Hyun Min Kang

January 22th, 2013

1 Is a sufficient statistic unique?

- 1 Is a sufficient statistic unique?
- 2 What are examples obvious sufficient statistics for any distribution?

Recap from last lecture

- 1 Is a sufficient statistic unique?
- What are examples obvious sufficient statistics for any distribution?
- What is a minimal sufficient statistic?

- 1 Is a sufficient statistic unique?
- What are examples obvious sufficient statistics for any distribution?
- What is a minimal sufficient statistic?
- 4 Is a minimal sufficient statistic unique?

- 1 Is a sufficient statistic unique?
- 2 What are examples obvious sufficient statistics for any distribution?
- 3 What is a minimal sufficient statistic?
- 4 Is a minimal sufficient statistic unique?
- **5** How can we show that a statistic is minimal sufficient for θ ?

Minimal Sufficient Statistic

Definition 6.2.11

A sufficient statistic $T(\mathbf{X})$ is called a *minimal sufficient statistic* if, for any other sufficient statistic $T'(\mathbf{X})$, $T(\mathbf{X})$ is a function of $T'(\mathbf{X})$.

Why is this called "minimal" sufficient statistic?

- The sample space ${\mathcal X}$ consists of every possible sample finest partition
- Given $T(\mathbf{X})$, \mathcal{X} can be partitioned into A_t where $t \in \mathcal{T} = \{t : t = T(\mathbf{X}) \text{ for some } \mathbf{x} \in \mathcal{X}\}$
- Maximum data reduction is achieved when $|\mathcal{T}|$ is minimal.
- If size of $\mathcal{T}' = t$: $t = T'(\mathbf{x})$ for some $\mathbf{x} \in \mathcal{X}$ is not less than $|\mathcal{T}|$, then $|\mathcal{T}|$ can be called as a minimal sufficient statistic.

4 11 1 4 4 12 1 4 12 1 1 2 1 9 9 9

Theorem for Minimal Sufficient Statistics

Theorem 6.2.13

- $f_{\mathbf{X}}(\mathbf{x})$ be pmf or pdf of a sample \mathbf{X} .
- Suppose that there exists a function $T(\mathbf{x})$ such that,
- For every two sample points x and y,
- The ratio $f_{\mathbf{X}}(\mathbf{x}|\theta)/f_{\mathbf{X}}(\mathbf{y}|\theta)$ is constant as a function of θ if and only if $T(\mathbf{x}) = T(\mathbf{y})$.
- Then T(X) is a minimal sufficient statistic for θ.

In other words..

- $f_{\mathbf{X}}(\mathbf{x}|\theta)/f_{\mathbf{X}}(\mathbf{y}|\theta)$ is constant as a function of $\theta \Longrightarrow T(\mathbf{x}) = T(\mathbf{y})$.
- $T(\mathbf{x}) = T(\mathbf{y}) \Longrightarrow f_{\mathbf{X}}(\mathbf{x}|\theta)/f_{\mathbf{X}}(\mathbf{y}|\theta)$ is constant as a function of θ

4 D > 4 A > 4 B > 4 B > B = 90

Problem

 X_1, \cdots, X_n are iid samples from

$$f_X(x|\theta) = \frac{e^{-(x-\theta)}}{(1+e^{-(x-\theta)})^2}, -\infty < x < \infty, -\infty < \theta < \infty$$

Find a minimal sufficient statistic for θ .

Problem

 X_1, \cdots, X_n are iid samples from

$$f_X(x|\theta) = \frac{e^{-(x-\theta)}}{(1+e^{-(x-\theta)})^2}, -\infty < x < \infty, -\infty < \theta < \infty$$

Find a minimal sufficient statistic for θ .

$$f_{\mathbf{X}}(\mathbf{x}|\theta) = \prod_{i=1}^{n} \frac{\exp(-(x_i - \theta))}{(1 + \exp(-(x_i - \theta)))^2}$$

Problem

 X_1, \cdots, X_n are iid samples from

$$f_X(x|\theta) = \frac{e^{-(x-\theta)}}{(1+e^{-(x-\theta)})^2}, -\infty < x < \infty, -\infty < \theta < \infty$$

Find a minimal sufficient statistic for θ .

$$f_{\mathbf{X}}(\mathbf{x}|\theta) = \prod_{i=1}^{n} \frac{\exp(-(x_i - \theta))}{(1 + \exp(-(x_i - \theta)))^2} = \frac{\exp(-\sum_{i=1}^{n} (x_i - \theta))}{\prod_{i=1}^{n} (1 + \exp(-(x_i - \theta)))^2}$$

Problem

 X_1, \cdots, X_n are iid samples from

$$f_X(x|\theta) = \frac{e^{-(x-\theta)}}{(1+e^{-(x-\theta)})^2}, -\infty < x < \infty, -\infty < \theta < \infty$$

Find a minimal sufficient statistic for θ .

$$f_{\mathbf{X}}(\mathbf{x}|\theta) = \prod_{i=1}^{n} \frac{\exp(-(x_{i} - \theta))}{(1 + \exp(-(x_{i} - \theta)))^{2}} = \frac{\exp(-\sum_{i=1}^{n} (x_{i} - \theta))}{\prod_{i=1}^{n} (1 + \exp(-(x_{i} - \theta)))^{2}}$$
$$= \frac{\exp(-\sum_{i=1}^{n} x_{i}) \exp(n\theta)}{\prod_{i=1}^{n} (1 + \exp(-(x_{i} - \theta)))^{2}}$$

