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A motivational talk?

* Many opportunities for
computational biology ...

* 10,000s of sequenced human
genomes.

* Bigger datasets than we have
ever handled before.

| A DR.ADEWOLE AREMU- A DIRECTOR WITH THE UNION
BANK OF NIGERIA IN LAGOS- AND | WISH TO SPEAK TO MOST URGENTLY
ABOUT A MATTER REGARDING THE SUM Of $39,000,000 US DOLLARS...




A humorous talk?

BEFORE YOU ATTEMPT TO BEAT THE ODDS,
Be Sure You Coulp Survive THE ODpDS BEATING YOu.

It is a larger dataset than we have ever handled...
But we can do it!



Should we start from the beginning?

ALSO CNPATILE
WITH TURBO C oo

5 REM pangolins

10 LET nq=100: REM number of questions and animals
15 DIM q$(nq,50): DIM a(nq,2): DIM r$(1)

20 LET qf=8

30 FOR n=1TO gf/i2-1

40 READ g$(n): READ a(n,1): READ a(n,2)

50 NEXT n

60 FOR n=n TO qf-1

70 READ g${n): NEXT n
100 REM start playing
110 PRINT “Think of an animal.”, "Press any key to continue.”
120 PAUSE 0
130 LET c=1: REM start with 1st question

140 IF a(c,1)=0 THEN GO TO 300

AND Z0RTECK C 4+

150 LET p$=q$(c): GO SUB 910

160 PRINT “?”: GO SUB 1000

170 LET in=1: IF r$="y" THEN GO TO 210
180 IF r$="Y" THEN GO TO 210

190 LET in=2: IF r$="n" THEN GO TO 210
200 IF r$<>"N" THEN GO TO 150

210 LET c=alc,in): GO TO 140

300 REM animal

310 PRINT “Are you thinking of”*

320 LET p$=q$(c): GO SUB 968: PRINT “?"
330 GO SUB 1000

340 IF r$="y" THEN GO TO 400

350 IF r$="Y" THEN GO TO 400

360 IF r$="n" THEN GO TO 500

370 IF r$="N" THEN GO TO 500

MT 3008

A vida secreta dos animai
As Aves de Rapina da Europa|

¥ As Aves de Rapina da Europs




Should we start from the beginning?

" 50 CouPATALE

5 REM pangolins i WITH TUREO c_n.
10 LET nq=100: REM number of questions and animals AND ZORTECK C+
15 DIM q$(nq,50): DIM a(nq,2): DIM r$(1)

=8

30 FOR n=1TO gf/i2-1
48 READ q8$(n): READ a(n,1): READ a(n,2)
50 NEXT n

100 REM start playing

110 PRINT “Think of an animal.”, Press any key to continue.”
120 PAUSE 0

130 LET c=1: REM start with 1st question
140 IF a(c,1)=0 THEN GO TO 300

150 LET p$=q$(c): GO SUB 910

160 PRINT “?”: GO SUB 1000

170 LET in=1: IF r$="y" THEN GO TO 210
180 IF r$="Y" THEN GO TO 210

190 LET in=2: IF r$="n" THEN GO TO 210
200 IF r$<>"N" THEN GO TO 150

210 LET c=a(c,in): GO TO 140

300 REM animal

310 PRINT “Are you thinking of”*

320 LET p$=q8$(c): GO SUB 980: PRINT “?"
330 GO SUB 1000

340 IF r$="y" THEN GO TO 400

350 IF r$="Y" THEN GO TO 400

364 IF r$="n" THEN GO TO 500

370 IF r$="N" THEN GO TO 500

A vida secreta dos animai
As Aves de Rapina da Europg

MG As Aves de Rapina da Europs

o Vi, R Perhaps we don’t need
M, o e TN to go quite this far
' 1ok back!
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My start in human genetics ...

* Wellcome Trust Center for Human Genetics (1997-2001)

* Developing and applying early SNP discovery and genotyping technologies to
genetic studies of asthma

* Complex trait studies were shifting in focus from linkage to association mapping

* A big question concerned move from family samples, which are ideal for linkage
analysis, to unrelated samples, which are better suited for association mapping

* Working with William Cookson and Lon Cardon



1997 - 2001




Association Mapping in Families...

Am. |. Hum. Genet. 66:279-292, 2000

A General Test of Association for Quantitative Traits in Nuclear Families
G. R. Abecasis, L. R. Cardon, and W. O. C. Cookson

The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford

Summary

High-resolution mapping is an important step in the
identification of complex disease genes. In outbred pop-
ulations, linkage disequilibrium is expected to operate
over short distances and could provide a powerful fine-
mapping tool. Here we build on recently developed
methods for linkage-disequilibrium mapping of quan-
titative traits to construct a general aporoach that can

Introduction

Increasingly large numbers of single-nucleotide poly-
morphisms are available in public and private databases
(Collins et al. 1997). The emergence of high-through-
put methods for their analysis holds promise for satu-
ration mapping of human complex-disease loci (Risch
and Merikangas 1996; Chakravarti 1998; Lander 1999).

