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A motivational talk?

• Many opportunities for 
computational biology …

• 10,000s of sequenced human 
genomes. 

• Bigger datasets than we have 
ever handled before.



It is a larger dataset than we have ever handled…
But we can do it!

A humorous talk?



Should we start from the beginning?



Should we start from the beginning?

Perhaps we don’t need 
to go quite this far 

back!



My start in human genetics …

• Wellcome Trust Center for Human Genetics (1997-2001)

• Developing and applying early SNP discovery and genotyping technologies to 
genetic studies of asthma

• Complex trait studies were shifting in focus from linkage to association mapping

• A big question concerned move from family samples, which are ideal for linkage 
analysis, to unrelated samples, which are better suited for association mapping

• Working with William Cookson and Lon Cardon



1997 - 2001



Association Mapping in Families…

“…association at genomewide significance levels (that is P 
< 5x10-8 corresponding to 1,000,000 independent tests)…”



The Angiotensin Converting Enzyme…

• Data collected by Bernard Keavney and 
Colin McKenzie

• ACE levels and genotypes for 10 SNPs 
in a collection of families

• Broadly speaking, the 10 SNPs are 
organized into 3 common haplotypes

• The first true genetic association I saw!

TATATTAIA3

TATATCGIA3

TATATTGIA3

CCCTCCGDG2

CCCTCCADG2

TATATCADG2

TACATCADG2
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B
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Linkage: ACE gene and ACE levels
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Association: ACE gene and ACE levels
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“… of the 166 associations which have been studied 3 or more times, 
only six have been consistently replicated.”

Hirschhorn et al (2002)



Patterns of Linkage 
Disequilibrium in the Genome

Abecasis et al (Bioinformatics, 2000)

Abecasis et al (Am J Hum Genet, 2001)

Dawson et al (Nature, 2002)

The HapMap Consortium Days



Linkage Disequilibrium

Ancestor

Present-day• Chromosomes are mosaics

• Tightly linked markers 
• Alleles not randomly associated

• Reflect ancestral haplotypes

• Recombination, Mutation, Drift
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GOLD: Graphical Overviews of Linkage Disequilibrium

Abecasis et al, Bioinformatics, 2001
Abecasis et al, Am J Hum Genet, 2001



Chr22 High LD: 22-27 Mb

Dawson et al, Nature, 2002



Chr22 Low LD: 27-32 Mb

Dawson et al, Nature, 2002



2003 - 2005



Genomic Variation in Disequilibrium
(CEPH)

Expected r2 at 30kb
Bright Red > 0.88
Dark  Blue < 0.12



Dense Region 1

• Chromosome 7
• 157 markers / 520 kb

• 27.0 – 27.5 Mb

• Average LD region

• SNP picking (33/157 = 21%)
• 12 unique SNPs

• 21 tagging SNPs

• Others, average r² = 0.73

D’

R²

0.0 1.0



Dense Region 2

• Chromosome 21
• 57 markers / 130 kb

• 37.37 – 37.50 Mb

• High LD region

• SNP picking (8/57 = 14%)
• 5 unique SNPs

• 3 tagging SNPs

• Others, average r² = 0.94

D’

R²

0.0 1.0



HapMap Analysis Committee

• Andrew Morris

• Lon Cardon

• David Cutler

• Mark Daly

• Gil McVean

• Bruce Weir

• Simon Myers

• Jonathan Marchini

• Paul de Bakker

• Itsik Pe'er

• Steve Schaffner

David Altshuler
Aravinda Chakravarti

Peter Donnelly
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HapMap Analysis Committee… my role!

• My main assigned role in the HapMap project was to…
• Aggravate David Altshuler!
• Evaluate quality control metrics for generated data

• This required lots of political finagling…

• And some interesting exact
algorithms for rapidly evaluating
the likelihood of a particular 
genotype configuration…

Wigginton et al (2005)



An accident along the way!...

