The E-M Algorithm in Genetics

Biostatistics 666

Maximum Likelihood Allele Frequencies

- Parameter estimates which make observed data most likely
- General approach, as long as tractable likelihood function exists
- Can use all available information
- Provides justification for natural estimators

Today:

- The Expectation–Maximization algorithm in Genetics
- Frequency estimates for...
 - Recessive alleles
 - A, B, O alleles
 - Haplotype frequencies

Setting for the E-M Algorithm...

- Specific type of incomplete data
 - More possible categories (genotypes) than can be distinguished (phenotypes)
- For example, consider disease locus with recessive alleles...
 - What are the possible genotypes?
 - What are the possible phenotypes?

Setting for the E-M Algorithm...

- Problem is simple with complete data ...
 - For example, estimating allele frequencies when all genotypes are observed ...
- ... but available data can be "incomplete".
 - For example, homozygotes and heterozygotes might be hard to distinguish.

The E-M Algorithm

- Consider a set of starting parameters
- Use these to "estimate" the complete data
- Use estimated complete data to update parameters
- Repeat as necessary

An Example ...

- A random sample of 100 individuals
- 4 express a recessive phenotype
 - Assume the phenotype is controlled by a single gene
- Let's follow E-M algorithm steps ...

Step 1:

- Set starting values for parameters
- For allele frequency estimation...
 - Equal frequencies are a common choice
 - p_{rec} = 0.5
- Useful to repeat process using different starting point

Step 2:

- Estimate "complete data"
- Assign phenotypes to specific genotype categories
- Use Bayes' Theorem

Step 2 (continued):

 Calculate probability of each genotype among the 96 "normal" individuals

$$P(+/+;Normal) = \frac{P(+/+,Normal)}{P(Normal)} =$$

$$= \frac{P(+/+,Normal)}{P(+/+,Normal) + P(+/-,Normal)}$$

$$= \frac{P(+/+)}{P(+/+) + P(+/-)}$$

Step 2 (Finally!):

- At the first iteration, the complete data would be filled in as:
 - 4 individuals with recessive genotype
 - 64 individuals with heterozygous genotype
 - 32 individuals with dominant genotype

Step 3:

• Estimate allele frequencies by counting...

$$p_{rec} = \frac{N_{het} + 2N_{rec/rec}}{2N}$$

• What would be the estimated allele frequencies?

Repeat as necessary ...

Round	Estimate	E(+/+)	E(+/-)	E(-/-)	In L
1	0.50	32.00	64.00	4.00	-14.40240
2	0.36	45.18	50.82	4.00	-9.33657
3	0.29	52.36	43.64	4.00	-8.02405
4	0.26	56.60	39.40	4.00	-7.58067
5	0.24	59.21	36.79	4.00	-7.41213
6	0.22	60.87	35.13	4.00	-7.34396
7	0.22	61.94	34.06	4.00	-7.31540
8	0.21	62.64	33.36	4.00	-7.30317
9	0.21	63.10	32.90	4.00	-7.29787
10	0.20	63.40	32.60	4.00	-7.29555
11	0.20	63.60	32.40	4.00	-7.29453
12	0.20	63.73	32.27	4.00	-7.29408
13	0.20	63.82	32.18	4.00	-7.29388
14	0.20	63.88	32.12	4.00	-7.29379
15	0.20	63.92	32.08	4.00	-7.29375
16	0.20	63.95	32.05	4.00	-7.29374

Alternatives

- Analytical solutions
- Generic maximization strategies
- Calculating second derivates is always a useful complement, why?...

Other Applications of the E-M Algorithm in Genetics

• Classic example:

• ABO blood group

• Other applications:

- Haplotype frequency estimates
- Inferring population labels
- Modeling components in mixtures

The ABO blood group

- Determines compatibility for transfusions
- Controlled by alleles of ABO gene
- 3 alternative alleles
 - A, B and O
- 6 possible genotypes, n (n + 1) / 2
 - A/A, A/B, A/O, B/B, B/O, O/O

ABO Blood Group II

Dhanatuna	Antigen		Antibody		
Рпепотуре	А	В	А	В	
Α	+	-	-	+	
В	-	+	+	-	
0	-	-	+	+	
AB	+	+	-	-	

There are only 4 possible phenotypes for the ABO blood group.

Genotypes and Phenotypes

Genotype	Phenotype
A/A	Α
A/B	AB
A/O	A
B/B	В
B/O	В
0/0	0

ABO Example

- Data of Clarke et al. (1959)
 - British Med J 1:603-607
 - Reported excess of gastric ulcers in individuals with blood type O

Quick Exercises!

