Biostatistics 602 - Statistical Inference Lecture 07 Exponential Family

Hyun Min Kang

January 31st, 2013

What are differences between complete statistic and minimal sufficient statistics?

- What are differences between complete statistic and minimal sufficient statistics?
- What is the relationship between complete statistic and ancillary statistics?

- What are differences between complete statistic and minimal sufficient statistics?
- What is the relationship between complete statistic and ancillary statistics?
- 3 What is the characteristic shared among non-constant functions of complete statistics?

- What are differences between complete statistic and minimal sufficient statistics?
- What is the relationship between complete statistic and ancillary statistics?
- What is the characteristic shared among non-constant functions of complete statistics?
- **4** What is the Basu's Theorem?

- What are differences between complete statistic and minimal sufficient statistics?
- What is the relationship between complete statistic and ancillary statistics?
- 3 What is the characteristic shared among non-constant functions of complete statistics?
- **4** What is the Basu's Theorem?
- **5** Any example where Basu's Theorem is helpful?

Definition 3.4.1

The random variable X belongs to an exponential family of distributions, if its pdf/pmf can be written in the form

< 1 k

Definition 3.4.1

The random variable X belongs to an exponential family of distributions, if its pdf/pmf can be written in the form

$$f(x|\boldsymbol{\theta}) = h(x)c(\boldsymbol{\theta}) \exp\left[\sum_{j=1}^{k} w_j(\boldsymbol{\theta})t_j(x)\right]$$

< 1 k

Definition 3.4.1

The random variable X belongs to an exponential family of distributions, if its pdf/pmf can be written in the form

$$f(x|\boldsymbol{\theta}) = h(x)c(\boldsymbol{\theta}) \exp\left[\sum_{j=1}^{k} w_j(\boldsymbol{\theta}) t_j(x)\right]$$

where

•
$$\boldsymbol{\theta} = (\theta_1, \cdots, \theta_d), \ d \leq k.$$

< 47 ▶

Definition 3.4.1

The random variable X belongs to an exponential family of distributions, if its pdf/pmf can be written in the form

$$f(x|\boldsymbol{\theta}) = h(x)c(\boldsymbol{\theta}) \exp\left[\sum_{j=1}^{k} w_j(\boldsymbol{\theta}) t_j(x)\right]$$

where

•
$$\boldsymbol{\theta} = (\theta_1, \cdots, \theta_d), \ d \leq k.$$

• $w_j(\theta), \ j \in \{1, \cdots, k\}$ are functions of θ alone.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Definition 3.4.1

The random variable X belongs to an exponential family of distributions, if its pdf/pmf can be written in the form

$$f(x|\boldsymbol{\theta}) = h(x)c(\boldsymbol{\theta}) \exp\left[\sum_{j=1}^{k} w_j(\boldsymbol{\theta})t_j(x)\right]$$

where

- $\boldsymbol{\theta} = (\theta_1, \cdots, \theta_d), \ d \leq k.$
- $w_j(\theta), \ j \in \{1, \cdots, k\}$ are functions of θ alone.
- and $t_j(x)$ and h(x) only involve data.

Definition 3.4.1

The random variable X belongs to an exponential family of distributions, if its pdf/pmf can be written in the form

$$f(x|\boldsymbol{\theta}) = h(x)c(\boldsymbol{\theta}) \exp\left[\sum_{j=1}^{k} w_j(\boldsymbol{\theta})t_j(x)\right]$$

where

- $\boldsymbol{\theta} = (\theta_1, \cdots, \theta_d), \ d \leq k.$
- $w_j(\theta), \ j \in \{1, \cdots, k\}$ are functions of θ alone.
- and $t_j(x)$ and h(x) only involve data.

Problem

Show that a Poisson(λ) ($\lambda > 0$) belongs to the exponential family

< 回 > < 三 > < 三

Problem

Show that a Poisson(λ) ($\lambda > 0$) belongs to the exponential family

Proof

$$f_X(x|\lambda) = \frac{e^{-\lambda}\lambda^x}{x!}$$

Problem

Show that a Poisson(λ) ($\lambda > 0$) belongs to the exponential family

Proof

$$f_X(x|\lambda) = \frac{e^{-\lambda}\lambda^x}{x!}$$
$$= \frac{1}{x!}e^{-\lambda}\exp\left(\log\lambda^x\right)$$

Problem

Show that a Poisson(λ) ($\lambda > 0$) belongs to the exponential family

Proof

$$f_X(x|\lambda) = \frac{e^{-\lambda}\lambda^x}{x!}$$

= $\frac{1}{x!}e^{-\lambda}\exp(\log\lambda^x)$
= $\frac{1}{x!}e^{-\lambda}\exp(x\log\lambda)$

Problem

Show that a Poisson(λ) ($\lambda > 0$) belongs to the exponential family

Proof

$$f_X(x|\lambda) = \frac{e^{-\lambda}\lambda^x}{x!}$$

= $\frac{1}{x!}e^{-\lambda}\exp(\log\lambda^x)$
= $\frac{1}{x!}e^{-\lambda}\exp(x\log\lambda)$

Define h(x) = 1/x!, $c(\lambda) = e^{-\lambda}$, $w(\lambda) = \log \lambda$, and t(x) = x, then

