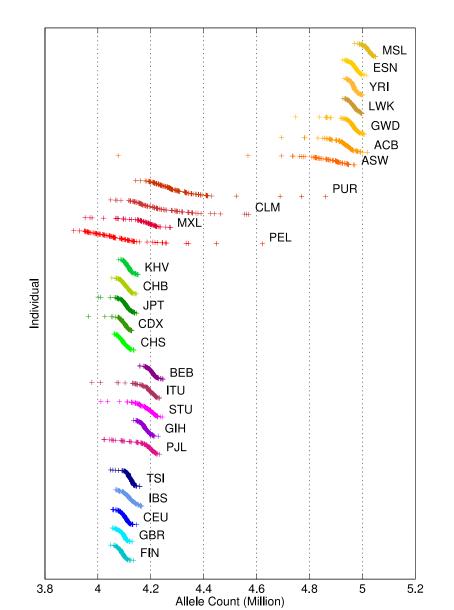
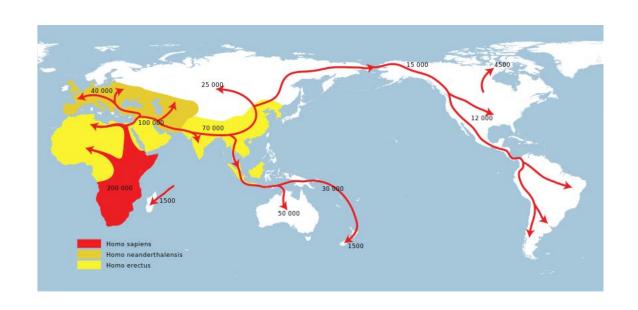
Introduction to Coalescent Models

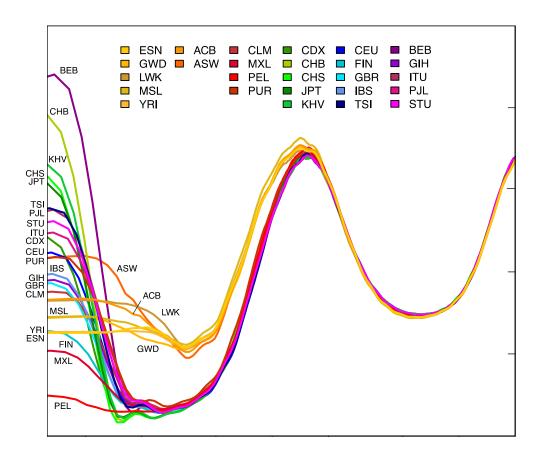
Biostatistics 666

Previously ...


- Allele frequencies
- Hardy Weinberg Equilibrium
- Linkage Equilibrium
 - Expected state for distant markers
- Linkage Disequilibrium
 - Association between neighboring alleles
 - Expected to decrease with distance
- Measures of linkage disequilibrium
 - D, D' and Δ^2 or r^2

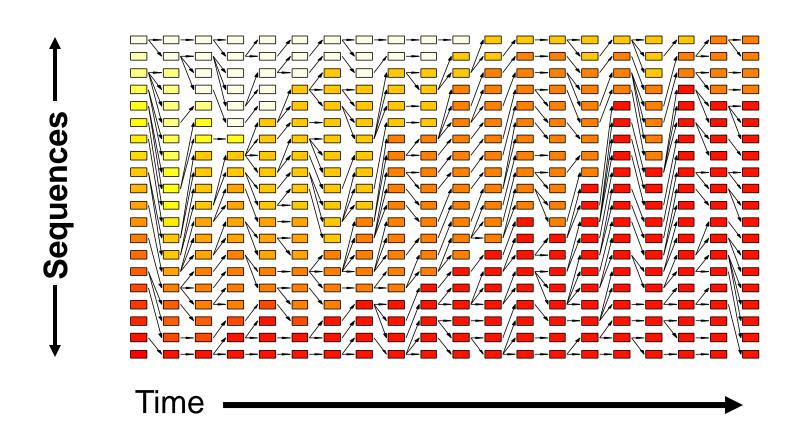
Making predictions...


- What allele frequencies do we expect?
- How much variation in a gene?
- How are neighboring variants related?
- Are these predictions "universal"?
 - Do they depend on natural selection or the history of a population?
- How can we use genetic variation to build models of the past?


