Relationship Checking

Biostatistics 666
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Last Lecture

Multipoint analysis

Combining information across multiple
markers for linkage analysis in sib pairs

Markov Chain framework allows efficient
computation
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Ingredients of Multipoint Analysis
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The Likelihood of Marker Data

~

o

General, but slow unless there are only a few markers.

Combined with Bayes’ Theorem can estimate
probability of each IBD state at any marker.

L=ZZZ P(ll)HP(h | Ii—l)H PCXi [ 1;)
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Last Lecture’s Example

~

Consider two loci separated by 6 = 0.1

Each loci has two alleles, each with
frequency .50

If two siblings are homozygous for the first

allele at both loci, what is the probability

\ that IBD = 2 at the first locus?

/




-

Solution

1 P P(1) P(l2[11) P(Xall) | P(X4ll2)

0 0 0.25 0.67 0.0625 0.0625 0.00066
0 1 0.25 0.30 0.0625 0.125 0.00058
0 2 0.25 0.03 0.0625 0.25 0.00013
1 0 0.50 0.15 0.125 0.0625 0.00058
1 1 0.50 0.70 0.125 0.125 0.00551
1 2 0.50 0.15 0.125 0.25 0.00231
2 0 0.25 0.03 0.25 0.0625 0.00013
2 1 0.25 0.30 0.25 0.125 0.00231
2 2 0.25 0.67 0.25 0.25 0.01051
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Solution

Taking into account all available genotype data...

P(l, = 2) = 0.57
P(l, = 1) =0.37
P(l, = 0) = 0.06

Considering only one marker, the corresponding
probabilities would be 0.44, 0.44 and 0.11.

N\ %
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The Likelihood of Marker Data

~

o

I, 1

General, but slow unless there are only a few
markers.

How do we speed things up?

L=>2" ZP(ll)HP(l ||.1)HF’(X [15)

/
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A Markov Model

~

Re-organize the computation slightly, to avoid
evaluating nested sum directly

Three components:
Probability considering a single location
Probability including left flanking markers
Probability including right flanking markers

Scale of computation increases linearly with
number of markers
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The Likelihood of Marker Data

o

L = ZP(I PO T1)P(X e X [ 1P e Xy 1))

—ZP(l JPOX )L ()R ()

A different arrangement of the same likelihood

The nested summations are now hidden inside
the Lj and Rj functions...
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Left-Chain Probabilities

Lm(lm) — P(Xli"" Xm—ll Im)
:ZLm—l(Im—l)P(Xm—ll Im—l)P(Im—ll Im)

L, (1,) =1

Proceed one marker at a time.

Computation cost increases linearly with

k number of markers.

/
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Right-Chain Probabilities

Rm(lm) — P(Xm+1""’ XM | Im)
:ZRm+1(|m+1)P(Xm+1| Im+1)P(|m+1| Im)

m+1

RM(IM):l

Proceed one marker at a time.

Computation cost increases linearly with

k number of markers. /
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Today’s Lecture

N

Verifying Genetic Relationships

Multipoint Ana
Relationship c
Relationship c

ysis for Different Relatives
nanges transition probabilities

nanges potential IBD states

Approaches for Relationship Checking

/




Results

Our analysis of the pedigree structures by means of the
genotypes generated as part of the genome scan high-
lighted that, in each of the ethnic groups, there were
individuals identified as males that were likely to be fe-
males (and vice versa), half siblings labeled as full sib-
lings, and pedigree members that showed no relationship
to their supposed pedigree. Given that not all of the
parents were available for study, it was difficult to dis-
tinguish between parental errors and blood- or DNA-
sample mixups. In summary, 24.4% of the families
contained pedigree errors and 2.8% of the families con-
tained errors in which an individual appeared to be un-
related to the rest of the members of the pedigree and
were possibly blood-sample mixups. The percentages
were consistent across all ethnic groups. In total, 212
individuals were removed from the pedigrees to elimi-
nate these errors.