• Our early linkage disequilibrium studies typically focused on small 
families, where it was computationally simple to estimate haplotypes

• However, due to an mistake in tracking meta-data at CEPH and Coriell, 
we genotyped three interconnected families resulting in a 24-member 
superfamily…

• … analyzing a few dozen SNPs in this sort of pedigree was beyond the 
capabilities of analytical methods at the time.



Typical Genotype Data

• Two alleles for each individual
• Unknown Phase

• Maternal and paternal origin 
unknown

• Genetic markers provide 
imperfect information on gene 
flow

C G Marker1

T C Marker2

G A Marker3

Observation

C G C G

T C C T

G A G A

C G C G

C T T C

A G A G

Possible States



The Haplotyping Problem in Family Data

• For each person
• 2 meioses, each with 2 possible outcomes

• 2n meioses in pedigree with n non-founders

• For each genetic locus
• One location for each of m genetic markers

• Distinct, non-independent meiotic outcomes

• Up to 4nm distinct outcomes

• O(4mn) with a naïve solution



MERLIN
Multipoint Engine for Rapid Likelihood Inference

• Linkage analysis

• Haplotyping

• Error detection

• Simulation



a) bit-indexed array

b)  packed tree

c)  sparse tree

Legend

Node with zero likelihood

Node identical to sibling

Likelihood for this branch

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

L1 L2 L1 L2 L1 L2 L1 L2

L1 L2 L1 L2

L1 L2 L1 L2 L1 L2 L1 L2



Tree Complexity: 28 person pedigree 

          

    Total Nodes  Leaf 

 

Missing 

Genotypes  Info   Mean Median 95% C.I.   Nodes 

          

2-allele marker with equifrequent alleles     

 -  0.42  706.0 151 57 – 5447  66.9 

 5%  0.39  1299.8 225 57 – 8443  159.6 

 10%  0.36  2157.7 329 61 – 15361  148.9 

 20%  0.31  8595.9 872 64 – 42592  1293.9 

 50%  0.14  55639.1 4477 135 – 383407  9173.5 

          

 

(Simulated pedigree with 28 individuals, 40 meioses, requiring 
232 = ~4 billion likelihood evaluations using conventional schemes)



Merlin is fast…

Time Memory

Exact 40s 100 MB

No recombination <1s 4 MB

≤1 recombinant 2s 17 MB

≤2 recombinants 15s 54 MB

Genehunter 2.1 16min 1024MB

Keavney et al (1998) ACE data, 10 SNPs within gene,
4-18 individuals per family



My Research Team (2006)

• 4 students (MS and PhD)

• 3 postdocs

• 1 programmer

• Collaborators
• Mike Boehnke, Noah Rosenberg, Laura Scott, Steve Qin 

(Biostatistics)

• Other collaborators at the Medical School, Kellogg Eye 
Center, Rockefeller University and National Institute on 
Aging (NIH)



The First Genomewide 
Association Studies

Joint Analysis

Imputation 

More Imputation



Joint Analysis far outperforms Replication
50% of samples in discovery sample, 1% of markers in follow up

• With the HapMap catalog, …

• Improved genotyping arrays…

• Genomewide association studies 
became possible…

• … my experience with QC of HapMap
data proved timely!

• Started to explore issues related to 
study design in Skol et al (Nature 
Genetics, 2006).

One-stage 
design



Incorporating Family Information in Genome Wide 
Studies

• Family members will share large segments of chromosomes

• If we genotype many related individuals, we will effectively be genotyping a few 
chromosomes many times

• In fact, we can:
• genotype a few markers on all individuals

• use high-density panel to genotype a few individuals

• infer shared segments and then estimate the missing genotypes

Burdick et al, Nat Genet, 2006
Chen et al, Am J Hum Genet, 2007



Genotype Inference
Part 1 – Observed Genotype Data
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Genotype Inference
Part 2 – Inferring Allele Sharing
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Genotype Inference
Part 3 – Imputing Missing Genotypes
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In Silico Genotyping For 
Unrelated Individuals

• In families,  long stretches of shared chromosome

• In unrelated individuals, shared stretches are much shorter

• The plan is still to identify stretches of shared chromosome between individuals…

• … we then infer intervening genotypes by contrasting samples typed at a few 
sites with those with denser genotypes

Scott et al, Science, 2007
Li et al, Annual Review of Genetics and Human Genomics, 2009

Li et al, Gen Epid, 2010



1. Imputation setting

Observed GWAS Genotypes

. . . . A . . . . . . . A . . . . A . . .

