_{i=1}^{n} X_i = 1 > X_{n+1} = 0) = n/(n+1)$
 - $\Pr(\sum_{i=1}^{n} X_i = 0 < X_{n+1} = 1) = 1/(n+1)$
- If T=2 then
 - $\Pr(\sum_{i=1}^{n} X_i = 2 > X_{n+1} = 0) = \binom{n}{2} / \binom{n+1}{2} = (n-1)/(n+1)$ $\Pr(\sum_{i=1}^{n} X_i = 1 = X_{n+1} = 1) = 2/(n+1)$

$$\phi(T) = E[W|T] = \Pr(W=1|T)$$

$$= \Pr\left(\sum_{i=1}^{n} X_i > X_{n+1}|T\right)$$

- If T = 0, then $\sum_{i=1}^{n} X_i = X_{n+1}$
- If T=1, then
 - $\Pr(\sum_{i=1}^{n} X_i = 1 > X_{n+1} = 0) = n/(n+1)$
 - $\Pr(\sum_{i=1}^{n} X_i = 0 < X_{n+1} = 1) = 1/(n+1)$
- If T=2 then
 - $\Pr(\sum_{i=1}^{n} X_i = 2 > X_{n+1} = 0) = \binom{n}{2} / \binom{n+1}{2} = (n-1)/(n+1)$ $\Pr(\sum_{i=1}^{n} X_i = 1 = X_{n+1} = 1) = 2/(n+1)$
- If T > 2, then $\sum_{i=1}^{n} X_i > 2 > 1 > X_{n+1}$

Solution for (b) (cont'd)

Therefore, the best unbiased estimator is

$$\phi(T) = \Pr\left(\sum_{i=1}^{n} X_i > X_{n+1} | T\right)$$

$$= \begin{cases} 0 & T = 0\\ n/(n+1) & T = 1\\ (n-1)/(n+1) & T = 2\\ 1 & T \ge 3 \end{cases}$$

Problem

Suppose X_1, \dots, X_n are iid samples from $f(x|\theta) = \theta \exp(-\theta x)$. Suppose the prior distribution of θ is

$$\pi(\theta) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} \theta^{\alpha-1} e^{-\theta/\beta}$$

where α, β are known.

Problem

Suppose X_1, \dots, X_n are iid samples from $f(x|\theta) = \theta \exp(-\theta x)$. Suppose the prior distribution of θ is

$$\pi(\theta) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} \theta^{\alpha-1} e^{-\theta/\beta}$$

where α, β are known.

(a) Derive the posterior distribution of θ .

Problem

Suppose X_1, \dots, X_n are iid samples from $f(x|\theta) = \theta \exp(-\theta x)$. Suppose the prior distribution of θ is

$$\pi(\theta) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} \theta^{\alpha-1} e^{-\theta/\beta}$$

where α, β are known.

- (a) Derive the posterior distribution of θ .
- (b) If we use the loss function $L(\theta, a) = (a \theta)^2$, what is the Bayes rule estimator for θ ?

$$f(\mathbf{x}, \theta) = \pi(\theta) f(\mathbf{x}|\theta) \pi(\theta)$$
$$= \frac{1}{\Gamma(\alpha)\beta^{\alpha}} \theta^{\alpha-1} e^{-\theta/\beta} \prod_{i=1}^{n} [\theta \exp(-\theta x_i)]$$

$$f(\mathbf{x}, \theta) = \pi(\theta) f(\mathbf{x}|\theta) \pi(\theta)$$

$$= \frac{1}{\Gamma(\alpha)\beta^{\alpha}} \theta^{\alpha-1} e^{-\theta/\beta} \prod_{i=1}^{n} [\theta \exp(-\theta x_i)]$$

$$= \frac{1}{\Gamma(\alpha)\beta^{\alpha}} \theta^{\alpha-1} e^{-\theta/\beta} \theta^n \exp\left(-\theta \sum_{i=1}^{n} x_i\right)$$

$$f(\mathbf{x}, \theta) = \pi(\theta) f(\mathbf{x}|\theta) \pi(\theta)$$

$$= \frac{1}{\Gamma(\alpha)\beta^{\alpha}} \theta^{\alpha-1} e^{-\theta/\beta} \prod_{i=1}^{n} [\theta \exp(-\theta x_i)]$$

