Introduction to Coalescent Models

Biostatistics 666
Previously ...

- Allele frequencies
- Hardy Weinberg Equilibrium
- Linkage Equilibrium
 - Expected state for distant markers
- Linkage Disequilibrium
 - Association between neighboring alleles
 - Expected to decrease with distance
- Measures of linkage disequilibrium
 - D, D' and Δ^2 or r^2
Making predictions...

• What allele frequencies do we expect?

• How much variation in a gene?

• How are neighboring variants related?

• Are these predictions “universal”?
 • Do they depend on natural selection or the history of a population?

• How can we use genetic variation to build models of the past?
1000 Genomes Data: Variants per Genome

<table>
<thead>
<tr>
<th>Type</th>
<th>Variant sites / genome</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNPs</td>
<td>~3,800,000</td>
</tr>
<tr>
<td>Indels</td>
<td>~570,000</td>
</tr>
<tr>
<td>Mobile Element Insertions</td>
<td>~1000</td>
</tr>
<tr>
<td>Large Deletions</td>
<td>~1000</td>
</tr>
<tr>
<td>CNVs</td>
<td>~150</td>
</tr>
<tr>
<td>Inversions</td>
<td>~11</td>
</tr>
</tbody>
</table>
1000 Genomes Data: Demographic Models
Simple Approach: Simulation

1. N starting sequences
2. Sample N offspring sequences
 - Apply mutations according to μ
3. Increment time
4. If enough time has passed...
 - Generate final sample
 - Stop.
5. Otherwise, return to step 1.
Simulating a Population ...
Today

• Introduce coalescent approach
 • Framework for studying genetic variation
 • Provides intuition on patterns of variation
 • Provides analytical solutions
Aim ...

• Gene genealogies:
 • Descriptions of relatedness between sequences
 • Analogous to phylogenetic trees for species

• The shape of the genealogy depends on population history, selection, etc.

• Together with mutation rate, genealogy predicts DNA variation
Genealogy

- History of a particular set of sequences
 - Describes their relatedness
 - Specifies divergence times

- Includes only a subset of the population

- Most Recent Common Ancestor (MRCA)
Coalescent approach

• Generate genealogy for a sample of sequences.
 • Introduces computational and analytical convenience.

• Instead of proceeding forward through time, go backwards!
History of the Population
Genealogy of Final Population
Levels of Complexity

• History of the population
 • Includes sequences that are “extinct”

• History of all modern sequences
 • Includes sequences that we haven’t sampled

• History of a subset of modern sequences
 • Minimalist approach!
Examples of Typical Coalescent Trees

A

B

C
Parameters we will focus on...

• Mutation rate (μ)
• Population Size
 • Haploid population (N chromosomes)
 • Diploid population (2N chromosomes)
• Time (t)
• Sample size (n)
• Recombination rate (r)
Other Parameters

• Selection
 • For gene of interest
 • For neighboring gene

• Demographic parameters
 • Migration
 • Population Structure
 • Population Growth
Mutation Model

- The mutation process is complex
 - Rate depends on surrounding sequence
 - Reverse mutations are possible

- Two simple models are popular
 - Infinite alleles
 - Every mutation generates a different allele
 - Infinite sites
 - Every mutation occurs at a different site
Mutation Model

• Focus on infinite sites model
 • Mutation rate in genomic DNA is $\sim 10^{-8} / \text{bp}$
 • Recurrent mutations should be very rare

• Scaled mutation rate parameter, e.g.:
 • 1000 bp sequence
 • 10^{-8} mutations per base pair per generation
 • $\mu = 10^{-5}$ per sequence per generation
Neutral Variants

• Variants that do not affect fitness

• Accumulate inexorably through time
 • Lost through genetic drift

• Do not affect genealogy
Example:
Modeling Accumulation of Mutations

• Population of identical sequences

• Sample one descendant after \(t \) generations

• How many mutations have accumulated?
 • Hint: depends on mutation rate \(\mu \) and time \(t \)

• Tougher questions
 • How many mutations have been fixed?
 • How much variation in the total population?
So far ...

• Divergence of a single sequence
 • Accumulation of mutations
 • Depends on time t
 • Depends on mutation rate μ
 • Does not depend on population size N
 • Does not depend on population growth

• Next: A pair of sequences!
A tougher example ...

- Sample of two sequences
 - 100 bp each...

- How many differences are expected?
 - Population of size, $N = 1000$
 - Mutation rate
 - $\mu = 10^{-8} / \text{bp / generation}$
 - $\mu \approx 10^{-6} / 100 \text{ bp / generation}$
Genealogy of two sequences

Mutations between MRCA and Sequence 1?
Genealogy of two sequences

MRCA

Sequence 1 Sequence 2

Time $T(2)$

Total mutations in genealogy?
Number of mutations S

- Distributed as Poisson, conditional on total tree length

- $E(S) = \mu E(T_{\text{tot}})$
- $\text{Var}(S) = \mu E(T_{\text{tot}}) + \mu^2 \text{Var}(T_{\text{tot}})$

- T_{tot} is the total length of all branches
Estimating Coalescence Time...