Whereas allele-sharing methods of linkage analvsis can

Association Analysis in a Variance
Components Framework

Gongalo R. Abecasis, Lon R. Cardon, William O.C. Cookson, Pak C. Sham,

and Stacey S. Cherny

Wellcome Trust Centre for Human Genetics (G.R.A., L.R.C., W.O.C.C., S.5.C.),
University of Oxford, Oxford; Social, Genetic and Developmental Psychiatry
Research Center and Department of Psychiatry (P.C.S.), Institute of Psychiatry,

London, United Kingdom

European Journal of Human Genetics (2000) 8, 545-551
© 2000 Macmillan Publishers Ltd Al rights reserved 1018-4813/00 $15.00

Www.hature.com/ejhg

Pedigree tests of transmission disequilibrium

Gongalo R Abecasis, William OC Cookson and Lon R Cardon
Wellcome Trust Center for Human Genetics, University of Oxford, UK

High-resolution mapping is essential for the positional cloning of complex disease genes. In outbred
populations, linkage disequilibrium is expected to extend for short distances and could provide a powerful
fine-mapping tool. Current family-based association tests use nuclear family members to define allelic
transmission and controls, but ignore other types of relatives. Here we construct a general approach for
scoring allelic transmission that accommodates families of any size and uses all available genotypic
information. Family data allows for the construction of an expected genotype for every non-founder, and
orthogonal deviates from this expectation are a measure of allelic transmission. These allelic transmission
scores can be used to extend previously described tests of linkage disequilibrium for dichotomous or
quantitative traits. Some of these tests are illustrated, together with a permutation framework for
estimating exact significance levels. Simulation studies are used to investigate power and error rates of the

“...association at genomewide significance levels (that is P
< 5x10-8 corresponding to 1,000,000 independent tests)...”



The Angiotensin Converting Enzyme...

* Data collected by Bernard Keavney and A
Colin McKenzie

* ACE levels and genotypes for 10 SNPs

in a collection of families
B

* Broadly speaking, the 10 SNPs are
organized into 3 common haplotypes

C

* The first true genetic association | saw!

TATATTAIAS3

TATATCGIAS3

TATATTGIAS

CCCTCC-DG2

CCCTCCADG2

TATATCADG2

TACATCADG2



Linkage: ACE gene and ACE levels
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Association: ACE gene and ACE levels
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A comprehensive review of genetic association studies

Joel N. Hirschhorn, MD, PhD'= | Kirk Lohmueller', Edward Bymel, and Kurt Hirschhorn, MD?

Most common diseases are complex genetic traits, with multiple genetic and environmental components contrib-
uting to susceptibility. It has been proposed that common genetic variants, including single nucleotide polymor-
phisms (SNPs), influence susceptibility to common disease. This proposal has begun to be tested in numerous
studies of association between genetic variation at these common DNA polymorphisms and variation in disease
susceptibility. We have performed an extensive review of such association studies. We find that over 600 positive
associations between common gene variants and disease have been reported; these associations, if correct,
would have tremendous importance for the prevention, prediction, and treatment of most common diseases.
However, most reported associations are not robust: of the 166 putative associations which have been studied
three or more times, only 6 have been consistently replicated. Interestingly, of the remaining 160 associations,
well over half were observed again one or more times. We discuss the possible reasons for this irreproducibility
and suggest guidelines for performing and interpreting genetic association studies. In particular, we emphasize the
need for caution in drawing conclusions from a single report of an association between a genetic variant and
disease susceptibility. Genet Med 2002:4(2):45-61.

Key Words: human genetics, association studies, common disease, polymorphisms

“.. of the 166 associations which have been studied 3 or more times,
only six have been consistently replicated.”

Hirschhorn et al (2002)



Patterns of Linkage
Disequilibrium in the Genome

Abecasis et al (Bioinformatics, 2000)
Abecasis et al (Am J Hum Genet, 2001)
Dawson et al (Nature, 2002)

The HapMap Consortium Days




Linkage Disequilibrium

Ancestor
.

e Chromosomes are mosaics Present-day

* Tightly linked markers
* Alleles not randomly associated
* Reflect ancestral haplotypes

 Recombination, Mutation, Drift
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GOLD: Graphical Overviews of Linkage Disequilibrium

2913 13913 14911
(63 markers) (38 markers) (26 markers)

Abecasis et al, Bioinformatics, 2001
Abecasis et al, Am J Hum Genet, 2001



Chr22 High LD: 22-27 Mb
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Chr22 Low LD: 27-32 Mb
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2003 - 2005
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Expected r? at 30kb
Bright Red > 0.88
Dark Blue <0.12
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Dense Region 1

* Chromosome 7
e 157 markers / 520 kb
e 27.0-27.5Mb
* Average LD region

* SNP picking (33/157 = 21%)
* 12 unique SNPs
* 21 tagging SNPs
e Others, average r>=0.73
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Dense Region 2

* Chromosome 21
e 57 markers /130 kb
 37.37-37.50 Mb
* High LD region

« SNP picking (8/57 = 14%)
* 5 unique SNPs
* 3 tagging SNPs
e Others, average r>=0.94
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HapMap Analysis Committee

David Altshuler
Aravinda Chakravarti
Peter Donnelly

 Andrew Morris
* Lon Cardon

* David Cutler

* Mark Daly

* Gil McVean

* Bruce Weir

* Simon Myers

* Jonathan Marchini
* Paul de Bakker

* Itsik Pe'er

* Steve Schaffner



HapMap Analysis Committee... my role!