Problem

Show that a Poisson(λ) ($\lambda > 0$) belongs to the exponential family

Proof

$$f_X(x|\lambda) = \frac{e^{-\lambda}\lambda^x}{x!}$$

= $\frac{1}{x!}e^{-\lambda}\exp(\log\lambda^x)$
= $\frac{1}{x!}e^{-\lambda}\exp(x\log\lambda)$

Define h(x) = 1/x!, $c(\lambda) = e^{-\lambda}$, $w(\lambda) = \log \lambda$, and t(x) = x, then

$$f_X(x|\lambda) = h(x)c(\lambda)\exp[w(\lambda)t(x)]$$

$$f_X(x|\boldsymbol{\theta} = (\mu, \sigma^2)) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right]$$

$$f_X(x|\boldsymbol{\theta} = (\mu, \sigma^2)) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right] \\ = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{x^2}{2\sigma^2} + \frac{2\mu x}{2\sigma^2} - \frac{\mu^2}{2\sigma^2}\right]$$

$$f_X(x|\boldsymbol{\theta} = (\mu, \sigma^2)) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right] \\ = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{x^2}{2\sigma^2} + \frac{2\mu x}{2\sigma^2} - \frac{\mu^2}{2\sigma^2}\right]$$

Define
$$h(x) = 1$$
, $c(\boldsymbol{\theta}) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{\mu^2}{2\sigma^2}\right]$,

$$f_X(x|\boldsymbol{\theta} = (\mu, \sigma^2)) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right]$$
$$= \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{x^2}{2\sigma^2} + \frac{2\mu x}{2\sigma^2} - \frac{\mu^2}{2\sigma^2}\right]$$

Define
$$h(x) = 1$$
, $c(\theta) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{\mu^2}{2\sigma^2}\right]$,
 $k = 2$, $w_1(\theta) = \frac{\mu}{\sigma^2}$, $t_1(x) = x$, $w_2(\theta) = -\frac{1}{2\sigma^2}$, $t_2(x) = x^2$, then

$$f_X(x|\boldsymbol{\theta} = (\mu, \sigma^2)) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right]$$
$$= \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{x^2}{2\sigma^2} + \frac{2\mu x}{2\sigma^2} - \frac{\mu^2}{2\sigma^2}\right]$$

Define
$$h(x) = 1$$
, $c(\theta) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{\mu^2}{2\sigma^2}\right]$,
 $k = 2$, $w_1(\theta) = \frac{\mu}{\sigma^2}$, $t_1(x) = x$, $w_2(\theta) = -\frac{1}{2\sigma^2}$, $t_2(x) = x^2$, then

$$f_X(x|\boldsymbol{\theta}) = h(x)c(\boldsymbol{\theta}) \exp\left[\sum_{j=1}^k w_j(\boldsymbol{\theta})t_j(x)\right]$$

A Specialized Normal Distribution : $\mathcal{N}(\mu, \mu^2)$

$$f_X(x|\mu) = \frac{1}{\sqrt{2\pi\mu^2}} \exp\left[-\frac{(x-\mu)^2}{2\mu^2}\right]$$

3 🖒 🖌 3

A Specialized Normal Distribution : $\mathcal{N}(\mu, \mu^2)$

$$f_X(x|\mu) = \frac{1}{\sqrt{2\pi\mu^2}} \exp\left[-\frac{(x-\mu)^2}{2\mu^2}\right]$$
$$= \frac{1}{\sqrt{2\pi\mu^2}} \exp\left[-\frac{x^2}{2\mu^2} + \frac{2\mu x}{2\mu^2} - \frac{\mu^2}{2\mu^2}\right]$$

э

∃ ► < ∃</p>

A Specialized Normal Distribution : $\mathcal{N}(\mu, \mu^2)$

$$f_X(x|\mu) = \frac{1}{\sqrt{2\pi\mu^2}} \exp\left[-\frac{(x-\mu)^2}{2\mu^2}\right]$$

= $\frac{1}{\sqrt{2\pi\mu^2}} \exp\left[-\frac{x^2}{2\mu^2} + \frac{2\mu x}{2\mu^2} - \frac{\mu^2}{2\mu^2}\right]$
= $\frac{1}{\sqrt{2\pi\mu^2}} \exp\left(-\frac{1}{2}\right) \exp\left[-\frac{1}{2\mu^2}x^2 + \frac{1}{\mu}x\right]$

э

∃ ► < ∃</p>

A Specialized Normal Distribution : $\mathcal{N}(\mu, \mu^2)$

$$\begin{split} f_X(x|\mu) &= \frac{1}{\sqrt{2\pi\mu^2}} \exp\left[-\frac{(x-\mu)^2}{2\mu^2}\right] \\ &= \frac{1}{\sqrt{2\pi\mu^2}} \exp\left[-\frac{x^2}{2\mu^2} + \frac{2\mu x}{2\mu^2} - \frac{\mu^2}{2\mu^2}\right] \\ &= \frac{1}{\sqrt{2\pi\mu^2}} \exp\left(-\frac{1}{2}\right) \exp\left[-\frac{1}{2\mu^2}x^2 + \frac{1}{\mu}x\right] \end{split}$$
Define $h(x) = 1, \ c(\mu) = \frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{1}{2}},$

э

< □ > < 同 > < 回 > < 回 > < 回 >

A Specialized Normal Distribution : $\mathcal{N}(\mu,\mu^2)$

$$f_X(x|\mu) = \frac{1}{\sqrt{2\pi\mu^2}} \exp\left[-\frac{(x-\mu)^2}{2\mu^2}\right]$$