1000 Genomes Data: Variants per Genome

Туре	Variant sites / genome
SNPs	~3,800,000
Indels	~570,000
Mobile Element Insertions	~1000
Large Deletions	~1000
CNVs	~150
Inversions	~11

1000 Genomes Data: Demographic Models



Simple Approach: Simulation

- 1. N starting sequences
- 2. Sample N offspring sequences
 - Apply mutations according to μ
- 3. Increment time
- 4. If enough time has passed...
 - Generate final sample
 - Stop.
- 5. Otherwise, return to step 1.

Simulating a Population ...

Today

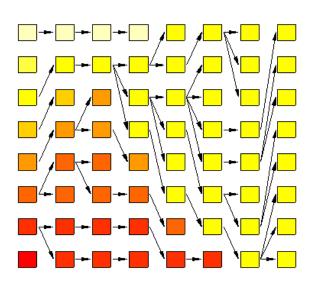
- Introduce coalescent approach
 - Framework for studying genetic variation
 - Provides intuition on patterns of variation
 - Provides analytical solutions

Aim ...

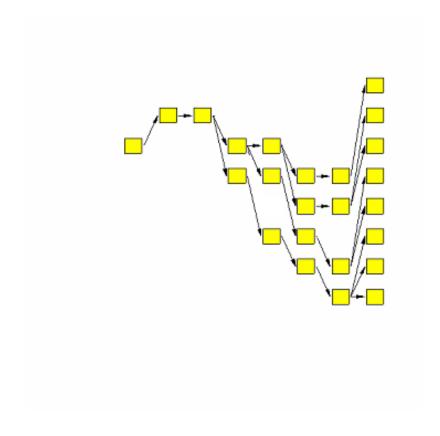
- Gene genealogies:
 - Descriptions of relatedness between sequences
 - Analogous to phylogenetic trees for species
- The shape of the genealogy depends on population history, selection, etc.

Together with mutation rate, genealogy predicts DNA variation

Genealogy

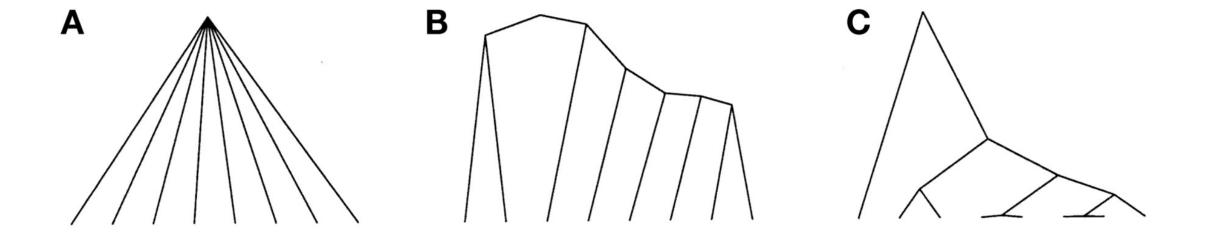

- History of a particular set of sequences
 - Describes their relatedness
 - Specifies divergence times

- Includes only a subset of the population
- Most Recent Common Ancestor (MRCA)


Coalescent approach

- Generate genealogy for a sample of sequences.
 - Introduces computational and analytical convenience.
- Instead of proceeding forward through time, go backwards!

History of the Population


Genealogy of Final Population

Levels of Complexity

- History of the population
 - Includes sequences that are "extinct"
- History of all modern sequences
 - Includes sequences that we haven't sampled
- History of a subset of modern sequences
 - Minimalist approach!

Examples of Typical Coalescent Trees

Parameters we will focus on...