* My main assigned role in the HapMap project was to...

«Aggravate David-Altshuler!

* Evaluate quality control metrics for generated data

* This required lots of political finagling...
Heterozygote probability distribution

89 rare allele copies

* And some interesting exact 0200
algorithms for rapidly evaluating
the likelihood of a particular 0.1501

genotype configuration...

Probability
o
o
o

Wigginton et al (2005) 00507

0.000 T T
30.0 40.0 50.0 60.0 70.0

Number of Heterozygotes



An accident along the way!...

* Our early linkage disequilibrium studies typically focused on small
families, where it was computationally simple to estimate haplotypes

* However, due to an mistake in tracking meta-data at CEPH and Coriell,
we genotyped three interconnected families resulting in a 24-member
superfamily...

e ... analyzing a few dozen SNPs in this sort of pedigree was beyond the
capabilities of analytical methods at the time.



Typical Genotype Data

 Two alleles for each individual Observation
* Unknown Phase Cl G Markerl
T | |C Marker2
G| |A Marker3
* Maternal and paternal origin Possible States

unknown

G

e Genetic markers provide
imperfect information on gene
flow

> OO OO0

@O o> o

I ONSIRION . N@
Q= Q>




The Haplotyping Problem in Family Data

* For each person
* 2 meioses, each with 2 possible outcomes
* 2n meioses in pedigree with n non-founders

* For each genetic locus

* One location for each of m genetic markers
e Distinct, non-independent meiotic outcomes

* Up to 4" distinct outcomes

* O(4™") with a naive solution



MERLIN
Multipoint Engine for Rapid Likelihood Inference

* Linkage analysis
* Haplotyping
* Error detection

e Simulation




a) bit-indexed array

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

L] | ] |[o] (]| o @) @ | @ | L[| L||L] | [ € o | @

b) packed tree

C) sparse tree

Legend

® . .
o Node with zero likelihood
/\ Node identical to sibling

Likelihood for this branch



Tree Complexity: 28 person pedigree

Missing Total Nodes Leaf
Genotypes Info Mean Median 95% C.I. Nodes

2-allele marker with equifrequent alleles

- 0.42 706.0 151 57 — 5447 66.9
5% 0.39 1299.8 225 57 — 8443 159.6
10% 0.36 2157.7 329 61 — 15361 148.9
20% 0.31 8595.9 872 64 — 42592 1293.9
50% 0.14 55639.1 4477 135 — 383407 9173.5

(Simulated pedigree with 28 individuals, 40 meioses, requiring
232 = ~4 billion likelihood evaluations using conventional schemes)



i

i
Merlin is fast... 'Aﬁﬂ gﬁ gT

._
*
D_

oo mddedend
Time Memory
Exact 40s 100 MB
No recombination <]1s 4 MB
<1 recombinant 2S 17 MB
<2 recombinants 15s 54 MB
Genehunter 2.1 16min 1024MB

Keavney et al (1998) ACE data, 10 SNPs within gene,
4-18 individuals per family




My Research Team (2006)

e 4 students (MS and PhD)
e 3 postdocs
* 1 programmer

e Collaborators

* Mike Boehnke, Noah Rosenberg, Laura Scott, Steve Qin
(Biostatistics)

* Other collaborators at the Medical School, Kellogg Eye
Center, Rockefeller University and National Institute on
Aging (NIH)



The First Genomewide
Association Studies

Joint Analysis

Imputation

More Imputation




Joint Analysis far outperforms Replication
50% of samples in discovery sample, 1% of markers in follow up

* With the HapMap catalog, ...

Q _ One-stage
o design I ; o
&0 * Improved genotyping arrays...
g {
o o - * Genomewide association studies
% became possible...
a5 -
o * ... my experience with QC of HapMap
S data proved timely!
S
)

» Started to explore issues related to

10 25 50
study design in Skol et al (Nature
Allele frequency Genetics, 2006).

W Joint B Replication



Incorporating Family Information in Genome Wide
Studies

* Family members will share large segments of chromosomes

* |f we genotype many related individuals, we will effectively be genotyping a few
chromosomes many times

* In fact, we can:
e genotype a few markers on all individuals
* use high-density panel to genotype a few individuals
* infer shared segments and then estimate the missing genotypes

Burdick et al, Nat Genet, 2006
Chen et al, Am J Hum Genet, 2007



Genotype Inference

Part 1 — Observed Genotype Data

AA AG AA AG
AT AA AT T/T
T/T GIT G/G G/IT
G/G GIT GIT GIT
AG AA G/G AA
T/T T/T T/T TIG
CIG G/G C/IC G/G
AG AG
AT AT
TIT GIT
GIT GIT
AA G/A
TIT T/T
CIG CIG
AG AG AA AA GIG GIG
A A A A A .
A A A A . A
GIT T/T G/G G/G T/T T/T
A A A A A .
A A A A A .
CIG G/G C/IC C/IC G/G G/G