= $\frac{1}{\sqrt{2\pi\mu^2}} \exp\left[-\frac{x^2}{2\mu^2} + \frac{2\mu x}{2\mu^2} - \frac{\mu^2}{2\mu^2}\right]$
= $\frac{1}{\sqrt{2\pi\mu^2}} \exp\left(-\frac{1}{2}\right) \exp\left[-\frac{1}{2\mu^2}x^2 + \frac{1}{\mu}x\right]$

Define h(x) = 1, $c(\mu) = \frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{1}{2}}$, k = 2, $w_1(\mu) = \frac{1}{\mu}$, $t_1(x) = x$, $w_2(\mu) = -\frac{1}{2\mu^2}$, $t_2(x) = x^2$, then

- 4 四 ト - 4 回 ト

A Specialized Normal Distribution : $\mathcal{N}(\mu,\mu^2)$

$$f_X(x|\mu) = \frac{1}{\sqrt{2\pi\mu^2}} \exp\left[-\frac{(x-\mu)^2}{2\mu^2}\right]$$

= $\frac{1}{\sqrt{2\pi\mu^2}} \exp\left[-\frac{x^2}{2\mu^2} + \frac{2\mu x}{2\mu^2} - \frac{\mu^2}{2\mu^2}\right]$
= $\frac{1}{\sqrt{2\pi\mu^2}} \exp\left(-\frac{1}{2}\right) \exp\left[-\frac{1}{2\mu^2}x^2 + \frac{1}{\mu}x\right]$

Define h(x) = 1, $c(\mu) = \frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{1}{2}}$, k = 2, $w_1(\mu) = \frac{1}{\mu}$, $t_1(x) = x$, $w_2(\mu) = -\frac{1}{2\mu^2}$, $t_2(x) = x^2$, then

$$f_X(x|\mu) = h(x)c(\mu) \exp\left[\sum_{j=1}^k w_j(\mu)t_j(x)
ight]$$

Definition

For an exponential family, if $d = \dim(\theta) < k$, then this exponential family is called *curved exponential family*. if $d = \dim(\theta) = k$, then this exponential family is called *full exponential family*.

Definition

For an exponential family, if $d = \dim(\theta) < k$, then this exponential family is called *curved exponential family*. if $d = \dim(\theta) = k$, then this exponential family is called *full exponential family*.

Examples

Poisson(λ), λ > 0 is a full exponential family

・ 何 ト ・ ヨ ト ・ ヨ ト

Definition

For an exponential family, if $d = \dim(\theta) < k$, then this exponential family is called *curved exponential family*. if $d = \dim(\theta) = k$, then this exponential family is called *full exponential family*.

Examples

- Poisson(λ), λ > 0 is a full exponential family
- $\mathcal{N}(\mu,\sigma^2), \mu \in \mathbb{R}, \sigma > 0$ is also a full exponential family

(4) (日本)

Definition

For an exponential family, if $d = \dim(\theta) < k$, then this exponential family is called *curved exponential family*. if $d = \dim(\theta) = k$, then this exponential family is called *full exponential family*.

Examples

- Poisson(λ), $\lambda > 0$ is a full exponential family
- $\mathcal{N}(\mu,\sigma^2), \mu \in \mathbb{R}, \sigma > 0$ is also a full exponential family
- $\mathcal{N}(\mu,\mu), \mu \in \mathbb{R}$ is also a curved exponential family

< 日 > < 同 > < 回 > < 回 > < 回 > <

Alternative Parametrization of Exponential Families

An alternative parametrization of the exponential family of distributions in terms of "natural" or "canonical" parameters can be written as follows.

Alternative Parametrization of Exponential Families

An alternative parametrization of the exponential family of distributions in terms of "natural" or "canonical" parameters can be written as follows.

$$f_X(x|\boldsymbol{\eta}) = h(x)c^*(\boldsymbol{\eta})\exp\left[\sum_{j=1}^k \boldsymbol{\eta} t_j(x)\right]$$

Alternative Parametrization of Exponential Families

An alternative parametrization of the exponential family of distributions in terms of "natural" or "canonical" parameters can be written as follows.

$$f_X(x|\boldsymbol{\eta}) = h(x)c^*(\boldsymbol{\eta})\exp\left[\sum_{j=1}^k \boldsymbol{\eta} t_j(x)\right]$$

The alternative parametrization can be achieved by defining $\eta_i = w_j(\theta)$ from the following equation,
Alternative Parametrization of Exponential Families

An alternative parametrization of the exponential family of distributions in terms of "natural" or "canonical" parameters can be written as follows.

$$f_X(x|oldsymbol{\eta}) = h(x)c^*(oldsymbol{\eta})\exp\left[\sum_{j=1}^koldsymbol{\eta}t_j(x)
ight]$$

The alternative parametrization can be achieved by defining $\eta_i = w_j(\theta)$ from the following equation,

$$f_X(x|\boldsymbol{ heta}) = h(x)c(\boldsymbol{ heta}) \exp\left[\sum_{j=1}^k w_j(\boldsymbol{ heta})t_j(x)\right]$$

where $c^*(\eta) = c \circ w(\theta)$. This alternative parametrization is most often used in a GLM (Generalized Linear Model) course.