- Mutation rate (μ)
- Population Size
 - Haploid population (N chromosomes)
 - Diploid population (2N chromosomes)
- Time (t)
- Sample size (n)
- Recombination rate (r)

Other Parameters

- Selection
 - For gene of interest
 - For neighboring gene
- Demographic parameters
 - Migration
 - Population Structure
 - Population Growth

Mutation Model

- The mutation process is complex
 - Rate depends on surrounding sequence
 - Reverse mutations are possible
- Two simple models are popular
 - Infinite alleles
 - Every mutation generates a different allele
 - Infinite sites
 - Every mutation occurs at a different site

Mutation Model

- Focus on infinite sites model
 - Mutation rate in genomic DNA is ~10-8 / bp
 - Recurrent mutations should be very rare
- Scaled mutation rate parameter, e.g.:
 - 1000 bp sequence
 - 10⁻⁸ mutations per base pair per generation
 - $\mu = 10^{-5}$ per sequence per generation

Neutral Variants

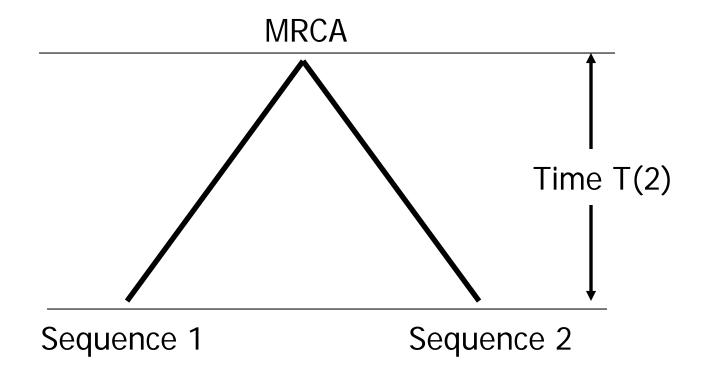
Variants that do not affect fitness

- Accumulate inexorably through time
 - Lost through genetic drift
- Do not affect genealogy

Example: Modeling Accumulation of Mutations

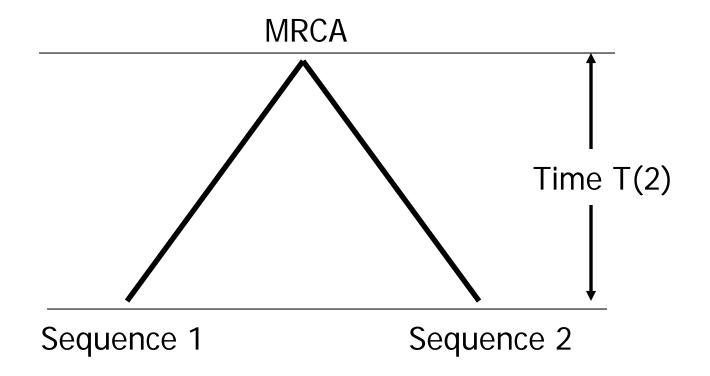
- Population of identical sequences
- Sample one descendant after t generations
- How many mutations have accumulated?
 - Hint: depends on mutation rate μ and time t
- Tougher questions
 - How many mutations have been fixed?
 - How much variation in the total population?

So far ...


- Divergence of a single sequence
 - Accumulation of mutations
 - Depends on time *t*
 - Depends on mutation rate μ
 - Does not depend on population size N
 - Does not depend on population growth

Next: A pair of sequences!

A tougher example ...


- Sample of two sequences
 - 100 bp each...
- How many differences are expected?
 - Population of size, *N* = 1000
 - Mutation rate
 - $\mu = 10^{-8}$ / bp / generation
 - $\mu \approx 10^{-6}$ / 100 bp / generation

Genealogy of two sequences

Mutations between MRCA and Sequence 1?

Genealogy of two sequences

Total mutations in genealogy?

Number of mutations S

• Distributed as Poisson, conditional on total tree length

- $E(S) = \mu E(T_{tot})$
- $Var(S) = \mu E(T_{tot}) + \mu^2 Var(T_{tot})$
- T_{tot} is the total length of all branches

Estimating Coalescence Time...

 Probability that two sequences have distinct ancestors in previous generation

$$P(2) = \frac{N-1}{N} = 1 - \frac{1}{N}$$

• Probability of distinct ancestors for t generations is $P(2)^t$

Probability of MRCA at time t+1

$$P(2)^{t} (1 - P(2)) = \frac{1}{N} \left(\frac{N - 1}{N} \right)^{t}$$
$$= \frac{1}{N} \left(1 - \frac{1}{N} \right)^{t}$$
$$\approx \frac{1}{N} e^{-\frac{1}{N}t}$$

For n > 2

- Coalescence when two sequences have common ancestor
 - For simplicity, consider the possibility of multiple simultaneous coalescent events to be negligible
- Requirements for no coalescence:
 - Pick one ancestor for sequence 1
 - Pick distinct ancestor for sequence 2
 - Pick yet another ancestor for sequence 3
 - ...