Genotype
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Genotype Inference
Part 3 — Imputing Missing Genotypes

AA AG AA AG
AT AA AT TIT
T/T GIT G/G G/T
GIG GIT GIT G/G
AG AA G/G AA
T/T T/T T/T T/G
CIG G/G C/IC G/G
AG AG
AT AT
T/T G/IT
GIT G/IT
AA G/A
T/T T/T
CIG CIG
AG AG AA AA G/G G/G
A . AT AIT AT AT
A A G/IT GIT T/T T/T
GIT T/T G/G G/G TIT TIT
A A/A AIG AIG AJA A/A
TIT T/T /T TIT /T TIT
CIG G/G CiC CiC G/G G/G




In Silico Genotyping For
Unrelated Individuals

In families, long stretches of shared chromosome

In unrelated individuals, shared stretches are much shorter

The plan is still to identify stretches of shared chromosome between individuals...

... we then infer intervening genotypes by contrasting samples typed at a few
sites with those with denser genotypes

Scott et al, Science, 2007
Li et al, Annual Review of Genetics and Human Genomics, 2009
Li et al, Gen Epid, 2010



1. Imputation setting

Observed GWAS Genotypes

<

<

<

O

O

Reference Haplotypes (e.g. 1000G)

CGAGATCTCCTTO CTTU CTGTSGUC
CGAGATCTCCCGACCTCATGG
CCAAGCTC CTTTTO CTTZ CTGTGC
CGAAGCTCTTTTO CTTU CTGTSGC
CGAGACTCTCCGACCTTATGSC

TGGGATCTCCCGACCTO CATGG
CGAGATCTCCCGACCTTGTGOC
CGAGACTCTTTTOC CTTTTGTASTC
CGAGACTCTCCGACCTC CGTGOC
CGAAGCTC CTTTTO CTTZ CTGTGC



< <

Observed GWAS Genotypes

2. ldentify match among reference

Reference Haplotypes (e.g. 1000G)

CGAGATCTCCTTO CTTU CTGTSGUC
CGAGATCTCCCGACCTC CATGG G
CCAAGCTC CTTTTO CTTZ CTGTGC
CGAAGCTCTTTTO CTTU CTGTSGC
CGAGACTCTCCGACCTTATGSC
TGGGATCTCCCGACCT CATG GG
CGAGATCTCCCGACCTTGTGOC
CGAGACTCTTTTOCTTTTGTATC
CGAGACTCTCCGACCTC CGTGOC
CGAAGCTCTTTTO CTTZ CTUGTSGC




3. Impute

Observed GWAS Genotypes

t ¢c At g g

c g A c ¢

C

C

C

a g A t

cC g

t ¢c At g g

t

t

C

Reference Haplotypes (e.g. 1000G)

CGAGATCTCCTTC CTTZ CTAGTSGC
CGAGATCTCCCGACCTT CATGSG
CCAAGCTC CTTTT CTTZ CTGTGC
CGAAGCTC CTTTT CTTZ CTGTSGC
CGAGACTCTCCGACCTTATGOC
T GGGATCTCCCGACCTT CATGG
CGAGATCTCCCGACCTTA GTGC
CGAGACTCTTTTC CTTTTGTASTC
CGAGACTCTCCGACCTC CGTGOC
CGAAGCTC CTTTTT CTTZ CTGTGEC




Markov Model

ﬁp(xllsl) ﬁ P(X;13,) ﬁP(X | S5) ﬁP(XMIS )

S; S, S;
J] &= QL U

P(Sl) P(Sz | 81) P(Ss | Sz) P()

Number of states to be considered increases exponentially with panel size ...



Does This Really Work?

* Used about ~300,000 SNPs from lllumina HumanHap300 to
impute 2.1M HapMap SNPs in 2500 individuals from a study of
type Il diabetes

 Compared imputed genotypes with actual experimental
genotypes in a candidate region on chromosome 14

e 1190 individuals, 521 markers not on lllumina chip

* Errors are concentrated on a few markers
* 14.8% error for 1% of SNPs with the worst predicted imputation quality
e 11.1% error for next 1% of SNPs (1st — 2nd percentile)
* 5.9% error for next 1% of SNPs (2nd — 3rd percentile)
* 1.1% error for top 95% of SNPs

Scott et al, Science, 2007



Impact of HapMap Imputation on Power

Power
Disease
SNP MAF tagSNPs Imputation

2.5% 24.4% 56.2%

5% 55.8% 73.8%
10% 77.4% 87.2%
20% 85.6% 92.0%
50% 93.0% 96.0%

Power for Simulated Case Control Studies.
Simulations Ensure Equal Power for Directly Genotype SNPs.

Simulated studies used a tag SNP panel that captures
80% of common variants with pairwise r? > 0.80.