Theorem 6.2.10

- Let $X_1, \cdots, X_n \xrightarrow{\text{i.i.d.}} f_X(x|\theta)$ that belongs to an exponential family given by

Theorem 6.2.10

- Let $X_1, \cdots, X_n \xrightarrow{\text{i.i.d.}} f_X(x|\theta)$ that belongs to an exponential family given by

$$f_X(x|\boldsymbol{\theta}) = h(x)c(\boldsymbol{\theta}) \exp\left[\sum_{j=1}^k w_j(\boldsymbol{\theta})t_j(x)\right]$$

Theorem 6.2.10

- Let $X_1, \cdots, X_n \xrightarrow{\text{i.i.d.}} f_X(x|\theta)$ that belongs to an exponential family given by

$$f_X(x|\boldsymbol{\theta}) = h(x)c(\boldsymbol{\theta}) \exp\left[\sum_{j=1}^k w_j(\boldsymbol{\theta})t_j(x)\right]$$

where $\boldsymbol{\theta} = (\theta_1, \cdots, \theta_d), \ d \leq k$.

• Then the following $T(\mathbf{X})$ is a sufficient statistic for $\boldsymbol{\theta}$.

Theorem 6.2.10

- Let $X_1, \cdots, X_n \xrightarrow{\text{i.i.d.}} f_X(x|\theta)$ that belongs to an exponential family given by

$$f_X(x|\boldsymbol{ heta}) = h(x)c(\boldsymbol{ heta}) \exp\left[\sum_{j=1}^k w_j(\boldsymbol{ heta})t_j(x)\right]$$

where $\boldsymbol{\theta} = (\theta_1, \cdots, \theta_d), \ d \leq k$.

• Then the following $T(\mathbf{X})$ is a sufficient statistic for $\boldsymbol{\theta}$.

$$T(\mathbf{X}) = \left(\sum_{j=1}^{n} t_1(X_j), \cdots, \sum_{j=1}^{n} t_k(X_j)\right)$$

Sufficient Statistic for Normal Distribution

Problem

Let $X_1, \dots, X_n \xrightarrow{\text{i.i.d.}} \mathcal{N}(\mu, \sigma^2)$, where $\mu \in \mathbb{R}$, and σ^2 is known. Find a sufficient statistic for μ .

э

∃ ► < ∃ ►</p>

$$f_X(x|\mu) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right]$$

$$f_X(x|\mu) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right]$$
$$= \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{x^2}{2\sigma^2}\right) \exp\left(-\frac{\mu^2}{2\sigma^2}\right) \exp\left(\frac{\mu}{\sigma^2}x\right)$$

$$f_X(x|\mu) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right]$$
$$= \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{x^2}{2\sigma^2}\right) \exp\left(-\frac{\mu^2}{2\sigma^2}\right) \exp\left(\frac{\mu}{\sigma^2}x\right)$$
$$= h(x)c(\mu) \exp\left[w(\mu)t(x)\right]$$

$$f_X(x|\mu) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right]$$

= $\frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{x^2}{2\sigma^2}\right) \exp\left(-\frac{\mu^2}{2\sigma^2}\right) \exp\left(\frac{\mu}{\sigma^2}x\right)$
= $h(x)c(\mu) \exp\left[w(\mu)t(x)\right]$

where

$$\begin{cases} h(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{x^2}{2\sigma^2}\right] \end{cases}$$

$$f_X(x|\mu) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right]$$

= $\frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{x^2}{2\sigma^2}\right) \exp\left(-\frac{\mu^2}{2\sigma^2}\right) \exp\left(\frac{\mu}{\sigma^2}x\right)$
= $h(x)c(\mu) \exp\left[w(\mu)t(x)\right]$

where

$$\begin{cases} h(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{x^2}{2\sigma^2}\right] \\ c(\mu) = \exp\left(-\frac{\mu^2}{2\sigma^2}\right) \end{cases}$$

$$f_X(x|\mu) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right]$$
$$= \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{x^2}{2\sigma^2}\right) \exp\left(-\frac{\mu^2}{2\sigma^2}\right) \exp\left(\frac{\mu}{\sigma^2}x\right)$$
$$= h(x)c(\mu) \exp\left[w(\mu)t(x)\right]$$

where

$$\begin{cases} h(x) &= \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{x^2}{2\sigma^2}\right] \\ c(\mu) &= \exp\left(-\frac{\mu^2}{2\sigma^2}\right) \\ w(\mu) &= \mu/\sigma^2 \end{cases}$$

$$f_X(x|\mu) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right]$$
$$= \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{x^2}{2\sigma^2}\right) \exp\left(-\frac{\mu^2}{2\sigma^2}\right) \exp\left(\frac{\mu}{\sigma^2}x\right)$$
$$= h(x)c(\mu) \exp\left[w(\mu)t(x)\right]$$

where

$$\begin{cases} h(x) &= \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{x^2}{2\sigma^2}\right] \\ c(\mu) &= \exp\left(-\frac{\mu^2}{2\sigma^2}\right) \\ w(\mu) &= \mu/\sigma^2 \\ t(x) &= x \end{cases}$$

Hyun Min Kang

$$f_X(x|\mu) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right]$$

= $\frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{x^2}{2\sigma^2}\right) \exp\left(-\frac{\mu^2}{2\sigma^2}\right) \exp\left(\frac{\mu}{\sigma^2}x\right)$
= $h(x)c(\mu) \exp\left[w(\mu)t(x)\right]$

where

$$\begin{cases} h(x) &= \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{x^2}{2\sigma^2}\right] \\ c(\mu) &= \exp\left(-\frac{\mu^2}{2\sigma^2}\right) \\ w(\mu) &= \mu/\sigma^2 \\ t(x) &= x \end{cases}$$

Therefore, $T(\mathbf{X}) = \sum_{i=1}^{n} t(X_i) = \sum_{i=1}^{n} X_i$ is a sufficient statistic for μ by Theorem 6.2.10.