Solution (cont'd)

Applying Theorem 6.2.13

$$\frac{f_{\mathbf{X}}(\mathbf{x}|\theta)}{f_{\mathbf{X}}(\mathbf{y}|\theta)} = \frac{\exp(-\sum_{i=1}^{n} x_i) \exp(n\theta) \prod_{i=1}^{n} (1 + \exp(-(y_i - \theta)))^2}{\exp(-\sum_{i=1}^{n} y_i) \exp(n\theta) \prod_{i=1}^{n} (1 + \exp(-(x_i - \theta)))^2}$$

Solution (cont'd)

Applying Theorem 6.2.13

$$\frac{f_{\mathbf{X}}(\mathbf{x}|\theta)}{f_{\mathbf{X}}(\mathbf{y}|\theta)} = \frac{\exp\left(-\sum_{i=1}^{n} x_{i}\right) \exp(n\theta) \prod_{i=1}^{n} (1 + \exp(-(y_{i} - \theta)))^{2}}{\exp\left(-\sum_{i=1}^{n} y_{i}\right) \exp(n\theta) \prod_{i=1}^{n} (1 + \exp(-(x_{i} - \theta)))^{2}} \\
= \frac{\exp\left(-\sum_{i=1}^{n} x_{i}\right) \prod_{i=1}^{n} (1 + \exp(-(y_{i} - \theta)))^{2}}{\exp\left(-\sum_{i=1}^{n} y_{i}\right) \prod_{i=1}^{n} (1 + \exp(-(x_{i} - \theta)))^{2}}$$

Solution (cont'd)

Applying Theorem 6.2.13

$$\frac{f_{\mathbf{X}}(\mathbf{x}|\theta)}{f_{\mathbf{X}}(\mathbf{y}|\theta)} = \frac{\exp\left(-\sum_{i=1}^{n} x_{i}\right) \exp(n\theta) \prod_{i=1}^{n} (1 + \exp(-(y_{i} - \theta)))^{2}}{\exp\left(-\sum_{i=1}^{n} y_{i}\right) \exp(n\theta) \prod_{i=1}^{n} (1 + \exp(-(x_{i} - \theta)))^{2}} \\
= \frac{\exp\left(-\sum_{i=1}^{n} x_{i}\right) \prod_{i=1}^{n} (1 + \exp(-(y_{i} - \theta)))^{2}}{\exp\left(-\sum_{i=1}^{n} y_{i}\right) \prod_{i=1}^{n} (1 + \exp(-(x_{i} - \theta)))^{2}}$$

The ratio above is constant to θ if and only if x_1, \cdots, x_n are permutations of y_1, \cdots, y_n . So the order statistic $\mathbf{T}(\mathbf{X}) = (X_{(1)}, \cdots, X_{(n)})$ is a minimal sufficient statistic.

↓□▶ ↓□▶ ↓□▶ ↓□▶ □ ♥♀♡

Definition 6.2.16

A statistic $S(\mathbf{X})$ is an *ancillary statistic* if its distribution does not depend on θ .

Definition 6.2.16

A statistic $S(\mathbf{X})$ is an *ancillary statistic* if its distribution does not depend on θ .

Examples of Ancillary Statistics

Definition 6.2.16

A statistic $S(\mathbf{X})$ is an ancillary statistic if its distribution does not depend on θ .

Examples of Ancillary Statistics

•
$$s_{\mathbf{X}}^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$$
 is an ancillary statistic

Definition 6.2.16

A statistic $S(\mathbf{X})$ is an *ancillary statistic* if its distribution does not depend on θ .

Examples of Ancillary Statistics

- $s_{\mathbf{X}}^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \overline{X})^2$ is an ancillary statistic
- $X_1 X_2 \sim \mathcal{N}(0, 2\sigma^2)$ is ancillary.

Definition 6.2.16

A statistic $S(\mathbf{X})$ is an *ancillary statistic* if its distribution does not depend on θ .

Examples of Ancillary Statistics

- $s_{\mathbf{X}}^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \overline{X})^2$ is an ancillary statistic
- $X_1 X_2 \sim \mathcal{N}(0, 2\sigma^2)$ is ancillary.
- $(X_1 + X_2)/2 X_3 \sim \mathcal{N}(0, 1.5\sigma^2)$ is ancillary.

Definition 6.2.16

A statistic $S(\mathbf{X})$ is an *ancillary statistic* if its distribution does not depend on θ .

Examples of Ancillary Statistics

 $X_1,\cdots,X_n \overset{\mathrm{i.i.d.}}{\sim} \mathcal{N}(\mu,\sigma^2)$ where σ^2 is known.

- $s_{\mathbf{X}}^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i \overline{X})^2$ is an ancillary statistic
- $X_1 X_2 \sim \mathcal{N}(0, 2\sigma^2)$ is ancillary.
- $(X_1 + X_2)/2 X_3 \sim \mathcal{N}(0, 1.5\sigma^2)$ is ancillary.
- $\frac{(n-1)s_{\mathbf{X}}^2}{\sigma^2} \sim \chi_{n-1}^2$ is ancillary.