. . . . G . . . . . . . C . . . . A . . .

Reference Haplotypes (e.g. 1000G)

C G A G A T C T C C T T C T T C T G T G C

C G A G A T C T C C C G A C C T C A T G G

C C A A G C T C T T T T C T T C T G T G C

C G A A G C T C T T T T C T T C T G T G C

C G A G A C T C T C C G A C C T T A T G C

T G G G A T C T C C C G A C C T C A T G G

C G A G A T C T C C C G A C C T T G T G C

C G A G A C T C T T T T C T T T T G T A C

C G A G A C T C T C C G A C C T C G T G C

C G A A G C T C T T T T C T T C T G T G C



2. Identify match among reference

Observed GWAS Genotypes

. . . . A . . . . . . . A . . . . A . . .

. . . . G . . . . . . . C . . . . A . . .

Reference Haplotypes (e.g. 1000G)

C G A G A T C T C C T T C T T C T G T G C

C G A G A T C T C C C G A C C T C A T G G

C C A A G C T C T T T T C T T C T G T G C

C G A A G C T C T T T T C T T C T G T G C

C G A G A C T C T C C G A C C T T A T G C

T G G G A T C T C C C G A C C T C A T G G

C G A G A T C T C C C G A C C T T G T G C

C G A G A C T C T T T T C T T T T G T A C

C G A G A C T C T C C G A C C T C G T G C

C G A A G C T C T T T T C T T C T G T G C



3. Impute

Observed GWAS Genotypes

c g a g A t c t c c c g A c c t c A t g g

c g a a G c t c t t t t C t t t c A t g g

Reference Haplotypes (e.g. 1000G)

C G A G A T C T C C T T C T T C T G T G C

C G A G A T C T C C C G A C C T C A T G G

C C A A G C T C T T T T C T T C T G T G C

C G A A G C T C T T T T C T T C T G T G C

C G A G A C T C T C C G A C C T T A T G C

T G G G A T C T C C C G A C C T C A T G G

C G A G A T C T C C C G A C C T T G T G C

C G A G A C T C T T T T C T T T T G T A C

C G A G A C T C T C C G A C C T C G T G C

C G A A G C T C T T T T C T T C T G T G C



Markov Model

1X 2X 3X
MX

2S 3S
MS1S

)|( 12 SSP )|( 23 SSP (...)P

)|( 11 SXP )|( 22 SXP )|( 33 SXP )|( MM SXP

Number of states to be considered increases exponentially with panel size …

)( 1SP



Does This Really Work?
• Used about ~300,000 SNPs from Illumina HumanHap300 to 

impute 2.1M HapMap SNPs in 2500 individuals from a study of 
type II diabetes

• Compared imputed genotypes with actual experimental 
genotypes in a candidate region on chromosome 14

• 1190 individuals, 521 markers not on Illumina chip

• Errors are concentrated on a few markers
• 14.8% error for 1% of SNPs with the worst predicted imputation quality
• 11.1% error for next 1% of SNPs (1st – 2nd percentile)
• 5.9% error for next 1% of SNPs (2nd – 3rd percentile)
• 1.1% error for top 95% of SNPs 

Scott et al, Science, 2007



Impact of HapMap Imputation on Power

Power for Simulated Case Control Studies.
Simulations Ensure Equal Power for Directly Genotype SNPs.

Simulated studies used a tag SNP panel that captures 
80% of common variants with pairwise r2 > 0.80.

tagSNPs Imputation

2.5% 24.4% 56.2%

5% 55.8% 73.8%

10% 77.4% 87.2%

20% 85.6% 92.0%

50% 93.0% 96.0%

Disease 

SNP MAF 

Power



Can we do even better?

• Ask a better statistician?