Suppose X_1, \dots, X_n is a random sample from pdf or pmf $f_X(x|\theta)$ where

∃ ► < ∃ ►

< 4[™] >

э

Suppose X_1, \dots, X_n is a random sample from pdf or pmf $f_X(x|\theta)$ where

$$f_X(x|\boldsymbol{\theta}) = h(x)c(\boldsymbol{\theta}) \exp\left[\sum_{j=1}^k w_j(\boldsymbol{\theta})t_j(x)\right]$$

∃ ► < ∃ ►

< 4[™] >

э

Suppose X_1, \cdots, X_n is a random sample from pdf or pmf $f_X(x|\theta)$ where

$$f_X(x|\boldsymbol{ heta}) = h(x)c(\boldsymbol{ heta}) \exp\left[\sum_{j=1}^k w_j(\boldsymbol{ heta})t_j(x)
ight]$$

is a member of an exponential family. Define a statistic $T(\mathbf{X})$ by

Suppose X_1, \cdots, X_n is a random sample from pdf or pmf $f_X(x|\theta)$ where

$$f_X(x|oldsymbol{ heta}) = h(x)c(oldsymbol{ heta}) \exp\left[\sum_{j=1}^k w_j(oldsymbol{ heta})t_j(x)
ight]$$

is a member of an exponential family. Define a statistic $T(\mathbf{X})$ by

$$\mathbf{T}(\mathbf{X}) = \left(\sum_{j=1}^{n} t_1(X_j), \cdots, \sum_{j=1}^{n} t_k(X_j)\right)$$

Suppose X_1, \cdots, X_n is a random sample from pdf or pmf $f_X(x|\theta)$ where

$$f_X(x|oldsymbol{ heta}) = h(x)c(oldsymbol{ heta}) \exp\left[\sum_{j=1}^k w_j(oldsymbol{ heta})t_j(x)
ight]$$

is a member of an exponential family. Define a statistic $T(\mathbf{X})$ by

$$\mathbf{T}(\mathbf{X}) = \left(\sum_{j=1}^{n} t_1(X_j), \cdots, \sum_{j=1}^{n} t_k(X_j)\right)$$

If the set $\{w_1(\boldsymbol{\theta}), \dots, w_k(\boldsymbol{\theta}), \forall \boldsymbol{\theta} \in \boldsymbol{\Theta}\}$ contains an open subset of \mathbb{R}^k , then the distribution of $\mathbf{T}(\mathbf{X})$ is an exponential family of the form

Suppose X_1, \dots, X_n is a random sample from pdf or pmf $f_X(x|\theta)$ where

$$f_X(x|oldsymbol{ heta}) = h(x)c(oldsymbol{ heta}) \exp\left[\sum_{j=1}^k w_j(oldsymbol{ heta})t_j(x)
ight]$$

is a member of an exponential family. Define a statistic $T(\mathbf{X})$ by

$$\mathbf{T}(\mathbf{X}) = \left(\sum_{j=1}^{n} t_1(X_j), \cdots, \sum_{j=1}^{n} t_k(X_j)\right)$$

If the set $\{w_1(\boldsymbol{\theta}), \cdots, w_k(\boldsymbol{\theta}), \forall \boldsymbol{\theta} \in \boldsymbol{\Theta}\}$ contains an open subset of \mathbb{R}^k , then the distribution of $\mathbf{T}(\mathbf{X})$ is an exponential family of the form

$$f_T(u_1, \cdots, u_k | \boldsymbol{\theta}) = H(u_1, \cdots, u_k) [c(\boldsymbol{\theta})]^n \exp\left[\sum_{j=1}^k w_j(\boldsymbol{\theta}) u_i\right]$$

Suppose X_1, \cdots, X_n is a random sample from pdf or pmf $f_X(x|\theta)$ where

э

ヨト・イヨト

Image: A matrix and a matrix

Suppose X_1, \cdots, X_n is a random sample from pdf or pmf $f_X(x|\theta)$ where

$$f_X(x|oldsymbol{ heta}) = h(x)c(oldsymbol{ heta}) \exp\left[\sum_{j=1}^k w_j(oldsymbol{ heta})t_j(x)
ight]$$

is a member of an exponential family.

Suppose X_1, \cdots, X_n is a random sample from pdf or pmf $f_X(x|\theta)$ where

$$f_X(x|\boldsymbol{\theta}) = h(x)c(\boldsymbol{\theta}) \exp\left[\sum_{j=1}^k w_j(\boldsymbol{\theta})t_j(x)\right]$$

is a member of an exponential family. Then the statistic $T(\mathbf{X})$

$$\mathbf{T}(\mathbf{X}) = \left(\sum_{j=1}^{n} t_1(X_j), \cdots, \sum_{j=1}^{n} t_k(X_j)\right)$$

is complete as long as

- - - - -

Suppose X_1, \dots, X_n is a random sample from pdf or pmf $f_X(x|\theta)$ where

$$f_X(x|\boldsymbol{\theta}) = h(x)c(\boldsymbol{\theta}) \exp\left[\sum_{j=1}^k w_j(\boldsymbol{\theta})t_j(x)\right]$$

is a member of an exponential family. Then the statistic $T(\mathbf{X})$

$$\mathbf{T}(\mathbf{X}) = \left(\sum_{j=1}^{n} t_1(X_j), \cdots, \sum_{j=1}^{n} t_k(X_j)\right)$$

is complete as long as the parameter space $oldsymbol{\Theta}$ contains an open set in \mathbb{R}^k

Summary

What is the "open set"?