Can we do even better?

e Ask a better statistician?

e Collect more data?
* 60 individuals in reference, 1.78% error rate per allele
100 individuals in reference, 1.03% error rate
200 individuals in reference, 0.78% error rate
500 individuals in reference, 0.41% error rate

Maybe we could use a larger HapMap?



Studies of

Lipid Genetics
2006-




Global Lipids Genetics Consortium

Sekar Cristen
Kathiresan Willer

* An example of the current standard for genetic association studies

* Most recent analysis includes 188,578 individuals and identifies 157
loci associated with blood lipid levels

* Associated loci can:

» Suggest new targets for therapy
e Confirm suspected targets or known biology
* Provide insights on the relationship between lipids and other phenotypes

Willer et al, Nat Genet, 2008; Teslovich et al, Nature, 2010; Willer et al, in press



First Meta-Analysis Using Imputation...
Seventeen Hits by Combining 3 Almost “Null” Studies

—logqg p-value —logyg p-value

—logyg p-value

5 10 15 20

15 20

10

5 10 15 20

APOB
SSSSSSSSSSSSSSSSSSS

B4GALT4

HDL Cholesterol

LDL Cholesterol

Triglycerides

CCCCCCCCCCCCC

CCCCCCCCCCCCC

" Willer et al, Nat Genet, 2008
Willer et al, Bioinformatics, 2010
Pruim et al, Bioinformatics, 2010



A SNAPSHOT OF LIPID GENETICS

1 locus: AcAD11

2 loci: GCKR, NAT2 / /

HDL cholesterol (46):

HDGF-PMVK, ANGPTL1, CPS1, ATG7,
SETD2, RBMS5, STAB1, GSK3B,
C4orf52, FAM13A, ADHS5, DAGLB,
SNX13, IKZF1, TMEM176A, OR4C46,
KATS5, MOGAT2-DGAT2, ZBTB42-AKT1,
HAS1, PABPC4, ZNF648, COBLL1,
SLC39A8, ARL15, CITED2, KLF14,
TRPS1, AMPD3, LRP4, PDE3A, MVK,
SBNO1, ZNF664, SCARBL, LACTB,
LCAT, CMIP, STARD3, ABCA8, PGS1,

MCA4R, ANGPTL4, LIPASIN, LILRA!
UBE2L3

Total cholesterol (18):

ASAP3, ABCB11, FAM117B, PXK,
KCNK17, HBSIL, GPR146, VIM-
CUBN, PHLDB1, PHC1-A2ML1,
TOM1, EVI5, RAB3GAP1, RAF1,
C60rf106, SPTY2D1, MAMSTR,

ERGIC3

6 loci:

MARCH8-ALOXS5,
TTC39B, ABCAL, LIPG,
HNF4A, UBASH3B

2 loci:

36 loci:

PPP1R3B,
APOE

INSIG2, LOC84931, CMTM6,
CSNK1G3, SOX17, UGT1A1,
VLDLR, DLG4, PPARA, PCSK9,
SORT1, APOB, ABCG5/8,
MYLIP, HFE, LPA, PLEC1, ABO,
ST3GAL4, OSBPL7, LDLR,
TOP1, LDLRAP1, MOSC1,
IRF2BP2, HMGCR, HLA, FRK,
DNAH11,
NPC1L1, CYP7AL,
GPAM, BRAP, HNF1A,
HPR, MAFB

4 loci:

10 loci:

CETP, TRIBI,
FADS1-2-3,
APOAL

RSPO3, FTO, VEGFA,
PEPD, GALNT2, IRS1,
PLTP, MLXIPL, LPL,

LRP1

5 loci:

ANGPTLS,
MIR148A,
LRPAP1,
TIMD4,
CILP2

Triglycerides (16):

MET, AKR1C4, PDXDC1,
MPP3, INSR, MSL2L1, KLHLS,
MAP3K1, TYW1B, PINX1,
JMJID1C, CYP26A1, CAPN3,
FRMDS5, CTF1, PLA2G6

LDL cholesterol (9):

ANXA9-CERS2, EHBP1, BRCA2,
FN1, APOH-PRXCA, SPTLC3, SNX5,
MTMR3, NYNRIN




Suggesting New Targets: GALNT2

Plotted SNPs Il 11 11 M0 I0I0E SUAMCANOSN 0 AW N 00O OO0 O Y A O V0PNV 1
& * GWAS allele with 40% frequency
A %gj associated with +1 mg/dl in HDL-C
%g g} — 60 g . .
s -+ Explored consequences of modifying
’ Ut GALNT2 expression in mouse liver...

: e OQOverexpression of GALNTZ2 or Galnt2
decreases HDL-C ~20%

2281 228.2 228.3 2284 2285 228.6
Position on chr1 (Mb)

e Knockdown of Galnt2 increases HDL-C
by ~30%

Dan Rader

Teslovich et al, Nature, 2012



Supporting Previous Leads: GPR146

GPR146 e Our work shows that variants
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6 g o B * U. S. Patent Application
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Triglyceride association: KLF14
Sex-specific effect

Females Males
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Imputation Helps
LDLR and LDL example

—logg p—value for LDL

LDLR locus and LDL cholesterol
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Insights about biology ...