• Collect more data?
• 60 individuals in reference,   1.78% error rate per allele
• 100 individuals in reference, 1.03% error rate
• 200 individuals in reference, 0.78% error rate
• 500 individuals in reference, 0.41% error rate

• Maybe we could use a larger HapMap?



Studies of 
Lipid Genetics

(2006-)



Global Lipids Genetics Consortium

• An example of the current standard for genetic association studies

• Most recent analysis includes 188,578 individuals and identifies 157 
loci associated with blood lipid levels

• Associated loci can:
• Suggest new targets for therapy

• Confirm suspected targets or known biology

• Provide insights on the relationship between lipids and other phenotypes

Sekar 
Kathiresan

Cristen
Willer

Willer et al, Nat Genet, 2008; Teslovich et al, Nature, 2010; Willer et al, in press 



First Meta-Analysis Using Imputation…
Seventeen Hits by Combining 3 Almost “Null” Studies

Willer et al, Nat Genet, 2008
Willer et al, Bioinformatics, 2010
Pruim et al, Bioinformatics, 2010



HDL cholesterol (46):

HDGF-PMVK, ANGPTL1, CPS1, ATG7, 

SETD2, RBM5, STAB1, GSK3B, 

C4orf52, FAM13A, ADH5, DAGLB, 

SNX13, IKZF1, TMEM176A, OR4C46, 

KAT5, MOGAT2-DGAT2, ZBTB42-AKT1, 

HAS1, PABPC4, ZNF648, COBLL1, 

SLC39A8, ARL15, CITED2, KLF14, 

TRPS1, AMPD3, LRP4, PDE3A, MVK, 

SBNO1, ZNF664, SCARB1, LACTB, 

LCAT, CMIP, STARD3, ABCA8, PGS1, 

MC4R, ANGPTL4, LIPASIN, LILRA3, 

UBE2L3

Triglycerides (16):

MET, AKR1C4, PDXDC1, 

MPP3, INSR, MSL2L1, KLHL8, 

MAP3K1, TYW1B, PINX1, 

JMJD1C, CYP26A1, CAPN3, 

FRMD5, CTF1, PLA2G6

Total cholesterol (18):

ASAP3, ABCB11, FAM117B, PXK, 

KCNK17, HBS1L, GPR146, VIM-

CUBN, PHLDB1, PHC1-A2ML1, 

TOM1, EVI5, RAB3GAP1, RAF1, 

C6orf106, SPTY2D1, MAMSTR, 

ERGIC3

36 loci:

INSIG2, LOC84931, CMTM6, 

CSNK1G3, SOX17, UGT1A1, 

VLDLR, DLG4, PPARA, PCSK9,  

SORT1, APOB, ABCG5/8, 

MYLIP, HFE, LPA, PLEC1, ABO, 

ST3GAL4, OSBPL7, LDLR, 

TOP1, LDLRAP1, MOSC1, 

IRF2BP2, HMGCR, HLA, FRK, 

DNAH11, 

NPC1L1, CYP7A1, 

GPAM, BRAP, HNF1A, 

HPR, MAFB

6 loci:

MARCH8-ALOX5, 

TTC39B, ABCA1, LIPG, 

HNF4A, UBASH3B

10 loci:

RSPO3, FTO, VEGFA, 

PEPD, GALNT2, IRS1, 

PLTP, MLXIPL, LPL, 

LRP1

5 loci:

ANGPTL3, 

MIR148A, 

LRPAP1, 

TIMD4, 

CILP2  

1 locus:

PIGV-NR0B2

1 locus:

LIPC

4 loci:

CETP, TRIB1, 

FADS1-2-3, 

APOA1

2 loci:

PPP1R3B, 

APOE

2 loci: GCKR, NAT2

1 locus: ACAD11 

A SNAPSHOT OF LIPID GENETICS

LDL cholesterol (9):