4 D > 4 P > 4 B > 4 B > B 900

Examples with normal distribution at zero mean

$$X_1, \cdots, X_n \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, \sigma^2)$$
 where σ^2 is unknown

Examples with normal distribution at zero mean

 $X_1, \cdots, X_n \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, \sigma^2)$ where σ^2 is unknown

• $\mathbf{Y} = \mathbf{X}/\sigma$ is an ancillary statistic because $Y_i \sim \mathcal{N}(0,1)$.

Examples with normal distribution at zero mean

- $\mathbf{Y} = \mathbf{X}/\sigma$ is an ancillary statistic because $Y_i \sim \mathcal{N}(0,1)$.
- $\frac{X_1}{X_2} = \frac{\sigma \, Y_1}{\sigma \, Y_2} = \frac{Y_1}{Y_2}$ also follows a cauchy distribution and is an ancillary statistic.

Examples with normal distribution at zero mean

- $\mathbf{Y} = \mathbf{X}/\sigma$ is an ancillary statistic because $Y_i \sim \mathcal{N}(0,1)$.
- $\frac{X_1}{X_2} = \frac{\sigma \, Y_1}{\sigma \, Y_2} = \frac{Y_1}{Y_2}$ also follows a cauchy distribution and is an ancillary statistic.
- Any joint distribution of Y_1, \dots, Y_n does not depend on σ^2 , and thus is an ancillary statistic.

Examples with normal distribution at zero mean

- $\mathbf{Y} = \mathbf{X}/\sigma$ is an ancillary statistic because $Y_i \sim \mathcal{N}(0,1)$.
- $\frac{X_1}{X_2} = \frac{\sigma \, Y_1}{\sigma \, Y_2} = \frac{Y_1}{Y_2}$ also follows a cauchy distribution and is an ancillary statistic.
- Any joint distribution of Y_1, \dots, Y_n does not depend on σ^2 , and thus is an ancillary statistic.
- For example, the following statistic is also ancillary.

$$\frac{\mathrm{median}(X_i)}{\overline{X}}$$

Examples with normal distribution at zero mean

- $\mathbf{Y} = \mathbf{X}/\sigma$ is an ancillary statistic because $Y_i \sim \mathcal{N}(0,1)$.
- $\frac{X_1}{X_2}=\frac{\sigma\,Y_1}{\sigma\,Y_2}=\frac{Y_1}{Y_2}$ also follows a cauchy distribution and is an ancillary statistic.
- Any joint distribution of Y_1, \dots, Y_n does not depend on σ^2 , and thus is an ancillary statistic.
- For example, the following statistic is also ancillary.

$$\frac{\mathrm{median}(X_i)}{\overline{X}} = \frac{\sigma \mathrm{median}(Y_i)}{\sigma \overline{Y}}$$

Examples with normal distribution at zero mean

 $X_1, \cdots, X_n \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(0, \sigma^2)$ where σ^2 is unknown

- $\mathbf{Y} = \mathbf{X}/\sigma$ is an ancillary statistic because $Y_i \sim \mathcal{N}(0,1)$.
- $\frac{X_1}{X_2} = \frac{\sigma \, Y_1}{\sigma \, Y_2} = \frac{Y_1}{Y_2}$ also follows a cauchy distribution and is an ancillary statistic.
- Any joint distribution of Y_1, \dots, Y_n does not depend on σ^2 , and thus is an ancillary statistic.
- For example, the following statistic is also ancillary.

$$\frac{\operatorname{median}(X_i)}{\overline{X}} = \frac{\sigma \operatorname{median}(Y_i)}{\sigma \overline{Y}} = \frac{\operatorname{median}(Y_i)}{\overline{Y}}$$

4 ロ ト 4 団 ト 4 豆 ト 4 豆 ・ り Q (や)

Problem

- $X_1, \cdots, X_n \stackrel{\text{i.i.d.}}{\sim} f_X(x-\theta)$.
- Show that $R=X_{(n)}-X_{(1)}$ is an ancillary statistic.

Problem

- $X_1, \cdots, X_n \stackrel{\text{i.i.d.}}{\sim} f_X(x-\theta)$.
- Show that $R = X_{(n)} X_{(1)}$ is an ancillary statistic.

Solution

• Let $Z_i = X_i - \theta$.

Problem

- $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} f_X(x-\theta)$.
- Show that $R = X_{(n)} X_{(1)}$ is an ancillary statistic.

- Let $Z_i = X_i \theta$.
- $f_Z(z) = f_X(z+\theta-\theta) \left| \frac{dx}{dz} \right| = f_X(z)$

Problem

- $X_1, \cdots, X_n \stackrel{\text{i.i.d.}}{\sim} f_X(x-\theta)$.
- Show that $R = X_{(n)} X_{(1)}$ is an ancillary statistic.

- Let $Z_i = X_i \theta$.
- $f_Z(z) = f_X(z + \theta \theta) \left| \frac{dx}{dz} \right| = f_X(z)$
- $Z_1, \dots, Z_n \stackrel{\text{i.i.d.}}{\sim} f_X(z)$ does not depend on θ .

Problem

- $X_1, \cdots, X_n \stackrel{\text{i.i.d.}}{\sim} f_X(x-\theta)$.
- Show that $R = X_{(n)} X_{(1)}$ is an ancillary statistic.

Solution

- Let $Z_i = X_i \theta$.
- $f_Z(z) = f_X(z + \theta \theta) \left| \frac{dx}{dz} \right| = f_X(z)$
- $Z_1, \dots, Z_n \stackrel{\text{i.i.d.}}{\sim} f_X(z)$ does not depend on θ .
- $R = X_{(n)} X_{(1)} = Z_{(n)} Z_{(1)}$ does not depend on θ .