Definition : Open Set

A set A is open in \mathbb{R}^k of for every $x \in A$, there exists a ϵ -ball $B(x, \epsilon)$ around x such that $B(x, \epsilon) \subset A$.

What is the "open set"?

Definition : Open Set

A set A is open in \mathbb{R}^k of for every $x \in A$, there exists a ϵ -ball $B(x, \epsilon)$ around x such that $B(x, \epsilon) \subset A$.

$$B(x,\epsilon) = \{y : |y - x| < \epsilon, \ y \in \mathbb{R}^k\}$$

What is the "open set"?

Definition : Open Set

A set A is open in \mathbb{R}^k of for every $x \in A$, there exists a ϵ -ball $B(x, \epsilon)$ around x such that $B(x, \epsilon) \subset A$.

$$B(x,\epsilon) = \{y : |y - x| < \epsilon, \ y \in \mathbb{R}^k\}$$

•
$$A = (-1, 1)$$
 : A is open in \mathbb{R}

э

- A = (-1, 1) : A is open in $\mathbb R$
- A = [-1, 1] : A is not open in $\mathbb R$

э

ヨト・イヨト

< A > <

- A = (-1, 1) : A is open in $\mathbb R$
- A = [-1,1] : A is not open in $\mathbb R$
- $A=(-\infty,0)\times \mathbb{R}$: A is open in \mathbb{R}^2

< 1 k

- A = (-1, 1) : A is open in $\mathbb R$
- A = [-1,1] : A is not open in $\mathbb R$
- $A=(-\infty,0)\times \mathbb{R}$: A is open in \mathbb{R}^2
- $A=(-\infty,0]\times\mathbb{R}$: A is not open in \mathbb{R}^2

- A = (-1, 1) : A is open in $\mathbb R$
- A = [-1,1] : A is not open in $\mathbb R$
- $A=(-\infty,0)\times \mathbb{R}$: A is open in \mathbb{R}^2
- $A=(-\infty,0]\times\mathbb{R}$: A is not open in \mathbb{R}^2
- $A=\{(x,y):x\in(-1,1),y=0\}$: A is not open in \mathbb{R}^2

- A = (-1, 1) : A is open in \mathbb{R}
- A = [-1,1] : A is not open in $\mathbb R$
- $A=(-\infty,0)\times \mathbb{R}$: A is open in \mathbb{R}^2
- $A = (-\infty, 0] \times \mathbb{R}$: A is not open in \mathbb{R}^2
- $A=\{(x,y):x\in(-1,1),y=0\}$: A is not open in \mathbb{R}^2
- $A=\{(x,y):x\in\mathbb{R},y\in x^2\}$: A is not open in \mathbb{R}^2

- A = (-1, 1) : A is open in \mathbb{R}
- A = [-1,1] : A is not open in $\mathbb R$
- $A=(-\infty,0)\times \mathbb{R}$: A is open in \mathbb{R}^2
- $A = (-\infty, 0] \times \mathbb{R}$: A is not open in \mathbb{R}^2
- $A = \{(x,y) : x \in (-1,1), y = 0\}$: A is not open in \mathbb{R}^2
- $A=\{(x,y):x\in\mathbb{R},y\in x^2\}$: A is not open in \mathbb{R}^2
- $A = \{(x, y) : x^2 + y^2 < 1\}$: A is open in \mathbb{R}^2

Exponential Family Example

Problem

 $X_1, \dots, X_n \xrightarrow{\text{i.i.d.}} f_X(x|\theta) = \theta x^{\theta-1}$ where $0 < x < 1, \theta > 0$. Is $\prod_{i=1}^n X_i$ (1) a sufficient statistic? (2) a complete statistic? (3) a minimal sufficient statistic?

▲ ศ 🛛 ト ▲ 三 ト

Exponential Family Example

Problem

 $X_1, \dots, X_n \xrightarrow{\text{i.i.d.}} f_X(x|\theta) = \theta x^{\theta-1}$ where $0 < x < 1, \theta > 0$. Is $\prod_{i=1}^n X_i$ (1) a sufficient statistic? (2) a complete statistic? (3) a minimal sufficient statistic?

How to solve it

- Show that $f_X(x|\theta)$ is a member of an exponential family.

< ロ > < 同 > < 回 > < 回 > < 回 >

э
Exponential Family Example

Problem

 $X_1, \dots, X_n \xrightarrow{\text{i.i.d.}} f_X(x|\theta) = \theta x^{\theta-1}$ where $0 < x < 1, \theta > 0$. Is $\prod_{i=1}^n X_i$ (1) a sufficient statistic? (2) a complete statistic? (3) a minimal sufficient statistic?

How to solve it

- Show that $f_X(x|\theta)$ is a member of an exponential family.
- Apply Theorem 6.2.10 to obtain a sufficient statistic and see if it is equivalent to or related to ∏ⁿ_{i=1} X_i.