ANXA9-CERS2, EHBP1, BRCA2, 

FN1, APOH-PRXCA, SPTLC3, SNX5, 

MTMR3, NYNRIN



Suggesting New Targets: GALNT2

• GWAS allele with 40% frequency 
associated with ±1 mg/dl in HDL-C

• Explored consequences of modifying 
GALNT2 expression in mouse liver…

• Overexpression of GALNT2 or Galnt2
decreases HDL-C ~20%

• Knockdown of Galnt2 increases HDL-C 
by ~30%

Teslovich et al, Nature, 2012Dan Rader



Supporting Previous Leads: GPR146

• Our work shows that variants 
near GPR146 are associated 
with total cholesterol

• U. S. Patent Application 
#20,090,036,394 discloses that, 
in mice, targeting GPR146 
lowers cholesterol

• Together, the two pieces of 
evidence could encourage 
human trials



Triglyceride association: KLF14
Sex-specific effect
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12

10

8

6

4

2

0

–
lo

g
1

0
(p

-v
a

lu
e

)
100

80

60

40

20

0

re
c
o
m

b
in

a
tio

n
 ra

te
 (c

M
/M

b
)

position on chromosome 7 (Mb)

130.05 130.10 130.15 130.05 130.10 130.15



Imputation Helps
LDLR and LDL example



Insights about biology …

• In our first lipid GWAS, we showed that every allele that increased LDL-C 
was also associated with increased coronary heart disease risk…

• Later, we showed that alleles with the largest impact on HDL-C in blood, 
also modify the risk of age related macular degeneration

• Our most recent analysis show that the impact of an allele on triglyceride 
levels predicts heart disease risk

• Even after controlling for its association with HDL-C and LDL-C

• Analysis also suggests a causal role for LDL-C associated alleles (but not for HDL-C)



Current State of GWAS

• Surveying common variation across 10,000s - 100,000s of individuals 
is now routine

• Many common alleles have been associated with a variety of human 
complex traits

• The functional consequences of these alleles are often subtle, and 
translating the results into mechanistic insights remains challenging



A Key Goal of 
Sequence Based Association Studies

UNDERSTAND FUNCTION 

LINKING EACH LOCUS TO DISEASE

What happens in gene knockouts?
• Use sequencing to find rare human “knockout” alleles

• Why? Results of animal studies an in vitro studies often murky

• The challenge? Natural knockouts are extremely rare



Most Variants Are Rare
(About Half Are Private!)

SET # SNPs Singletons Doubletons Tripletons MAC>3

ALL VARIANTS 1,173,100
619,576

(53%)
137,182

(12%)
60,702

(5%)
448,987

(38%)

SYNONYMOUS 268,784
131,838

(49%)
30,554
(11%)

13,598
(5%)

104,212
(39%)

NON-SYNONYMOUS 418,998
246,764

(58%)
50,207
(12%)

20,783
(5%)

124,466
(30%)

Non-synonymous variants are especially enriched for singletons.
Analysis of 2,500 individuals in the NHLBI exome sequencing project.



How Can We Cost Effectively 
Sequence 1,000s of Genomes?



Whole Genome 
Sequencing

(2009-)



How Do Sequence Reads Get Transformed 
Into Genotypes?

5’-ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3’

Reference Genome

GCTAGCTGATAGCTAGCTAGCTGATGAGCCCGA

AGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTG

ATGCTAGCTGATAGCTAGCTAGCTGATGAGCC

ATAGCTAGATAGCTGATGAGCCCGATCGCTGCTAGCTC

TAGCTGATAGCTAGATAGCTGATGAGCCCGAT

Sequence Reads

Predicted Genotype?