10 × 40 × 40 × 40 × 40 ×

Uniform Ancillary Statistics

Problem

- $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \text{Uniform}(\theta, \theta + 1).$
- Show that $R = X_{(n)} X_{(1)}$ is an ancillary statistic.

Possible Strategies

Problem

- $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \text{Uniform}(\theta, \theta + 1).$
- Show that $R = X_{(n)} X_{(1)}$ is an ancillary statistic.

Possible Strategies

• Obtain the distribution of R and show that it is independent of θ .

Uniform Ancillary Statistics

Problem

- $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \text{Uniform}(\theta, \theta + 1).$
- Show that $R = X_{(n)} X_{(1)}$ is an ancillary statistic.

Possible Strategies

- Obtain the distribution of R and show that it is independent of θ .
- Represent R as a function of ancillary statistics, which is independent of θ .

R is a function of $(X_{(n)},X_{(1)})$, so we need to derive the joint distribution of $(X_{(n)},X_{(1)})$.

R is a function of $(X_{(n)},X_{(1)})$, so we need to derive the joint distribution of $(X_{(n)},X_{(1)})$. Define

$$f_X(x|\theta) = I(\theta < x < \theta + 1)$$

R is a function of $(X_{(n)},X_{(1)})$, so we need to derive the joint distribution of $(X_{(n)},X_{(1)})$. Define

$$f_X(x|\theta) = I(\theta < x < \theta + 1)$$

If
$$\theta < X_{(1)} \le X_{(n)} < \theta + 1$$
,

$$f_{\mathbf{X}}(X_{(1)}, X_{(n)}|\theta) =$$

R is a function of $(X_{(n)},X_{(1)})$, so we need to derive the joint distribution of $(X_{(n)},X_{(1)})$. Define

$$f_X(x|\theta) = I(\theta < x < \theta + 1)$$

If
$$\theta < X_{(1)} \le X_{(n)} < \theta + 1$$
,

$$f_{\mathbf{X}}(X_{(1)}, X_{(n)}|\theta) = \frac{n!}{(n-2)!} (X_{(n)} - X_{(1)})^{(n-2)}$$

R is a function of $(X_{(n)},X_{(1)})$, so we need to derive the joint distribution of $(X_{(n)},X_{(1)})$. Define

$$f_X(x|\theta) = I(\theta < x < \theta + 1)$$

If $\theta < X_{(1)} \le X_{(n)} < \theta + 1$,

$$f_{\mathbf{X}}(X_{(1)}, X_{(n)}|\theta) = \frac{n!}{(n-2)!} (X_{(n)} - X_{(1)})^{(n-2)}$$

and $f_{\mathbf{X}}(X_{(1)}, X_{(n)}|\theta) = 0$ otherwise.

Define R and M as follows

$$\left\{ \begin{array}{lcl} R & = & X_{(n)} - X_{(1)} \\ M & = & (X_{(n)} + X_{(1)})/2 \end{array} \right.$$

Define R and M as follows

$$\begin{cases} R = X_{(n)} - X_{(1)} \\ M = (X_{(n)} + X_{(1)})/2 \end{cases}$$

Then

$$\begin{cases} X_{(1)} &= M - R/2 \\ X_{(n)} &= M + R/2 \end{cases}$$

12 / 23

Define R and M as follows

$$\begin{cases} R = X_{(n)} - X_{(1)} \\ M = (X_{(n)} + X_{(1)})/2 \end{cases}$$

Then

$$\begin{cases} X_{(1)} = M - R/2 \\ X_{(n)} = M + R/2 \end{cases}$$

The Jacobian is

$$J = \left| \begin{array}{cc} \frac{\partial X_{(1)}}{\partial M} & \frac{\partial X_{(1)}}{\partial R} \\ \frac{\partial X_{(n)}}{\partial M} & \frac{\partial X_{(n)}}{\partial R} \end{array} \right| = \left| \begin{array}{cc} 1 & -\frac{1}{2} \\ 1 & \frac{1}{2} \end{array} \right| = \frac{1}{2} - (-\frac{1}{2}) = 1$$

The joint distribution of R and M is

$$f_{R,M}(r,m) = n(n-1) \left(\frac{2m+r}{2} - \frac{2m-r}{2}\right)^{(n-2)} = n(n-1)r^{(n-2)}$$

The joint distribution of R and M is

$$f_{R,M}(r,m) = n(n-1) \left(\frac{2m+r}{2} - \frac{2m-r}{2}\right)^{(n-2)} = n(n-1)r^{(n-2)}$$

Because $\theta < X_{(1)} \le X_{(n)} < \theta + 1$,

$$\theta < \frac{2m-r}{2} < \frac{2m+r}{2} < \theta + 1$$

The joint distribution of R and M is

$$f_{R,M}(r,m) = n(n-1) \left(\frac{2m+r}{2} - \frac{2m-r}{2}\right)^{(n-2)} = n(n-1)r^{(n-2)}$$