* In our first lipid GWAS, we showed that every allele that increased LDL-C
was also associated with increased coronary heart disease risk...

 Later, we showed that alleles with the largest impact on HDL-C in blood,
also modify the risk of age related macular degeneration

* Our most recent analysis show that the impact of an allele on triglyceride
levels predicts heart disease risk
* Even after controlling for its association with HDL-C and LDL-C
* Analysis also suggests a causal role for LDL-C associated alleles (but not for HDL-C)



Current State of GWAS

e Surveying common variation across 10,000s - 100,000s of individuals
IS NOW routine

* Many common alleles have been associated with a variety of human
complex traits

* The functional consequences of these alleles are often subtle, and
translating the results into mechanistic insights remains challenging



A Key Goal of
Sequence Based Association Studies

UNDERSTAND FUNCTION
LINKING EACH LOCUS TO DISEASE

What happens in gene knockouts?
* Use sequencing to find rare human “knockout” alleles
 Why? Results of animal studies an in vitro studies often murky
* The challenge? Natural knockouts are extremely rare



Most Variants Are Rare
(About Half Are Privatel!)

_____SET_____ | #5NPs | Singletons | Doubletons | Tripletons | MAC>3

619,576 137,182 60,702 448,987

ALL VARIANTS 1,173,100 (53%) (12%) (5%) (38%)
131,838 30,554 13,598 104,212

SYNONYMOUS 268,784 (49%) (11%) (5%) (39%)
246,764 50,207 20,783 124,466

NON-SYNONYMOUS 418,998 (58%) (12%) (5%) (30%)

Non-synonymous variants are especially enriched for singletons.
Analysis of 2,500 individuals in the NHLBI exome sequencing project.



How Can We Cost Effectively
Sequence 1,000s of Genomes?



Whole Genome
Sequencing

ARES ¢
g 3




How Do Sequence Reads Get Transformed
nto Genotypes?

TAGCTGATAGCTAGATAGCTGATGA AT
ATAGCTAGATAGCTGATGA ATCGCTGCTAGET
ATGCTAGCTGATAGCTAGLTAGCTGATGA
AGCTGATAGCTAG LTAGCTGATGA ATCGCT
TAGCTGATAGCTAG LTAGCTGATGA A
Sequence Reads
5-ACTGGTCGATGCTAGCTGATAGCTAG LTAGCTGATGA ATCGCTGCTAGCTCGACG-3

Reference Genome

? Predicted Genotype



From Sequence To Genotype:
Calculate Likelihoods for Each Possibility

TAGCTGATA

ATA
ATGCTAGCTGATA
AGCTGATA

TAGCTGATA

5-ACTGGTCGATGCTAGCTGATAGCTAG LTAGCTGATGA

TAGATA

TAGATA
TAGLTA
TAGLTA

TAGLTA

TGATGA

TGATGA
TGATGA
TGATGA

TGATCA

AT
ATCGCTGCTAGET

ATCGCT

A
Sequence Reads

AT TCCTAGCTCGACG-3
Reference Genome

P(reads|A/A , read mapped)= 0.00000098

P(reads|A/C, read mapped)= 0.03125

P(reads|C/C, read mapped)= 0.000097

Possible Genotypes



From Sequence to Genotype:
Agnostic Prior

TA

ATGCTA
A

TA

TGATA

ATA
TGATA
TGATA

TGATA

TAGATA

TAGATA
TAGLTA
TAGLTA

TAGLTA

TGATGA

TGATGA
TGATGA
TGATGA

TGATCA

5-ACTGGTCGATGCTAGCTGATAGCTAG LTAGCTGATGA

P(reads|A/A)= 0.00000098 Prior(A/A)=0.00034

P(reads|A/C)= 0.03125

P(reads|C/C)= 0.000097

Prior(A/C) = 0.00066

Prior(C/C) = 0.99900

AT
ATCGCTGCTAGET

ATCGCT

A Sequence Reads

AT TCCTAGCTCGACG-3
Reference Genome

Posterior(A/A) = <.001

Posterior(A/C) = 0.175

Posterior(C/C) = 0.825

Individual Based Prior: Every site has 1/1000 probability of varying.



From Sequence to Genotype:
Population Based Prior

TAGCTGATAGCTAGATAGCTGATGA AT
ATAGCTAGATAGCTGATGA ATCGCTGCTAGET
ATGCTAGCTGATAGCTAGLTAGCTGATGA
AGCTGATAGCTAGLTAGCTGATGA ATCGCT
TAGCTGATAGCTAGLTAGCTGATGA A Sequence Reads
5-ACTGGTCGATGCTAGCTGATAGCTAG LTAGCTGATGA ATCGCTGCTAGCTCGACG-3

P(reads|A/A)= 0.00000098 Prior(A/A)=0.04

P(reads|A/C)= 0.03125

P(reads|C/C)= 0.000097

Reference Genome

Posterior(A/A) = <.001

Prior(A/C) = 0.32 Posterior(A/C) = 0.999

Prior(C/C) = 0.64 Posterior(C/C) = <.001

Population Based Prior: Use frequency information from examining others at the same site.
In the example above, we estimated P(A) = 0.20