- Write out the likelihood for these data...
- What are complete data categories?
- Express the complete data "counts" as a function of allele frequency estimates and the observed data...

The iterations give ...

Iteration	p _A	р _В	р _о
1	0.300	0.200	0.500
2	.243	.074	.683
3	228	.070	.700
4	.228	.070	.702
5	.228	.070	.702

Alternatives to E-M...

- Analytical solutions are not known for the general case
- Generic maximization strategies could be employed
- Could derive solutions using part of the data...
 - Would this be a good idea?

The E-M Haplotyping Algorithm

- Excoffier and Slatkin (1995)
 - Mol Biol Evol **12:**921-927
 - Provide a clear outline of how the algorithm can be applied to genetic data
- Combination of two strategies
 - E-M statistical algorithm for missing data
 - Counting algorithm for allele frequencies

Original Application of the E-M Algorithm to A Genetic Problem

- Ceppellini R, Siniscalco M and Smith CAB (1955) The Estimation of Gene Frequencies in a Random-Mating Population. *Annals of Human Genetics* 20:97-115
- This was ~20 years before the E-M algorithm was formally outlined in the statistical literature!

Counting for Allele Frequencies

- For co-dominant markers, allele frequency typically carried out in very simple manner:
 - Count number of chromosomes (e.g. 2N)
 - Count number of a alleles (e.g. n_a)
 - Allele frequency is simple proportion $(n_a/2N)$
- Haplotypes can't always be counted directly
 - Focusing on unambiguous genotypes introduces bias

Counting Haplotypes for 2 SNPs

A a	Α	а		Α	а
b B	b	В	or	в	b

Ambigous Genotype Multiple Underlying Genotypes Possible

Unambigous Genotypes Underlying Haplotype is Known

Probabilistic Interpretation

Probability of first outcome:

 $\begin{array}{c} 2 \ P_{Ab} \ P_{aB} \\ \mbox{Probability of second outcome:} \\ 2 \ P_{AB} \ P_{ab} \end{array}$

Probabilistic Interpretation

For example, if:

$$P_{AB} = 0.3$$

 $P_{ab} = 0.3$
 $P_{Ab} = 0.3$
 $P_{aB} = 0.1$

Probability of first outcome:

 $2 P_{Ab} P_{aB} = 0.06$ Probability of second outcome: $2 P_{AB} P_{ab} = 0.18$

Probabilistic Interpretation II

Conditional probability of first outcome:

 $2 P_{Ab} P_{aB} / (2 P_{Ab} P_{aB} + 2 P_{AB} P_{ab})$ Conditional probability of second outcome: $2 P_{AB} P_{ab} / (2 P_{Ab} P_{aB} + 2 P_{AB} P_{ab})$

Probabilistic Interpretation II

Conditional probability of first outcome:

 $2 P_{Ab} P_{aB} / (2 P_{Ab} P_{aB} + 2 P_{AB} P_{ab}) = 0.25$ Conditional probability of second outcome: $2 P_{AB} P_{ab} / (2 P_{Ab} P_{aB} + 2 P_{AB} P_{ab}) = 0.75$

Basic E-M Algorithm For Haplotyping

- 1. "Guesstimate" haplotype frequencies
- 2. Use current frequency estimates to replace ambiguous genotypes with fractional counts of phased genotypes
- 3. Estimate frequency of each haplotype by counting
- 4. Repeat steps 2 and 3 until frequencies are stable

Computational Cost (for SNPs)

- Consider sets of *m* unphased genotypes
 - Markers 1..m
- If markers are bi-allelic
 - 2^m possible haplotypes
 - $2^{m-1}(2^m + 1)$ possible haplotype pairs
 - 3^m distinct observed genotypes
 - 2^{*n*-1} reconstructions for *n* heterozygous loci

Basic E-M Algorithm for Haplotyping

- Cost grows rapidly with number of markers
- Typically appropriate for < 25 SNPs
- Fully or partially phased individuals contribute most of the information

Other Common Applications

- E-M Algorithm also commonly used for:
 - Estimating recombination fractions
 - Defining genotype intensity clusters
 - Finding sub-populations and their allele frequencies

Today:

- The E-M algorithm in genetics
- Outline the approach
- Examined specific examples

Next Lecture ...

- E-M algorithm for Haplotyping
- Historical Alternatives
- Recent Enhancements and Alternatives
- Hypothesis testing

Recommended Reading

• Excoffier and Slatkin (1995) Mol Biol Evol **12:**921-927

• Introduces the E-M algorithm in the context of haplotyping