Because $\theta < X_{(1)} \le X_{(n)} < \theta + 1$,

$$\theta < \frac{2m-r}{2} < \frac{2m+r}{2} < \theta + 1$$

$$0 < r < 1$$

$$\theta + \frac{r}{2} < m < \theta + 1 - \frac{r}{2}$$

The distribution of R is

$$f_R(r|\theta) = \int_{\theta + \frac{r}{2}}^{\theta + 1 - \frac{r}{2}} n(n-1)r^{(n-2)}dm$$

The distribution of R is

$$f_R(r|\theta) = \int_{\theta + \frac{r}{2}}^{\theta + 1 - \frac{r}{2}} n(n-1)r^{(n-2)} dm$$
$$= n(n-1)r^{(n-2)} \left(\theta + 1 - \frac{r}{2} - \theta - \frac{r}{2}\right)$$

The distribution of R is

$$f_R(r|\theta) = \int_{\theta + \frac{r}{2}}^{\theta + 1 - \frac{r}{2}} n(n-1)r^{(n-2)} dm$$

$$= n(n-1)r^{(n-2)} \left(\theta + 1 - \frac{r}{2} - \theta - \frac{r}{2}\right)$$

$$= n(n-1)r^{(n-2)} (1-r) , 0 < r < 1$$

The distribution of R is

$$f_R(r|\theta) = \int_{\theta + \frac{r}{2}}^{\theta + 1 - \frac{r}{2}} n(n-1)r^{(n-2)} dm$$

$$= n(n-1)r^{(n-2)} \left(\theta + 1 - \frac{r}{2} - \theta - \frac{r}{2}\right)$$

$$= n(n-1)r^{(n-2)} (1-r) , 0 < r < 1$$

Therefore, $f_R(r|\theta)$ does not depend on θ , and R is an ancillary statistic.

$$f_X(x|\theta) = I(\theta < x < \theta + 1) = I(0 < x - \theta < 1)$$

$$f_X(x|\theta) = I(\theta < x < \theta + 1) = I(0 < x - \theta < 1)$$

Let $Y_i = X_i - \theta \sim \text{Uniform}(0,1)$. Then $X_i = Y_i + \theta$, $\left| \frac{dx}{du} \right| = 1$ holds.

$$f_X(x|\theta) = I(\theta < x < \theta + 1) = I(0 < x - \theta < 1)$$

Let
$$Y_i = X_i - \theta \sim \mathrm{Uniform}(0,1)$$
. Then $X_i = Y_i + \theta$, $|\frac{dx}{dy}| = 1$ holds.

$$f_Y(y) = I(0 < y + \theta - \theta < 1) \left| \frac{dx}{dy} \right| = I(0 < y < 1)$$

$$f_X(x|\theta) = I(\theta < x < \theta + 1) = I(0 < x - \theta < 1)$$

Let $Y_i = X_i - \theta \sim \text{Uniform}(0,1)$. Then $X_i = Y_i + \theta$, $\left| \frac{dx}{dy} \right| = 1$ holds.

$$f_Y(y) = I(0 < y + \theta - \theta < 1) \left| \frac{dx}{dy} \right| = I(0 < y < 1)$$

Then, the range statistic R can be rewritten as follows.

$$R = X_{(n)} - X_{(1)} = (Y_{(n)} + \theta) - (Y_{(1)} + \theta) = Y_{(n)} - Y_{(1)}$$

$$f_X(x|\theta) = I(\theta < x < \theta + 1) = I(0 < x - \theta < 1)$$

Let $Y_i = X_i - \theta \sim \text{Uniform}(0,1)$. Then $X_i = Y_i + \theta$, $\left| \frac{dx}{dy} \right| = 1$ holds.

$$f_Y(y) = I(0 < y + \theta - \theta < 1) \left| \frac{dx}{dy} \right| = I(0 < y < 1)$$

Then, the range statistic R can be rewritten as follows.

$$R = X_{(n)} - X_{(1)} = (Y_{(n)} + \theta) - (Y_{(1)} + \theta) = Y_{(n)} - Y_{(1)}$$

As $Y_{(n)}-Y_{(1)}$ is a function of Y_1,\cdots,Y_n . Any joint distribution of Y_1,\cdots,Y_n does not depend on θ . Therefore, R is an ancillary statistic.

Theorem 3.5.1

Let f(x) be any pdf and let μ and $\sigma > 0$ be any given constant, then,

$$g(x|\mu,\sigma) = \frac{1}{\sigma} f\left(\frac{x-\mu}{\sigma}\right)$$

is a pdf.

Theorem 3.5.1

Minimal Sufficient Statistics

Let f(x) be any pdf and let μ and $\sigma > 0$ be any given constant, then,

$$g(x|\mu,\sigma) = \frac{1}{\sigma} f\left(\frac{x-\mu}{\sigma}\right)$$

is a pdf.

Proof

Because f(x) is a pdf, then $f(x) \ge 0$, and $g(x|\mu,\sigma) \ge 0$ for all x.

A brief review on location and scale family

Theorem 3.5.1

Minimal Sufficient Statistics

Let f(x) be any pdf and let μ and $\sigma > 0$ be any given constant, then,

$$g(x|\mu,\sigma) = \frac{1}{\sigma} f\left(\frac{x-\mu}{\sigma}\right)$$

is a pdf.

Proof

Because f(x) is a pdf, then $f(x) \ge 0$, and $g(x|\mu,\sigma) \ge 0$ for all x.

Let $y = (x - \mu)/\sigma$, then $x = \sigma y + \mu$, and $dx/dy = \sigma$.