Sequence Based Genotype Calls

* Individual Based Prior

* Assumes all sites have an equal probability of showing polymorphism
Specifically, assumption is that about 1/1000 bases differ from reference
If reads where error free and sampling Poisson ...
... 14x coverage would allow for 99.8% genotype accuracy
... 30x coverage of the genome needed to allow for errors and clustering

* Population Based Prior
* Uses frequency information obtained from examining other individuals
* Calling very rare polymorphisms still requires 20-30x coverage of the genome
e Calling common polymorphisms requires much less data

* Haplotype Based Prior or Imputation Based Analysis
* Compares individuals with similar flanking haplotypes
* Calling very rare polymorphisms still requires 20-30x coverage of the genome
* Can make accurate genotype calls with 2-4x coverage of the genome
e Accuracy improves as more individuals are sequenced



Recipe: Genotypes for Shotgun Sequence Data

e Start with some plausible configuration for each individual
* Use Markov model to update one individual conditional on all others
* Repeat previous step many times

e Generate a consensus set of genotypes and haplotypes for each
individual



Genotypes with Shotgun Sequence Data

* Sequence 400 individuals at 2x depth
 Assume error rate is of about 0.5%

* If we analyze a single individual, almost impossible to call genotypes
* False positives due to error, 1 in every 100 bases
* Allele of interest not sampled, 1 in every two heterozygous sites

* If we do an imputation based analysis
e Expect to call genotypes with 99.7% accuracy for sites with frequency >1%



The 1000 Genomes Project

-

Gil McVean David Altshuler Richard Durbin



Empirical Variant Discovery Power
1000 Genomes Project, 4x Sequencing
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Empirical Evaluation of Haplotype Callers
1000 Genomes Project, 4x Sequencing
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What Was Optimal Model
for Analyzing Pilot Data?

Homozygous
1000 Genomes Call Set Reference Homozygous Non-
(CEU) Error Heterozygote Error Reference Error
Broad 0.66 4.29 3.80
Michigan 0.68 3.26 3.06
Sanger 1.27 3.43 2.60
Majority Consensus 0.45 2.05 2.21

* Pilot analyzed with different haplotype sharing models
— Sanger (QCALL), Michigan (MaCH/Thunder), Broad (BEAGLE)
— Consensus of the three callers clearly bested single callers

e Common to see “ensemble” methods outperform the best single method



Enhance Association Studies:
eQTL Imputation Example

lllumina300K SNPs only
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Enhance Association Studies:
eQTL Imputation Example

HapMap SNPs only
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Enhance Association Studies:
eQTL Imputation Example

All SNPs (1000G, HapMap and lllumina 300K)
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Design A Whole Genome
Sequencing Study in Sardinia

Goncalo Abecasis
David Schlessinger

Francesco Cucca



Given Fixed Capacity,
Should We Sequence Deep or Shallow?

I R N TR T

400 Deep Genomes (30x)

Discovery Rate 100% 100% 100%
Het. Accuracy 100% 100% 100%
Effective N 400 400 400

3000 Shallow Genomes (4x)

Discovery Rate 100% 100% 100%
Het. Accuracy 90.4% 97.3% 98.8%
Effective N 2406 2758 2873

Li et al, Genome Research, 2011



SardiNIA Whole Genome Sequencing

* 6,148 Sardinians from 4 towns in the Lanusei Valley,
Sardinia

* Recruited among population of ~9,841 individuals
* Sample includes >34,000 relative pairs

* Measured ~100 aging related quantitative traits

* Original plan:
* Sequence >1,000 individuals at 2x to obtain draft sequences
* Genotype all individuals, impute sequences into relatives



Lanusei, Ilbono, and Elini
viewed from Arzana

Lanusei




Assembling Sequences In Sardinia

Sardinian team led by Francesco Cucca, Serena Sanna, Chris Jones



Who To Sequence?

Assuming All Individuals Have Been Genotyped

@ @ ' @

9 Genomes sequenced, 17 Genomes analyzed




How |s Sequencing Progressing?

 NHGRI estimates of sequencing capacity and cost ...

— Since 2006, for fixed cost ...
— ... V4x increase in sequencing output per year

* Inour own hands...
— Mapped high quality bases
— March 2010: ~5.0 Gb/lane
— May 2010: ~7.5 Gb/lane
— September 2010: ~8.6 Gb/lane
— January 2011: ~16 Gb/lane
— Summer 2011: ~45 Gb/lane

e Other small improvements
— No PCR libraries increase genome coverage, reduce duplicate rates

Fabio Busonero, Andrea Maschio



As more samples are sequenced,
Accuracy increases

Heterozygous Mismatch Rate (in %)