Estimating P(n)

• Probability that *n* sequences have *n* distinct ancestors in previous generation

$$P(n) = \prod_{i=1}^{n-1} \frac{N-i}{N}$$

$$\approx 1 - \frac{\binom{n}{2}}{N}$$

- Assume:
 - N is large
 - n is small
 - Terms of order N⁻² can be ignored

Probability of Coalescence at Time t+1

$$P(n)^{t}(1-P(n)) \approx \left(1-\frac{\binom{n}{2}}{N}\right)^{t} \frac{\binom{n}{2}}{N}$$

$$\approx \frac{\binom{n}{2}}{N} e^{-\frac{\binom{n}{2}}{N}t}$$

Time to next coalescent event

 Use an exponential distribution to approximate time to next coalescent event...

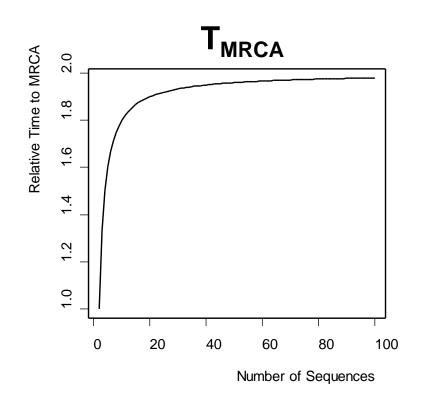
Decay Rate
$$\lambda = \frac{\binom{n}{2}}{N}$$

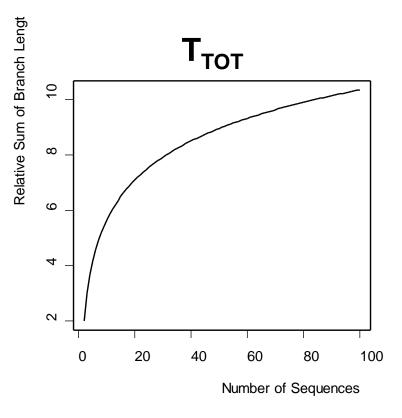
Mean
$$\frac{1}{\lambda} = \frac{N}{\binom{n}{2}}$$

T(j)

- For convenience, measure time to next coalescent event in units:
 - N generations for haploids
 - 2N generations for diploids

$$E(T_j) = 1/\binom{j}{2}$$


How would you calculate time to MRCA of n sequences?


Total "Time in Tree"

- Sum of all the branch lengths
- Total evolutionary time available
 - e.g. for mutations to occur

$$E(T_{tot}) = \sum_{i=2}^{n} iT(i) = \sum_{i=2}^{n} \frac{2i}{i(i-1)}$$
$$= \sum_{i=2}^{n} \frac{2}{i-1} = \sum_{i=1}^{n-1} \frac{2}{i}$$

T_{MRCA} vs. T_{TOT}

Number of Segregating Sites

Commonly named S

- Total number of mutations in genealogy
 - Assuming no recurrent mutation
 - A function of the total length of the genealogy
 - T_{tot}

Expected number of mutations

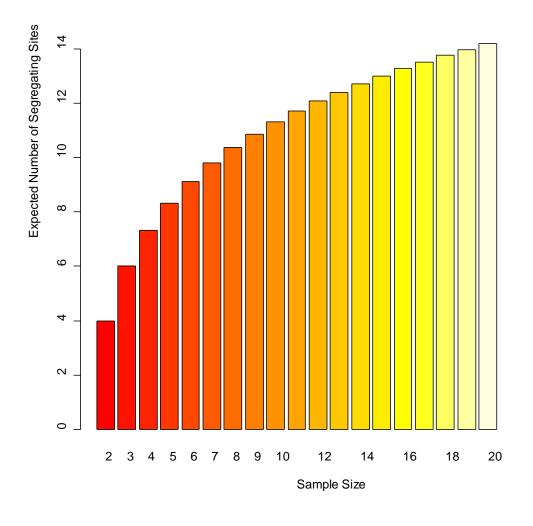
Factor N for haploids, 2N for diploids

$$E(S) = 2N\mu \sum_{i=2}^{n} iE(T(i))$$
$$= 4N\mu \sum_{i=1}^{n-1} 1/i$$
$$= \theta \sum_{i=1}^{n-1} 1/i$$