A brief review on location and scale family

Theorem 3.5.1

Let f(x) be any pdf and let μ and $\sigma > 0$ be any given constant, then,

$$g(x|\mu,\sigma) = \frac{1}{\sigma} f\left(\frac{x-\mu}{\sigma}\right)$$

is a pdf.

Proof

Because f(x) is a pdf, then $f(x) \ge 0$, and $g(x|\mu, \sigma) \ge 0$ for all x. Let $y = (x - \mu)/\sigma$, then $x = \sigma y + \mu$, and $dx/dy = \sigma$.

$$\int_{-\infty}^{\infty} \frac{1}{\sigma} f \bigg(\frac{x - \mu}{\sigma} \bigg) \; dx \;\; = \;\; \int_{-\infty}^{\infty} \frac{1}{\sigma} f(y) \sigma \, dy = \int_{-\infty}^{\infty} f(y) \, dy = 1$$

A brief review on location and scale family

Theorem 3.5.1

Let f(x) be any pdf and let μ and $\sigma>0$ be any given constant, then,

$$g(x|\mu,\sigma) = \frac{1}{\sigma} f\left(\frac{x-\mu}{\sigma}\right)$$

is a pdf.

Proof

Because f(x) is a pdf, then $f(x) \ge 0$, and $g(x|\mu, \sigma) \ge 0$ for all x. Let $y = (x - \mu)/\sigma$, then $x = \sigma y + \mu$, and $dx/dy = \sigma$.

$$\int_{-\infty}^{\infty} \frac{1}{\sigma} f\left(\frac{x-\mu}{\sigma}\right) dx = \int_{-\infty}^{\infty} \frac{1}{\sigma} f(y) \sigma dy = \int_{-\infty}^{\infty} f(y) dy = 1$$

Therefore, $g(x|\mu,\sigma)$ is also a pdf.

Location Family and Parameter

Definition 3.5.2

Let f(x) be any pdf. Then the family of pdfs $f(x-\mu)$, indexed by the parameter $-\infty < \mu < \infty$, is called the *location family with standard pdf* f(x), and μ is called the *location parameter* for the family.

Location Family and Parameter

Definition 3.5.2

Let f(x) be any pdf. Then the family of pdfs $f(x-\mu)$, indexed by the parameter $-\infty < \mu < \infty$, is called the *location family with standard pdf* f(x), and μ is called the *location parameter* for the family.

Example

•
$$f(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2} \sim \mathcal{N}(0,1)$$

•
$$f(x-\mu) = \frac{1}{\sqrt{2\pi}} e^{-(x-\mu)^2/2} \sim \mathcal{N}(\mu, 1)$$

Location Family and Parameter

Definition 3.5.2

Let f(x) be any pdf. Then the family of pdfs $f(x-\mu)$, indexed by the parameter $-\infty < \mu < \infty$, is called the *location family with standard pdf* f(x), and μ is called the *location parameter* for the family.

Example

•
$$f(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2} \sim \mathcal{N}(0,1)$$

•
$$f(x-\mu) = \frac{1}{\sqrt{2\pi}} e^{-(x-\mu)^2/2} \sim \mathcal{N}(\mu, 1)$$

•
$$f(x) = I(0 < x < 1) \sim \text{Uniform}(0, 1)$$

•
$$f(x-\theta) = I(\theta < x < \theta + 1) \sim \text{Uniform}(\theta, \theta + 1)$$

Scale Family and Parameter

Definition 3.5.4

Let f(x) be any pdf. Then for any $\sigma > 0$ the family of pdfs $f(x/\sigma)/\sigma$, indexed by the parameter σ is called the *scale family with standard pdf* f(x), and σ is called the *scale parameter* for the family.

Scale Family and Parameter

Definition 3.5.4

Let f(x) be any pdf. Then for any $\sigma>0$ the family of pdfs $f(x/\sigma)/\sigma$, indexed by the parameter σ is called the *scale family with standard pdf* f(x), and σ is called the *scale parameter* for the family.

Example

•
$$f(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2} \sim \mathcal{N}(0,1)$$

•
$$f(x/\sigma)/\sigma = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-x^2/2\sigma^2} \sim \mathcal{N}(0, \sigma^2)$$

Definition 3.5.5

Let f(x) be any pdf. Then for any $\mu, -\infty < \mu < \infty$, and any $\sigma > 0$ the family of pdfs $f((x-\mu)/\sigma)/\sigma$, indexed by the parameter (μ,σ) is called the *location-scale family with standard pdf* f(x), and μ is called the *location parameter* and σ is called the *scale parameter* for the family.

Location-Scale Family and Parameters

Definition 3.5.5

Let f(x) be any pdf. Then for any $\mu, -\infty < \mu < \infty$, and any $\sigma > 0$ the family of pdfs $f((x-\mu)/\sigma)/\sigma$, indexed by the parameter (μ,σ) is called the *location-scale family with standard pdf* f(x), and μ is called the *location parameter* and σ is called the *scale parameter* for the family.

Example

•
$$f(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2} \sim \mathcal{N}(0,1)$$

•
$$f((x-\mu)/\sigma)/\sigma = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-(x-\mu)^2/2\sigma^2} \sim \mathcal{N}(\mu,\sigma^2)$$

Theorem for location and scale family

Theorem 3.5.6

- Let $f(\cdot)$ be any pdf.
- Let μ be any real number.
- Let σ be any positive real number.
- Then X is a random variable with pdf $\frac{1}{\sigma}f\left(\frac{x-\mu}{\sigma}\right)$
- if and only if there exists a random variable Z with pdf f(z) and $X = \sigma Z + \mu$.