From Sequence To Genotype:
Calculate Likelihoods for Each Possibility

5’-ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3’

Reference Genome

GCTAGCTGATAGCTAGCTAGCTGATGAGCCCGA

AGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTG

ATGCTAGCTGATAGCTAGCTAGCTGATGAGCC

ATAGCTAGATAGCTGATGAGCCCGATCGCTGCTAGCTC

TAGCTGATAGCTAGATAGCTGATGAGCCCGAT

Sequence Reads

Possible Genotypes

P(reads|A/A , read mapped)= 0.00000098

P(reads|A/C , read mapped)= 0.03125

P(reads|C/C , read mapped)= 0.000097



From Sequence to Genotype:
Agnostic Prior

5’-ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3’

Reference Genome

GCTAGCTGATAGCTAGCTAGCTGATGAGCCCGA

AGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTG

ATGCTAGCTGATAGCTAGCTAGCTGATGAGCC

ATAGCTAGATAGCTGATGAGCCCGATCGCTGCTAGCTC

TAGCTGATAGCTAGATAGCTGATGAGCCCGAT

Sequence Reads

Individual Based Prior: Every site has 1/1000 probability of varying.

P(reads|A/A)= 0.00000098 Prior(A/A) = 0.00034 Posterior(A/A) = <.001

P(reads|A/C)= 0.03125 Prior(A/C) = 0.00066 Posterior(A/C) = 0.175

P(reads|C/C)= 0.000097 Prior(C/C) = 0.99900 Posterior(C/C) = 0.825



From Sequence to Genotype:
Population Based Prior

5’-ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3’

Reference Genome

GCTAGCTGATAGCTAGCTAGCTGATGAGCCCGA

AGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTG

ATGCTAGCTGATAGCTAGCTAGCTGATGAGCC

ATAGCTAGATAGCTGATGAGCCCGATCGCTGCTAGCTC

TAGCTGATAGCTAGATAGCTGATGAGCCCGAT

Sequence Reads

Population Based Prior: Use frequency information from examining others at the same site.
In the example above, we estimated P(A) = 0.20

P(reads|A/A)= 0.00000098 Prior(A/A) = 0.04 Posterior(A/A) = <.001

P(reads|A/C)= 0.03125 Prior(A/C) = 0.32 Posterior(A/C) = 0.999

P(reads|C/C)= 0.000097 Prior(C/C) = 0.64 Posterior(C/C) = <.001



Sequence Based Genotype Calls
• Individual Based Prior

• Assumes all sites have an equal probability of showing polymorphism
• Specifically, assumption is that about 1/1000 bases differ from reference
• If reads where error free and sampling Poisson …
• … 14x coverage would allow for 99.8% genotype accuracy
• … 30x coverage of the genome needed to allow for errors and clustering

• Population Based Prior
• Uses frequency information obtained from examining other individuals
• Calling very rare polymorphisms still requires 20-30x coverage of the genome
• Calling common polymorphisms requires much less data

• Haplotype Based Prior or Imputation Based Analysis
• Compares individuals with similar flanking haplotypes
• Calling very rare polymorphisms still requires 20-30x coverage of the genome
• Can make accurate genotype calls with 2-4x coverage of the genome
• Accuracy improves as more individuals are sequenced



Recipe: Genotypes for Shotgun Sequence Data

• Start with some plausible configuration for each individual

• Use Markov model to update one individual conditional on all others

• Repeat previous step many times

• Generate a consensus set of genotypes and haplotypes for each 
individual



Genotypes with Shotgun Sequence Data

• Sequence 400 individuals at 2x depth
• Assume error rate is of about 0.5%

• If we analyze a single individual, almost impossible to call genotypes
• False positives due to error, 1 in every 100 bases

• Allele of interest not sampled, 1 in every two heterozygous sites

• If we do an imputation based analysis
• Expect to call genotypes with 99.7% accuracy for sites with frequency >1%



The 1000 Genomes Project

Gil McVean David Altshuler Richard Durbin



Empirical Variant Discovery Power
1000 Genomes Project, 4x Sequencing
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Fraction of variants discovered in low pass sequencing, estimated by comparison with
External data. 

Hyun Min Kang



Empirical Evaluation of Haplotype Callers
1000 Genomes Project, 4x Sequencing

Homozygote Sites, Heterozygote Sites

Using Haplotype InformationWithout Haplotype Information



What Was Optimal Model
for Analyzing Pilot Data?