Genomewide Search for Type 2 Diabetes Susceptibility Genes

in Four American Populations
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Verifying relationships is crucial

N

Genetic analyses require relationships to
be specified

Misspecified relationships lead to tests of
iInappropriate size

Inflated Type | error

Decreased power

/




Strategy:

N

Information we have:

X — observed genotypes at each marker
p — allele frequencies at each marker

0 - recombination fraction between
consecutive markers

P(X|R) for each possible relationship R

unrelated, half-sib, sib-pairs, MZ twins

/
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Likelihood

~

Sum over IBD states at each location

l;

Different relationships imply
Different P(l,)
Different P(l. | I;_,)

L= 3 PO TPOL DT TPOX 1)

/
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Notation
R Hypothesized Relationship
. =(1,..,1,) Allelesharing at locus k
X, Genotype pair at locus k

& (JIR) = P(X;, X1 Xy 1, 1y = §[R)

Joint probability of data at first k-1 markers
and IBD vector |, =) at marker k

/
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Detalls on |

N

For convenience, separate IBD=1 into
maternal and paternal sharing states

Possible inheritance patterns
(0,0) — no sharing

(1,0) —s
(0,1) —s
(1,1)—s

nare maternal allele
nare paternal allele

nare both alleles
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Algorithm for Likelihood Calculation

a,(J|R)=P(l;=]|R)
o1 (]| R) :Zak(i |R)P(X, [T, =Dt ])

L:ZO‘M(”R)P(XM | Iy = ])

\_ %
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Relationship between | and R

Probability of 1,=(0,0), (1,0), (0,1) and (1,1):

MZ Twins (0,0,0,1)
Unrelated ?
Parent-Offspring ?

Full sibs (Ya, Va, Va, Va)
Maternal half sibs (Y2, V2, 0, 0)

K Paternal half sibs ? /
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P (X | 1)

IBD
Sib CoSib (0,0 (0,1) or (1,0)
(a,b) (c,d) APapPbPcPd 0 0
(a,a) (b,c) 2Pa PbPe 0 0
(a,a) (b,b) P2 Pb° 0 0
(a,b) (a,c) 4pa"PpPe PaPbPe 0
(a,a) (a,b) 2Pa P Pa"Po 0
(a,b) (a,b) 4pa"Py” (PaPb"+Pa“Pb)
(a,a) (a,a) pPa’ Pa’

N

Note: Assuming unordered genotypes

/
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Transition Matrix P(l; | I ;)

(Full Sibs)

~
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Transition Matrix P(l; | I ;)

(Maternal Half Sibs)

~

N
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Transition Matrix P(l; | I ;)
(Paternal Half Sibs)

~
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Transition Matrix P(l; | I ;)
(Unrelated)

~
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Transition Matrix P(l; | I ;)

(MZ twins)

~
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Example |

Consider genotypes for one marker
Let X =(1/1, 1/1)
Assume p, =.5

Calculate P(X|R) for each relationship
MZ twin, Full Sibs, Half-Sibs, Unrelated

How do results change with p,? /




-~

Example Il

Consider genotypes for 2 markers
X, = (111, 2/2)
X, = (1/1, 2/2)

Assume p,=p,=72

Assume

0 = 0.0528, v = 0.10
6 = 0.5000, v = 0.50

Calculate P(X|R) for each relationship

/
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Simulations (6=.1, M=50)

Inferred R
True R Full Sibs Half Sibs Unrelated
~ull Sibs 914 .085
Half Sibs .044 872
Unrelated <.001 .059

.00
.08

941

/
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Simulations ( 6=.2, M=50)

Inferred R
True R Full Sibs Half Sibs Unrelated
~ull Sibs 948 .052 <.001
Half Sibs .038 .899 .064
Unrelated <.001 .062 938

N\ %
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Simulations (6=.1, M=400)

Inferred R
True R Full Sibs Half Sibs Unrelated
—ull Sibs 1.000 <.001 <.001
Half Sibs <.001 1.000 <.001
Unrelated <.001 <.001 1.000

N\ %
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Bayesian Approach

N

Given some prior information on the expected
frequency of each relative pair...
Alternative to simply maximizing P(X|R=r)

Prior(R)P(X |R =)
> Prior(R)P(X |R)

/

P(R=r|X)=




More distant relationships
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Figure 1 Autosomal transition probabilities for grandparent-grandchild (GG, half-sib (HS), and avuncular (AV) pairs. Pilg., = 1|1, =

Oy= Pll,,, = 0I, = 1})is shown. Note that Pil,,, =0/, =0=1-Pl,,, =1|l,=0and Pil,,, =1|l,=1)=1—-PFl,., =0]l,=1.L
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Problem ...