Ancillary Statistics for Location Family

Problem

Let X_1,\cdots,X_n be iid from a location family with pdf $f(x-\mu)$ where $-\infty<\mu<\infty$. Show that the range $R=X_{(n)}-X_{(1)}$ is an ancillary statistic.

Ancillary Statistics for Location Family

Problem

Let X_1,\cdots,X_n be iid from a location family with pdf $f(x-\mu)$ where $-\infty<\mu<\infty$. Show that the range $R=X_{(n)}-X_{(1)}$ is an ancillary statistic.

Solution

Assume that cdf is $F(x - \mu)$. Using Theorem 3.5.6,

 $Z_1=X_1-\mu,\cdots,Z_n=X_n-\mu$ are iid observations from pdf f(x) and cdf F(x).

Ancillary Statistics for Location Family

Problem

Let X_1,\cdots,X_n be iid from a location family with pdf $f(x-\mu)$ where $-\infty<\mu<\infty$. Show that the range $R=X_{(n)}-X_{(1)}$ is an ancillary statistic.

Solution

Assume that cdf is $F(x - \mu)$. Using Theorem 3.5.6,

 $Z_1 = X_1 - \mu, \dots, Z_n = X_n - \mu$ are iid observations from pdf f(x) and cdf F(x). Then the cdf of the range statistic R becomes

Ancillary Statistics for Location Family

Problem

Let X_1,\cdots,X_n be iid from a location family with pdf $f(x-\mu)$ where $-\infty<\mu<\infty$. Show that the range $R=X_{(n)}-X_{(1)}$ is an ancillary statistic.

Solution

Assume that cdf is $F(x-\mu)$. Using Theorem 3.5.6,

 $Z_1=X_1-\mu,\cdots,Z_n=X_n-\mu$ are iid observations from pdf f(x) and cdf F(x). Then the cdf of the range statistic R becomes

$$F_R(r|\mu) = \Pr(R \le r|\mu) = \Pr(X_{(n)} - X_{(1)} \le r|\mu)$$

Ancillary Statistics for Location Family

Problem

Let X_1,\cdots,X_n be iid from a location family with pdf $f(x-\mu)$ where $-\infty<\mu<\infty$. Show that the range $R=X_{(n)}-X_{(1)}$ is an ancillary statistic.

Solution

Assume that cdf is $F(x-\mu)$. Using Theorem 3.5.6,

 $Z_1=X_1-\mu,\cdots,Z_n=X_n-\mu$ are iid observations from pdf f(x) and cdf F(x). Then the cdf of the range statistic R becomes

$$\begin{array}{lcl} F_R(r|\mu) & = & \Pr(R \leq r|\mu) = \Pr(X_{(n)} - X_{(1)} \leq r|\mu) \\ & = & \Pr(Z_{(n)} + \mu - Z_{(1)} - \mu \leq r|\mu) = \Pr(Z_{(n)} - Z_{(1)} \leq r|\mu) \end{array}$$

Ancillary Statistics for Location Family

Problem

Let X_1,\cdots,X_n be iid from a location family with pdf $f(x-\mu)$ where $-\infty<\mu<\infty$. Show that the range $R=X_{(n)}-X_{(1)}$ is an ancillary statistic.

Solution

Assume that cdf is $F(x-\mu)$. Using Theorem 3.5.6,

 $Z_1=X_1-\mu,\cdots,Z_n=X_n-\mu$ are iid observations from pdf f(x) and cdf F(x). Then the cdf of the range statistic R becomes

$$F_R(r|\mu) = \Pr(R \le r|\mu) = \Pr(X_{(n)} - X_{(1)} \le r|\mu)$$

= $\Pr(Z_{(n)} + \mu - Z_{(1)} - \mu \le r|\mu) = \Pr(Z_{(n)} - Z_{(1)} \le r|\mu)$

which does not depend on μ because Z_1, \dots, Z_n does not depend on μ . Therefore, R is an ancillary statistic.

Problem

Let X_1, \cdots, X_n be iid from a location family with pdf $f(x/\sigma)/\sigma$ where $\sigma > 0$. Show that the following statistic $\mathbf{T}(\mathbf{X})$ is ancillary.

$$\mathbf{T}(\mathbf{X}) = (X_1/X_n, \cdots, X_{n-1}/X_n)$$

Problem

Let X_1, \cdots, X_n be iid from a location family with pdf $f(x/\sigma)/\sigma$ where $\sigma>0$. Show that the following statistic $\mathbf{T}(\mathbf{X})$ is ancillary.

$$\mathbf{T}(\mathbf{X}) = (X_1/X_n, \cdots, X_{n-1}/X_n)$$

Solution

Assume that cdf is $F(x/\sigma)$, and let $Z_1=X_1/\sigma,\cdots,Z_n=X_n/\sigma$ be iid observations from pdf f(x) and cdf F(x).