1000 Genomes Call Set
(CEU)

Homozygous
Reference

Error Heterozygote Error
Homozygous Non-

Reference Error

Broad 0.66 4.29 3.80

Michigan 0.68 3.26 3.06

Sanger 1.27 3.43 2.60

Majority Consensus 0.45 2.05 2.21

• Pilot analyzed with different haplotype sharing models
– Sanger (QCALL), Michigan (MaCH/Thunder), Broad (BEAGLE)
– Consensus of the three callers clearly bested single callers

• Common to see “ensemble” methods outperform the best single method



Enhance Association Studies:
eQTL Imputation Example



Enhance Association Studies:
eQTL Imputation Example



Enhance Association Studies:
eQTL Imputation Example



Design A Whole Genome 
Sequencing Study in Sardinia

Gonçalo Abecasis

David Schlessinger 

Francesco Cucca



Given Fixed Capacity,
Should We Sequence Deep or Shallow?

.5 – 1% 1 – 2% 2-5%

400 Deep Genomes (30x)

Discovery Rate 100% 100% 100%

Het. Accuracy 100% 100% 100%

Effective N 400 400 400

3000 Shallow Genomes (4x)

Discovery Rate 100% 100% 100%

Het. Accuracy 90.4% 97.3% 98.8%

Effective N 2406 2758 2873

Li et al, Genome Research, 2011



SardiNIA Whole Genome Sequencing

• 6,148 Sardinians from 4 towns in the Lanusei Valley, 
Sardinia

• Recruited among population of ~9,841 individuals
• Sample includes >34,000 relative pairs

• Measured ~100 aging related quantitative traits

• Original plan:
• Sequence >1,000 individuals at 2x to obtain draft sequences
• Genotype all individuals, impute sequences into relatives



Lanusei, Ilbono, and Elini 
viewed from Arzana

Lanusei

Ilbono

Elini



Assembling Sequences In Sardinia

Sardinian team led by Francesco Cucca, Serena Sanna, Chris Jones



1G

G 1

G 1

G1

GG

1

GG

G 11 1

9 Genomes sequenced, 17 Genomes analyzed

Who To Sequence?
Assuming All Individuals Have Been Genotyped



How Is Sequencing Progressing?
• NHGRI estimates of sequencing capacity and cost …

– Since 2006, for fixed cost …
– … ~4x increase in sequencing output per year

• In our own hands…
– Mapped high quality bases
– March 2010: ~5.0 Gb/lane
– May 2010: ~7.5 Gb/lane
– September 2010: ~8.6 Gb/lane
– January 2011: ~16 Gb/lane
– Summer 2011: ~45 Gb/lane

• Other small improvements
– No PCR libraries increase genome coverage, reduce duplicate rates

Fabio Busonero, Andrea Maschio



As more samples are sequenced,
Accuracy increases

Heterozygous Mismatch Rate (in %)



Design

Sequence 1000 
individuals 

@ 2x  or greater

“Draft” Genomes
for 1000 Individuals

Genotype 6000 
individuals with 
700,000 SNPs

Haplotypes 
for 6000 Individuals

Whole Genome 
Information on 

6,000 individuals



What Do We See Genomewide?
LDL Cholesterol
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“Methodological” Contributions

• QTDT (released 2000) Association analysis using genetic markers

• GOLD (released 2000) Visualization of genetic data

• MERLIN (released 2002) Standard analyses of human pedigrees

• GRR (released 2002) Detection of mis-specified relationships

• PEDSTATS (released 2005) Helper for quality assessment of genetic data

• CaTS (released 2006) Power calculation and study design

• MACH (released 2007) Assess effects of unobserved variants

• METAL (released 2008) Standard for combining data across studies

• LocusZoom (released 2010) Visualization of association signals

• Minimac (release 2011) Faster imputation

• GotCloud (release 2012) A framework for variant calling in 1000s of genomes



A Side Point

• The most valuable tools and algorithms, address important questions…
• Don’t always implement complex algorithms…

• … but sometimes they do.