- Population geneticists define θ =4N μ (for diploids)
 - For gene mappers, θ is usually the recombination rate
 - For population geneticists, *r* is the recombination rate

Expected number of mutations

• Factor N for haploids, 2N for diploids


$$E(S) = 2Nu \sum_{i=2}^{n} iE(T(i))$$

$$= 4Nu \sum_{i=1}^{n-1} 1/i$$

$$= \theta \sum_{i=1}^{n-1} 1/i$$

- Population geneticists define θ =4N μ (for diploids)
 - For gene mappers, θ is usually the recombination rate
 - For population geneticists, *r* is the recombination rate

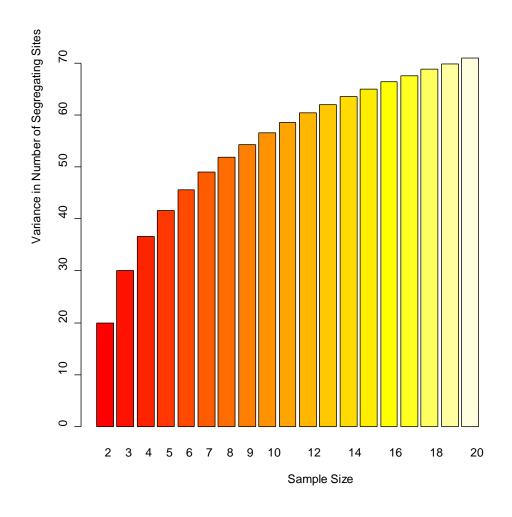
E(S) as a function of *n*

Parameters

N = 10,000 individuals

$$\mu = 10^{-4}$$

$$\theta = 4$$


More about S...

Very large variance

$$Var(S) = \theta \sum_{i=1}^{n-1} 1/i + \theta^2 \sum_{i=1}^{n-1} 1/i^2$$

 Most of the variance contributed by early coalescent events (i.e. with small n)

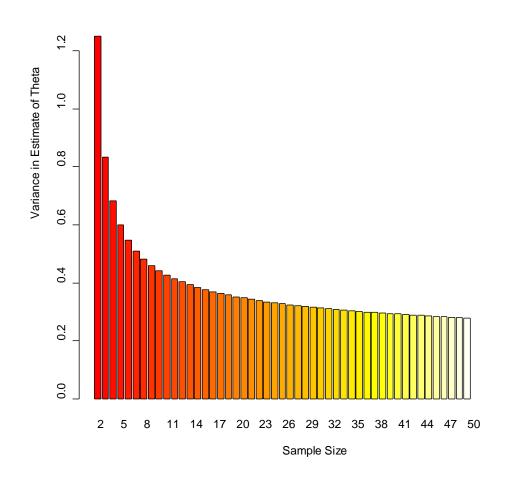
Var(S) as a function of *n*

Parameters

N = 10,000 individuals

 $\mu = 10^{-4}$

 $\theta = 4$


Inferences about θ

- Could be estimated from S
 - Divide by expected length of genealogy

$$\hat{\theta} = \frac{S}{\sum_{i=1}^{n-1} 1/i}$$

- Could then be used to:
 - Estimate N, if mutation rate μ is known
 - Estimate μ , if population size N is known

$Var(\hat{\theta})$ as a function of n

Parameters

$$N = 10,000$$
 individuals $\mu = 10^{-4}$

$$\theta = 4$$

Alternative Estimator for θ ...

Count pairwise differences between sequences

Compute average number of differences

$$\widetilde{\theta} = \binom{n}{2}^{-1} \sum_{i=1}^{n} \sum_{j=i+1}^{n} S_{ij}$$

Today...

Probability of coalescence events

Length of genealogy and its branches

Expected number of mutations

• Simple estimates of θ

Recommended Reading

Richard R. Hudson (1990)

Gene genealogies and the coalescent process

Oxford Surveys in Evolutionary Biology, Vol. 7.

D. Futuyma and J. Antonovics (Eds).

Oxford University Press, New York.