Problem

Let X_1, \cdots, X_n be iid from a location family with pdf $f(x/\sigma)/\sigma$ where $\sigma > 0$. Show that the following statistic $\mathbf{T}(\mathbf{X})$ is ancillary.

$$\mathbf{T}(\mathbf{X}) = (X_1/X_n, \cdots, X_{n-1}/X_n)$$

Solution

Assume that cdf is $F(x/\sigma)$, and let $Z_1=X_1/\sigma,\cdots,Z_n=X_n/\sigma$ be iid observations from pdf f(x) and cdf F(x). Then the joint cdf of the $\mathbf{T}(\mathbf{X})$ is

Problem

Let X_1, \cdots, X_n be iid from a location family with pdf $f(x/\sigma)/\sigma$ where $\sigma>0$. Show that the following statistic $\mathbf{T}(\mathbf{X})$ is ancillary.

$$\mathbf{T}(\mathbf{X}) = (X_1/X_n, \cdots, X_{n-1}/X_n)$$

Solution

Assume that cdf is $F(x/\sigma)$, and let $Z_1 = X_1/\sigma, \cdots, Z_n = X_n/\sigma$ be iid observations from pdf f(x) and cdf F(x). Then the joint cdf of the $\mathbf{T}(\mathbf{X})$ is

$$F_{\mathbf{T}}(t_1, \dots, t_{n-1} | \sigma) = \Pr(X_1 / X_n \le t_1, \dots, X_{n-1} / X_n \le t_{n-1} | \sigma)$$

Problem

Let X_1, \cdots, X_n be iid from a location family with pdf $f(x/\sigma)/\sigma$ where $\sigma > 0$. Show that the following statistic $\mathbf{T}(\mathbf{X})$ is ancillary.

$$\mathbf{T}(\mathbf{X}) = (X_1/X_n, \cdots, X_{n-1}/X_n)$$

Solution

Assume that cdf is $F(x/\sigma)$, and let $Z_1 = X_1/\sigma, \cdots, Z_n = X_n/\sigma$ be iid observations from pdf f(x) and cdf F(x). Then the joint cdf of the $\mathbf{T}(\mathbf{X})$ is

$$F_{\mathsf{T}}(t_1, \dots, t_{n-1} | \sigma) = \Pr(X_1 / X_n \le t_1, \dots, X_{n-1} / X_n \le t_{n-1} | \sigma)$$

= $\Pr(\sigma Z_1 / \sigma Z_n \le t_1, \dots, \sigma Z_{n-1} / \sigma Z_n \le t_{n-1} | \sigma)$

Problem

Let X_1, \cdots, X_n be iid from a location family with pdf $f(x/\sigma)/\sigma$ where $\sigma > 0$. Show that the following statistic $\mathbf{T}(\mathbf{X})$ is ancillary.

$$\mathbf{T}(\mathbf{X}) = (X_1/X_n, \cdots, X_{n-1}/X_n)$$

Solution

Assume that cdf is $F(x/\sigma)$, and let $Z_1 = X_1/\sigma, \cdots, Z_n = X_n/\sigma$ be iid observations from pdf f(x) and cdf F(x). Then the joint cdf of the $\mathbf{T}(\mathbf{X})$ is

$$F_{\mathbf{T}}(t_{1}, \cdots, t_{n-1} | \sigma) = \Pr(X_{1} / X_{n} \leq t_{1}, \cdots, X_{n-1} / X_{n} \leq t_{n-1} | \sigma)$$

$$= \Pr(\sigma Z_{1} / \sigma Z_{n} \leq t_{1}, \cdots, \sigma Z_{n-1} / \sigma Z_{n} \leq t_{n-1} | \sigma)$$

$$= \Pr(Z_{1} / Z_{n} \leq t_{1}, \cdots, Z_{n-1} / Z_{n} \leq t_{n-1} | \sigma)$$

Problem

Let X_1, \cdots, X_n be iid from a location family with pdf $f(x/\sigma)/\sigma$ where $\sigma>0$. Show that the following statistic $\mathbf{T}(\mathbf{X})$ is ancillary.

$$\mathbf{T}(\mathbf{X}) = (X_1/X_n, \cdots, X_{n-1}/X_n)$$

Solution

Assume that cdf is $F(x/\sigma)$, and let $Z_1 = X_1/\sigma, \cdots, Z_n = X_n/\sigma$ be iid observations from pdf f(x) and cdf F(x). Then the joint cdf of the $\mathbf{T}(\mathbf{X})$ is

$$F_{\mathbf{T}}(t_{1}, \cdots, t_{n-1} | \sigma) = \Pr(X_{1} / X_{n} \leq t_{1}, \cdots, X_{n-1} / X_{n} \leq t_{n-1} | \sigma)$$

$$= \Pr(\sigma Z_{1} / \sigma Z_{n} \leq t_{1}, \cdots, \sigma Z_{n-1} / \sigma Z_{n} \leq t_{n-1} | \sigma)$$

$$= \Pr(Z_{1} / Z_{n} \leq t_{1}, \cdots, Z_{n-1} / Z_{n} \leq t_{n-1} | \sigma)$$

Because Z_1, \dots, Z_n does not depend on σ , $\mathbf{T}(\mathbf{X})$ is an ancillary statistic.

Summary

Today

- Minimal Sufficient Statistics
 - Recap from last lecture
 - Example from the textbook
- Ancillary Statistics
 - Definition
 - Examples
 - Location-scale family and parameters

Summary

Today

- Minimal Sufficient Statistics
 - Recap from last lecture
 - Example from the textbook
- Ancillary Statistics
 - Definition
 - Examples
 - Location-scale family and parameters

Next Lecture

Complete Statistics