э

Exponential Family Example

Problem

 $X_1, \dots, X_n \xrightarrow{\text{i.i.d.}} f_X(x|\theta) = \theta x^{\theta-1}$ where $0 < x < 1, \theta > 0$. Is $\prod_{i=1}^n X_i$ (1) a sufficient statistic? (2) a complete statistic? (3) a minimal sufficient statistic?

How to solve it

- Show that $f_X(x|\theta)$ is a member of an exponential family.
- Apply Theorem 6.2.10 to obtain a sufficient statistic and see if it is equivalent to or related to ∏ⁿ_{i=1} X_i.
- Apply Theorem 6.2.25 to show that it is complete.

э

Exponential Family Example

Problem

 $X_1, \dots, X_n \xrightarrow{\text{i.i.d.}} f_X(x|\theta) = \theta x^{\theta-1}$ where $0 < x < 1, \theta > 0$. Is $\prod_{i=1}^n X_i$ (1) a sufficient statistic? (2) a complete statistic? (3) a minimal sufficient statistic?

How to solve it

- Show that $f_X(x|\theta)$ is a member of an exponential family.
- Apply Theorem 6.2.10 to obtain a sufficient statistic and see if it is equivalent to or related to ∏ⁿ_{i=1} X_i.
- Apply Theorem 6.2.25 to show that it is complete.
- If they are both sufficient and complete, Theorem 6.2.28 will imply that it is also a minimal sufficient statistic.

э

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

$$f_X(x|\theta) = \theta x^{\theta-1} I(0 < x < 1)$$

æ

$$f_X(x|\theta) = \theta x^{\theta-1} I(0 < x < 1)$$

= $I(0 < x < 1) x^{-1} \theta x^{\theta}$

æ

$$f_X(x|\theta) = \theta x^{\theta-1} I(0 < x < 1)$$

= $I(0 < x < 1) x^{-1} \theta x^{\theta}$
= $I(0 < x < 1) x^{-1} \theta \exp(\log x^{\theta})$

æ

Summary

$f_X(x|\theta)$ belong to an exponential family

$$f_X(x|\theta) = \theta x^{\theta-1} I(0 < x < 1)$$

= $I(0 < x < 1) x^{-1} \theta x^{\theta}$
= $I(0 < x < 1) x^{-1} \theta \exp(\log x^{\theta})$
= $I(0 < x < 1) x^{-1} \theta \exp(\theta \log x)$

< □ > < 同 > < 回 > < 回 > < 回 >

$$\begin{aligned} f_X(x|\theta) &= \theta x^{\theta-1} I(0 < x < 1) \\ &= I(0 < x < 1) x^{-1} \theta x^{\theta} \\ &= I(0 < x < 1) x^{-1} \theta \exp(\log x^{\theta}) \\ &= I(0 < x < 1) x^{-1} \theta \exp(\theta \log x) \\ &= h(x) c(\theta) \exp(w(\theta) t(x)) \end{aligned}$$

where

$$f(x) = I(0 < x < 1)x^{-1}$$

э

ヨト・イヨト

< 4[™] ▶

$$\begin{aligned} f_X(x|\theta) &= \theta x^{\theta-1} I(0 < x < 1) \\ &= I(0 < x < 1) x^{-1} \theta x^{\theta} \\ &= I(0 < x < 1) x^{-1} \theta \exp(\log x^{\theta}) \\ &= I(0 < x < 1) x^{-1} \theta \exp(\theta \log x) \\ &= h(x) c(\theta) \exp(w(\theta) t(x)) \end{aligned}$$

where

$$\begin{cases} h(x) = I(0 < x < 1)x^{-1} \\ c(\theta) = \theta \end{cases}$$

æ

$$\begin{aligned} f_X(x|\theta) &= \theta x^{\theta-1} I(0 < x < 1) \\ &= I(0 < x < 1) x^{-1} \theta x^{\theta} \\ &= I(0 < x < 1) x^{-1} \theta \exp(\log x^{\theta}) \\ &= I(0 < x < 1) x^{-1} \theta \exp(\theta \log x) \\ &= h(x) c(\theta) \exp(w(\theta) t(x)) \end{aligned}$$

where

$$\left\{ \begin{array}{l} h(x) = I(0 < x < 1)x^{-1} \\ c(\theta) = \theta \\ w(\theta) = \theta \end{array} \right.$$

Hyun Min Kang

January 31st, 2013 17 / 20

< □ > < 同 > < 回 > < 回 > < 回 >

э

$$f_X(x|\theta) = \theta x^{\theta-1} I(0 < x < 1)$$

= $I(0 < x < 1) x^{-1} \theta x^{\theta}$
= $I(0 < x < 1) x^{-1} \theta \exp(\log x^{\theta})$
= $I(0 < x < 1) x^{-1} \theta \exp(\theta \log x)$
= $h(x) c(\theta) \exp(w(\theta) t(x))$

where

$$\begin{cases} h(x) = I(0 < x < 1)x^{-1} \\ c(\theta) = \theta \\ w(\theta) = \theta \\ t(x) = \log x \end{cases}$$

Therefore, $f_X(x|\theta)$ belongs to an exponential family.