• They must be transferable between groups
• Sharing source code is a step, but is not enough

• Documentation, training, bullet proofing

• I checked my 10 most cited software tools 
• Each with >100 citations as proxy for utility

• At least four of these are technically trivial



“Applied Contributions”

• ~50 variants associated with type 2 diabetes

• ~150 variants associated with lipid levels, heart disease

• ~30 variants associated with obesity

• ~30 variants associated with psoriasis

• ~20 variants associated with macular degeneration

• Going forward, the challenge is to translate these loci into biology and 
eventually treatments.



Human Genetics, Sample Sizes over My Time

Year No. of Samples No. of Markers Publication

2012 1,092 40 million The 1000 Genomes Project (Nature)

2010 Hundreds 16 million The 1000 Genomes Project (Nature)

2010 ~100,000 2.5 million Lipid GWAS (Nature)

2008 ~9,000 2.5 million Lipid GWAS (Nature Genetics)

2007 Hundreds 3.1 million HapMap (Nature)

2005 Hundreds 1 million HapMap (Nature)

2003 Hundreds 10,000 Chr. 19 Variation Map (Nature Genetics)

2002 Hundreds 1,500 Chr. 22 Variation Map (Nature)

2001 Thousands 127 Three Region Variation Map (Am J Hum Genet)

2000 Hundreds 26 T-cell receptor variation (Hum Mol Genet)



The Future



Data is not Understanding.
Unfortunately.
• Sequence thousands of genomes, and then?

• Assemble sequences into coherent genomes

• Annotate variation in these genomes

• Associate variant with important outcomes

• Eventually, learn about function of variants, genomic elements, their 
downstream products



Tools are not Analysis.
Unfortunately.
• Assemble, annotate and associate genomes, then what?

• Thousands of traits to be studied

• Need to design appropriate study for each trait

• Need to facilitate spread of tools and algorithms

• Deploy these methods in interesting samples

• Enable scientists to pose interesting questions



Manual Intervention

“All happy families are alike, 
each unhappy family is unhappy in its own way.”

Leo Tolstoy in Anna Karenina

• Curating genomics data still requires manual intervention

• Automated pipelines are extremely useful, essential but can’t stand alone

• Important to help users interact with and understand their data



New Experiments and Protocols
• Suppose genome sequencing was routine…

• Imagine an hypothesis driven MD or PhD thesis
• How does GALNT2 influence HDL-C levels?

• Currently, we might:
• Manipulate GALNT2 in a model system
• Sequence or genotype GALNT2 in interesting sample

• In the future, we might:
• Identify individuals with natural GALNT2 knockouts from biobank
• Inspect electronic medical record for these individuals
• Contact these individuals and characterize cholesterol levels

• How to effectively query large numbers of genomes?

• How to effectively store large numbers of genomes in medical setting?



Open Problem: N+1 Genome

• Given 1000 Genome Samples what do we know about the next 
genome sequenced?

• Given genotyping array results?

• Given shallow sequencing?

• Given deep sequencing?

• How does this compare across SNPs, indels, structural variants, and complex 
regions?



Open Problem: De Novo Assemblies

• Our analysis have been generally based on read mapping approaches
• Introduces biases, for example, we generally have higher power for deletions  

than insertions

• With current read lengths, data quality and number of sequenced 
samples, de novo assembly based methods provide alternative 
discovery strategy

• Is de novo assembly to the current poor performance of variant 
callers when we move beyond SNPs?



A Lattice of Sequenced Genomes



A Lattice of Sequenced Genomes

• Methods for analysis and indexing of large numbers of 
sequenced genomes

• Lattice defined to ensure that any new genome might, with 
high probability, have close relative to drive imputation of 
rare and common variation

• An even denser lattice might enable us to select control 
individuals to match cases sequenced in any disease study

• Deep catalog of non-synonymous and loss-of-function alleles
• Value increases with ability to re-contact participants



How to Get There?

• 100,000 – 500,000 individuals, broadly representative of human genetic 
variation

• Generate high quality exomes and/or genomes for progressively denser 
lattice of individuals

• Use targeted questionnaires and follow-up to collect information on the 
most interesting individuals

• Facebook and Twitter have >500,000,000 users. Perhaps a small fraction of 
these would altruistically share their genomes?
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