7 %

4.8 %
3.7 %

(o)
1.47 % 0.73% 0.52 9%

] o

66 186 226 505 1146 2120




Design




What Do We See Genomewide?
LDL Cholesterol

Also By GWAS,
LDLR, APOE

30

Only By Sequencing,
50 Also By GWAS, Q39X in HBB
PCSK9, SORT1, APOB

Log,, P-value

Genomic Position






“Methodologica

QTDT (released 2000)
GOLD (released 2000)
MERLIN (released 2002)
GRR (released 2002)
PEDSTATS (released 2005)
CaTsS (released 2006)
MACH (released 2007)
METAL (released 2008)
LocusZoom (released 2010)
Minimac (release 2011)
GotCloud (release 2012)

Contributions

Association analysis using genetic markers
Visualization of genetic data

Standard analyses of human pedigrees
Detection of mis-specified relationships
Helper for quality assessment of genetic data
Power calculation and study design

Assess effects of unobserved variants
Standard for combining data across studies
Visualization of association signals

Faster imputation

A framework for variant calling in 1000s of genomes



A Side Point

* The most valuable tools and algorithms, address important questions...
* Don’t always implement complex algorithms...
* ... but sometimes they do.

* They must be transferable between groups

* Sharing source code is a step, but is not enough
 Documentation, training, bullet proofing

* | checked my 10 most cited software tools
* Each with >100 citations as proxy for utility
* At least four of these are technically trivial



“Applied Contributions”

* ~50 variants associated with type 2 diabetes

e ~150 variants associated with lipid levels, heart disease
e ~30 variants associated with obesity

e ~30 variants associated with psoriasis

e ~20 variants associated with macular degeneration

* Going forward, the challenge is to translate these loci into biology and
eventually treatments.



Human Genetics, Sample Sizes over My Time

2012
2010
2010
2008
2007
2005
2003
2002
2001
2000

1,092
Hundreds
~100,000
~9,000
Hundreds
Hundreds
Hundreds
Hundreds
Thousands
Hundreds

40 million
16 million
2.5 million
2.5 million
3.1 million
1 million
10,000
1,500

127

26

The 1000 Genomes Project (Nature)

The 1000 Genomes Project (Nature)

Lipid GWAS (Nature)

Lipid GWAS (Nature Genetics)

HapMap (Nature)

HapMap (Nature)

Chr. 19 Variation Map (Nature Genetics)

Chr. 22 Variation Map (Nature)

Three Region Variation Map (Am J Hum Genet)

T-cell receptor variation (Hum Mol Genet)



The Future




Data is not Understanding.
Unfortunately.

* Sequence thousands of genomes, and then?

* Assemble sequences into coherent genomes
* Annotate variation in these genomes
* Associate variant with important outcomes

* Eventually, learn about function of variants, genomic elements, their
downstream products



Tools are not Analysis.
Unfortunately.

* Assemble, annotate and associate genomes, then what?

* Thousands of traits to be studied
* Need to design appropriate study for each trait

* Need to facilitate spread of tools and algorithms

* Deploy these methods in interesting samples
* Enable scientists to pose interesting questions



Manual Intervention

“All happy families are alike,
each unhappy family is unhappy in its own way.”

Leo Tolstoy in Anna Karenina
e Curating genomics data still requires manual intervention

* Automated pipelines are extremely useful, essential but can’t stand alone
* Important to help users interact with and understand their data



New Experiments and Protocols

Suppose genome seguencing was routine...

Imagine an hypothesis driven MD or PhD thesis
* How does GALNT2 influence HDL-C levels?

Currently, we might:
* Manipulate GALNT2 in a model system
* Sequence or genotype GALNTZ2 in interesting sample

In the future, we might:
* |dentify individuals with natural GALNT2 knockouts from biobank
* Inspect electronic medical record for these individuals
* Contact these individuals and characterize cholesterol levels

How to effectively query large numbers of genomes?
How to effectively store large numbers of genomes in medical setting?



Open Problem: N+1 Genome

* Given 1000 Genome Samples what do we know about the next
genome sequenced?

e Given genotyping array results?
Given shallow sequencing?
* Given deep sequencing?

How does this compare across SNPs, indels, structural variants, and complex
regions?



Open Problem: De Novo Assemblies

* Our analysis have been generally based on read mapping approaches

* Introduces biases, for example, we generally have higher power for deletions
than insertions

* With current read lengths, data quality and number of sequenced
samples, de novo assembly based methods provide alternative
discovery strategy

* |s de novo assembly to the current poor performance of variant
callers when we move beyond SNPs?



ice of Sequenced Genomes

A Latt




A Lattice of Sequenced Genomes

* Methods for analysis and indexing of large numbers of
sequenced genomes

e Lattice defined to ensure that any new genome might, with
high probability, have close relative to drive imputation of
rare and common variation

* An even denser lattice might enable us to select control
individuals to match cases sequenced in any disease study

* Deep catalog of non-synonymous and loss-of-function alleles
* Value increases with ability to re-contact participants



How to Get There?

e 100,000 — 500,000 individuals, broadly representative of human genetic
variation

* Generate high quality exomes and/or genomes for progressively denser
lattice of individuals

* Use targeted questionnaires and follow-up to collect information on the
most interesting individuals

* Facebook and Twitter have >500,000,000 users. Perhaps a small fraction of
these would altruistically share their genomes?
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