э

$$f_X(x|\theta) = h(x)c(\theta)\exp(w(\theta)t(x))$$

3

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

$$f_X(x|\theta) = h(x)c(\theta)\exp(w(\theta)t(x))$$

$$h(x) = I(0 < x < 1)x^{-1}$$

2

$$f_X(x|\theta) = h(x)c(\theta) \exp(w(\theta)t(x))$$

$$\begin{cases}
h(x) = I(0 < x < 1)x^{-1} \\
c(\theta) = \theta
\end{cases}$$

æ

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

$$f_X(x|\theta) = h(x)c(\theta)\exp(w(\theta)t(x))$$

$$\begin{cases} h(x) = I(0 < x < 1)x^{-1} \\ c(\theta) = \theta \\ w(\theta) = \theta \end{cases}$$

2

$$f_X(x|\theta) = h(x)c(\theta)\exp(w(\theta)t(x))$$

$$\begin{cases} h(x) = I(0 < x < 1)x^{-1} \\ c(\theta) = \theta \\ w(\theta) = \theta \\ t(x) = \log x \end{cases}$$

< □ > < 同 > < 回 > < 回 > < 回 >

æ

$$f_X(x|\theta) = h(x)c(\theta)\exp(w(\theta)t(x))$$

$$\begin{cases} h(x) = I(0 < x < 1)x^{-1} \\ c(\theta) = \theta \\ w(\theta) = \theta \\ t(x) = \log x \end{cases}$$

By Theorem 6.2.10, $T(\mathbf{X}) = \sum_{i=1}^{n} t(X_i) = \sum_{i=1}^{n} \log X_i$ is a sufficient statistic for θ .

э

∃ ► < ∃ ►

< 1 k

$$f_X(x|\theta) = h(x)c(\theta)\exp(w(\theta)t(x))$$

$$\begin{cases} h(x) = I(0 < x < 1)x^{-1} \\ c(\theta) = \theta \\ w(\theta) = \theta \\ t(x) = \log x \end{cases}$$

By Theorem 6.2.10, $T(\mathbf{X}) = \sum_{i=1}^{n} t(X_i) = \sum_{i=1}^{n} \log X_i$ is a sufficient statistic for θ .

$$\prod_{i=1}^{n} X_{i} = \exp\left(\log\prod_{i=1}^{n} X_{i}\right) = \exp\left(\sum_{i=1}^{n} \log X_{i}\right) = e^{T(\mathbf{X})}$$

э

< 1 k

$$f_X(x|\theta) = h(x)c(\theta)\exp(w(\theta)t(x))$$

$$\begin{cases} h(x) = I(0 < x < 1)x^{-1} \\ c(\theta) = \theta \\ w(\theta) = \theta \\ t(x) = \log x \end{cases}$$

By Theorem 6.2.10, $T(\mathbf{X}) = \sum_{i=1}^{n} t(X_i) = \sum_{i=1}^{n} \log X_i$ is a sufficient statistic for θ .

$$\prod_{i=1}^{n} X_{i} = \exp\left(\log\prod_{i=1}^{n} X_{i}\right) = \exp\left(\sum_{i=1}^{n} \log X_{i}\right) = e^{T(\mathbf{X})}$$

Because $\prod_{i=1}^{n} X_i$ is an one-to-one function of $T(\mathbf{X})$, it is also a sufficient statistic.

Hyun Min Kang

$T(\mathbf{X})$ is a complete statistic

Let $A = \{w(\theta) : \theta \in \Omega\} = \{\theta : \theta > 0\}$. A contains an open subset in \mathbb{R} .

$T(\mathbf{X})$ is a complete statistic

Let $A = \{w(\theta) : \theta \in \Omega\} = \{\theta : \theta > 0\}$. A contains an open subset in \mathbb{R} . By Theorem 6.2.25, $T(\mathbf{X}) = \sum_{i=1}^{n} \log X_i$ is a complete statistic for θ .

3 1 4 3 1

< A > <

$T(\mathbf{X})$ is a complete statistic

Let $A = \{w(\theta) : \theta \in \Omega\} = \{\theta : \theta > 0\}$. A contains an open subset in \mathbb{R} . By Theorem 6.2.25, $T(\mathbf{X}) = \sum_{i=1}^{n} \log X_i$ is a complete statistic for θ .

$T(\mathbf{X})$ is a minimal sufficient statistic

By Theorem 6.2.28, because $T(\mathbf{X})$ is both sufficient and complete, it is also minimal sufficient.

▲ ศ 🛛 ト ▲ 三 ト

$T(\mathbf{X})$ is a complete statistic

Let $A = \{w(\theta) : \theta \in \Omega\} = \{\theta : \theta > 0\}$. A contains an open subset in \mathbb{R} . By Theorem 6.2.25, $T(\mathbf{X}) = \sum_{i=1}^{n} \log X_i$ is a complete statistic for θ .

$T(\mathbf{X})$ is a minimal sufficient statistic

By Theorem 6.2.28, because $T(\mathbf{X})$ is both sufficient and complete, it is also minimal sufficient.

$$\prod_{i=1}^{n} X_{i} = e^{T(\mathbf{X})} \text{ is also minimal sufficient and complete}$$

Because
$$\prod_{i=1}^{n} X_{i} = e^{T(\mathbf{X})} \text{ is an one-to-one function of } T(\mathbf{X}), \prod_{i=1}^{n} X_{i} \text{ is sufficient, complete, and minimal sufficient.}}$$

< ロト < 同ト < ヨト < ヨト

Exponential Family

Today

- Curved and full exponential families
- Sufficient statistics for exponential families
- Complete statistics for exponential families

Exponential Family

Today

- Curved and full exponential families
- Sufficient statistics for exponential families
- Complete statistics for exponential families

Next Lecture

Review of Chapter 6