$$= \frac{1}{\Gamma(\alpha)\beta^{\alpha}} \theta^{\alpha-1} e^{-\theta/\beta} \theta^n \exp\left(-\theta \sum_{i=1}^{n} x_i\right)$$

$$= \frac{1}{\Gamma(\alpha)\beta^{\alpha}} \theta^{\alpha+n-1} \exp\left[-\theta \left(1/\beta + \sum_{i=1}^{n} x_i\right)\right]$$

$$f(\mathbf{x}, \theta) = \pi(\theta) f(\mathbf{x}|\theta) \pi(\theta)$$

$$= \frac{1}{\Gamma(\alpha)\beta^{\alpha}} \theta^{\alpha-1} e^{-\theta/\beta} \prod_{i=1}^{n} [\theta \exp(-\theta x_i)]$$

$$= \frac{1}{\Gamma(\alpha)\beta^{\alpha}} \theta^{\alpha-1} e^{-\theta/\beta} \theta^n \exp\left(-\theta \sum_{i=1}^{n} x_i\right)$$

$$= \frac{1}{\Gamma(\alpha)\beta^{\alpha}} \theta^{\alpha+n-1} \exp\left[-\theta \left(1/\beta + \sum_{i=1}^{n} x_i\right)\right]$$

$$\propto \text{Gamma}\left(\alpha + n - 1, \frac{1}{\beta^{-1} + \sum_{i=1}^{n} x_i}\right)$$

$$f(\mathbf{x}, \theta) = \pi(\theta) f(\mathbf{x}|\theta) \pi(\theta)$$

$$= \frac{1}{\Gamma(\alpha)\beta^{\alpha}} \theta^{\alpha-1} e^{-\theta/\beta} \prod_{i=1}^{n} [\theta \exp(-\theta x_i)]$$

$$= \frac{1}{\Gamma(\alpha)\beta^{\alpha}} \theta^{\alpha-1} e^{-\theta/\beta} \theta^n \exp\left(-\theta \sum_{i=1}^{n} x_i\right)$$

$$= \frac{1}{\Gamma(\alpha)\beta^{\alpha}} \theta^{\alpha+n-1} \exp\left[-\theta \left(1/\beta + \sum_{i=1}^{n} x_i\right)\right]$$

$$\propto \text{Gamma}\left(\alpha + n - 1, \frac{1}{\beta^{-1} + \sum_{i=1}^{n} x_i}\right)$$

$$\pi(\theta|\mathbf{x}) = \text{Gamma}\left(\alpha + n - 1, \frac{1}{\beta^{-1} + \sum_{i=1}^{n} x_i}\right)$$

(b) Bayes' rule estimator with squared error loss

Bayes' rule estimator with squared error loss is posterior mean. Note that the mean of $\operatorname{Gamma}(\alpha,\beta)$ is $\alpha\beta$.

(b) Bayes' rule estimator with squared error loss

Bayes' rule estimator with squared error loss is posterior mean. Note that the mean of $\operatorname{Gamma}(\alpha,\beta)$ is $\alpha\beta$.

$$\pi(\theta|\mathbf{x}) = \operatorname{Gamma}\left(\alpha + n - 1, \frac{1}{\beta^{-1} + \sum_{i=1}^{n} x_i}\right)$$

(b) Bayes' rule estimator with squared error loss

Bayes' rule estimator with squared error loss is posterior mean. Note that the mean of $\operatorname{Gamma}(\alpha,\beta)$ is $\alpha\beta$.

$$\pi(\theta|\mathbf{x}) = \operatorname{Gamma}\left(\alpha + n - 1, \frac{1}{\beta^{-1} + \sum_{i=1}^{n} x_i}\right)$$

$$E[\theta|\mathbf{x}] = E[\pi(\theta|\mathbf{x})]$$

$$= \frac{\alpha + n - 1}{\beta^{-1} + \sum_{i=1}^{n} x_i}$$

Summary

Today

- E-M Algorithm
- Practice Problems for the Final Exam

Summary

Today

- E-M Algorithm
- Practice Problems for the Final Exam

Next Lectures

- Bayesian Tests
- Bayesian Intervals
- More practice problems