- Probability that two sequences have distinct ancestors in previous generation

\[P(2) = \frac{N - 1}{N} = 1 - \frac{1}{N} \]

- Probability of distinct ancestors for \(t \) generations is \(P(2)^t \)
Probability of MRCA at time $t+1$

$$P(2)^t (1 - P(2)) = \frac{1}{N} \left(\frac{N - 1}{N} \right)^t$$

$$= \frac{1}{N} \left(1 - \frac{1}{N} \right)^t$$

$$\approx \frac{1}{N} e^{-\frac{1}{N^t}}$$
For $n > 2$

• Coalescence when two sequences have common ancestor
 • For simplicity, consider the possibility of multiple simultaneous coalescent events to be negligible

• Requirements for no coalescence:
 • Pick one ancestor for sequence 1
 • Pick distinct ancestor for sequence 2
 • Pick yet another ancestor for sequence 3
 • ...
Estimating $P(n)$

- Probability that n sequences have n distinct ancestors in previous generation

$$P(n) = \prod_{i=1}^{n-1} \frac{N-i}{N}$$

- Assume:
 - N is large
 - n is small
 - Terms of order N^{-2} can be ignored
Probability of Coalescence at Time $t+1$

\[P(n)^t (1 - P(n)) \approx \left(\frac{n}{2} \right)^t \left(\frac{n}{2} \right) \left(1 - \frac{n}{N} \right)^{\frac{n}{2}} \left(\frac{n}{2} \right)^t \approx \left(\frac{n}{2} \right)^t \frac{n}{N} e^{-\frac{n}{N} t} \]
Time to next coalescent event

• Use an exponential distribution to approximate time to next coalescent event...

\[
\text{Decay Rate } \lambda = \binom{n}{2} \frac{2}{N} \\
\text{Mean } \frac{1}{\lambda} = \frac{N}{\binom{n}{2}}
\]
T(j)

• For convenience, measure time to next coalescent event in units:
 • N generations for haploids
 • 2N generations for diploids

\[E(T_j) = \frac{1}{\binom{j}{2}} \]

• How would you calculate time to MRCA of \(n \) sequences?
Total “Time in Tree”

• Sum of all the branch lengths
• Total evolutionary time available
 • e.g. for mutations to occur

\[
E(T_{\text{tot}}) = \sum_{i=2}^{n} iT(i) = \sum_{i=2}^{n} \frac{2i}{i(i-1)}
\]

\[
= \sum_{i=2}^{n} \frac{2}{i-1} = \sum_{i=1}^{n-1} \frac{2}{i}
\]
T_{MRCA} vs. T_{TOT}
Number of Segregating Sites

• Commonly named S

• Total number of mutations in genealogy
 • Assuming no recurrent mutation

• A function of the total length of the genealogy
 • T_{tot}
Expected number of mutations

• Factor N for haploids, 2N for diploids

\[E(S) = 2N\mu \sum_{i=2}^{n} i E(T(i)) \]
\[= 4N\mu \sum_{i=1}^{n-1} 1/i \]
\[= \theta \sum_{i=1}^{n-1} 1/i \]

• Population geneticists define \(\theta = 4N\mu \) (for diploids)
 • For gene mappers, \(\theta \) is usually the recombination rate
 • For population geneticists, \(r \) is the recombination rate
Expected number of mutations

• Factor N for haploids, $2N$ for diploids

$$E(S) = 2N\mu \sum_{i=2}^{n} iE(T(i))$$

$$= 4N\mu \sum_{i=1}^{n-1} 1/i$$

$$= \theta \sum_{i=1}^{n-1} 1/i$$

• Population geneticists define $\theta = 4N\mu$ (for diploids)
 • For gene mappers, θ is usually the recombination rate
 • For population geneticists, r is the recombination rate
E(S) as a function of n

Parameters

- $N = 10,000$ individuals
- $\mu = 10^{-4}$
- $\theta = 4$
More about S...

• Very large variance

$$Var(S) = \theta \sum_{i=1}^{n-1} \frac{1}{i} + \theta^2 \sum_{i=1}^{n-1} \frac{1}{i^2}$$

• Most of the variance contributed by early coalescent events (i.e. with small n)
Var(S) as a function of n

Parameters

$N = 10,000$ individuals

$\mu = 10^{-4}$

$\theta = 4$
Inferences about θ

- Could be estimated from S
 - Divide by expected length of genealogy

$$\hat{\theta} = \frac{S}{\sum_{i=1}^{n-1} 1/i}$$

- Could then be used to:
 - Estimate N, if mutation rate μ is known
 - Estimate μ, if population size N is known
Var(\(\hat{\theta}\)) as a function of \(n\)

Parameters

\(N = 10,000\) individuals
\(\mu = 10^{-4}\)
\(\theta = 4\)
Alternative Estimator for θ ...

- Count pairwise differences between sequences
- Compute average number of differences

$$\tilde{\theta} = \left(\frac{n}{2} \right)^{-1} \sum_{i=1}^{n} \sum_{j=i+1}^{n} S_{ij}$$
Today...

• Probability of coalescence events

• Length of genealogy and its branches

• Expected number of mutations

• Simple estimates of θ
Recommended Reading

Richard R. Hudson (1990)

Gene genealogies and the coalescent process

Oxford Surveys in Evolutionary Biology, Vol. 7.
D. Futuyma and J. Antonovics (Eds).
Oxford University Press, New York.