N

Consider some genome scan data
380 microsatellite markers

Consider some pair of individuals

Observed Sharing
|dentical for 379/380 genotype pairs

L(X|R=MZ Twins) = 0
L(X|R=Any other) > 0




/Solution: \

Allow for Genotyping Errors

Even a few errors can lead to misclassification
If likelihood formulation ignores errors
Need to update likelihood to allow errors

€ — error rate parameter models difference between
true genotypes G and observed genotypes X

PCX; [1;)
:ZP(Xi |G, &)P(G; | 1;)

\ =(1-¢£)?*P(G; | Ii)+[1_(1_5)2]P(Xi1)P(Xi2)/
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Conclusions

Likelihood approach provides reliable
manner to infer relationships

Can incorporate multiple linked markers

Some distant relationships can only be
discerned by likelihood approach




/Alternative Strategy |
Mendelian Inconsistencies

Verify that observed genotypes are
compatible with Mendelian segregation

Common checks:

Does each putative offspring get one allele
from each parent?

Is the set of genotypes in a putative sibship
compatible?

N
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Mendelian Checks

If many markers exhibit incompatibilities,
there may be a pedigree problem.

Requires informative markers and relatively
complete pedigrees

With only a sibling pair, any genotype pair fits

With bi-allelic markers, all genotypes fit any sibship

Does not pinpoint source of error or suggest

k correct relationship /




/Alternative Strategy IlI: \
Allele Sharing Methods

Summarize IBS sharing across all
available markers

Compare observed values for each pair
to expected values

Expectations derived by examining other pairs
with the same putative relationship

N\ %
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IBS Sharing Scores

S, — IBS score (0,1,2) for marker k

ZSK Z(Sk_§)2

S = )

Nmarkers Mnarkers

o
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Could construct a Z-score

o

Comparing observed IBS score to expected
values within class of relatives

_S-E(S|R)
Nar(S |R)

VA
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Example...

~800 marker genome scan

Calculated IBS for each set of putative
relationships...

Unrelated pairs

Sibling pairs

Parent-offspring pairs




-

Putative Unrelated Pairs

IBS for Putative Unrelated Pairs

2.0

Mean = 0.87
8 - St. Dev. = 0.07
- .
0.0 0.5 1.0 1.5
IBS




-

Parent-Offspring Pairs

Frequency

IBS for Putative Parent Offspring Pairs

25
|

Mean = 1.27
St. Dev. = 0.05

20
|

15

10

0.0 0.5 1.0

IBES

1.5

>
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Putative Sibling Pairs

IBS for Putative Sib Pairs

B Mean = 1.32
_ | st Dev. =0.09
0.0 0.5 1.0 1.5

k B




Problem Individuals Are Outliers

IBS for Putative Sib Pairs

| ) Circled pairs
o e NI\ e are likely
IBS for Putative Parent Offspring Pairs m iSCIaSSified
. a

0.5 ' 1.5 2.0
IBS

0

[
o
S




/Additional Information In \
Variance of IBS Sharing

nonymous Genome Scan -

1.0

g9

0.0 0.5 1.0 1.5 >0

Mean IBS Sharing /

/Standard Deviation of IBS Sharin




/Additional Information In \
Variance of IBS Sharing

nonymous Genome Scan -

1.0

g9

Mean IBS Sharing /

/Standard Deviation of IBS Sharin
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Problems with IBS Scores

N

Inefficient
Ilgnore information on allele frequencies

Ignore correlations between neighboring
markers

... hot too bad if large amounts of data
available
Cannot distinguish some types of relatives
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Recommended Reading

Boehnke and Cox (1997) Am J Hum
Genet 61:423-429

Optional
Broman and Weber (1998), AJHG 63:1563-4
McPeek and Sun (2000), AJHG 66:1076-94
Epstein et al. (2000), AJHG 67:1219-31
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