
Biostatistics 666 
Problem Set 1 
 
 
1. Consider a population where allele frequencies differ between the sexes. Assume that there are equal 

numbers of males and females and that genotypes occur in Hardy-Weinberg proportions within 
each sex. Focus on a single di-allelic marker in this population. The marker has allele frequency pM 
= p + ∆ in males and pF = p - ∆ in females, where p=(pF + pM)/2. 

 
a) Calculate offspring genotype frequencies after one generation of random mating. 

 
After one generation of random mating, the genotype frequencies will be 𝑝𝑝2 − Δ2 and (1 − 𝑝𝑝)2 −
Δ2 for homozygotes and 2𝑝𝑝(1 − 𝑝𝑝) + 2Δ2 for heterozygotes. 
 
There are several different ways to arrive at the solution. One possibility is to list all mating type 
frequencies and then, for each one, calculate the probability of each type of offspring being 
generated.  
 
Another simpler possibility is to note that a male and a female gamete must combine to generate 
each offspring. Then, we can calculate the probability of each offspring genotype simply as the 
probability of sampling its constituent alleles, one from a female and another from a male. For 
example, to obtain a homozygous genotype for the allele of interest, the probability is simply 
𝑝𝑝𝐹𝐹𝑝𝑝𝑀𝑀 = (𝑝𝑝 − Δ)(𝑝𝑝 + Δ) = 𝑝𝑝2 − Δ2. 

 
b) How do genotype frequencies differ from those expected under Hardy-Weinberg 

equilibrium? 
 

Compared to HWE expectations, there is an excess of heterozygotes (2Δ2) and a deficit of 
homozygotes (−Δ2 for each class) 

 
c) How many additional generations are required before Hardy-Weinberg equilibrium is 

reached? 
 
Since there is no longer a sex difference in allele frequencies, a single additional generation of 
random mating should ensure Hardy-Weinberg equilibrium is reached. 

 
  



 
2. In a sample of 100 individuals, 97 homozygotes for allele A, 2 homozygotes for allele B and 1 

heterozygote were observed. Conditional on the number of observed A and B alleles, answer the 
following questions: 

 
a) What is the probability of this particular sample configuration? 

 
The probability of any particular configuration can be calculated using the formula below: 

  𝑃𝑃(𝑛𝑛𝐴𝐴𝐴𝐴 = 1|𝑛𝑛𝐴𝐴 = 195,𝑛𝑛𝐴𝐴 = 5,𝑛𝑛 = 100) = 2𝑛𝑛𝐴𝐴𝐴𝐴𝑛𝑛!
𝑛𝑛𝐴𝐴𝐴𝐴!𝑛𝑛𝐴𝐴𝐴𝐴!𝑛𝑛𝐴𝐴𝐴𝐴!

∙ 𝑛𝑛𝐴𝐴!𝑛𝑛𝐴𝐴!
(2𝑛𝑛)!

 
The following table gives the probability of various possible configurations, each calculated using 
the formula above. 

nAA nAB nBB Probability 
97 1 2 .0003826 
95 3 1 .0494860 
93 5 0 .9501314 

Thus, the probability of the observed configuration is .0003826. 

b) What is the probability of observing an equal or greater number of heterozygotes? 
From the table in Part A, we get: 
 
𝑃𝑃(𝑛𝑛𝐴𝐴𝐴𝐴 ≥ 1|𝑛𝑛𝐴𝐴 = 195,𝑛𝑛𝐴𝐴 = 5,𝑛𝑛 = 100) = 1 − 𝑃𝑃(𝑛𝑛𝐴𝐴𝐴𝐴 = 0|𝑛𝑛𝐴𝐴 = 195,𝑛𝑛𝐴𝐴 = 5,𝑛𝑛 = 100) = 1 

 
c) What is the probability of observing a smaller number of heterozygotes? 

 
𝑃𝑃(𝑛𝑛𝐴𝐴𝐴𝐴 < 1|𝑛𝑛𝐴𝐴 = 195,𝑛𝑛𝐴𝐴 = 5,𝑛𝑛 = 100) = 𝑃𝑃(𝑛𝑛𝐴𝐴𝐴𝐴 = 0|𝑛𝑛𝐴𝐴 = 195,𝑛𝑛𝐴𝐴 = 5,𝑛𝑛 = 100) = 0  
 

d) What is the chi-squared statistic for Hardy-Weinberg equilibrium? 
 

Here, we first estimate sample allele frequencies 
 

𝑛𝑛 = 𝑛𝑛𝐴𝐴𝐴𝐴 + 𝑛𝑛𝐴𝐴𝐴𝐴 + 𝑛𝑛𝐴𝐴𝐴𝐴 
 

𝑝𝑝𝐴𝐴 =
2𝑛𝑛𝐴𝐴𝐴𝐴 + 𝑛𝑛𝐴𝐴𝐴𝐴

𝑛𝑛
= 0.975 

 

𝑝𝑝𝐴𝐴 =
2𝑛𝑛𝐴𝐴𝐴𝐴 + 𝑛𝑛𝐴𝐴𝐴𝐴

𝑛𝑛
= 0.025 

 
Then, we estimate expected counts asssuming Hardy-Weinberg equilibrium: 

 
   𝐸𝐸(𝑛𝑛𝐴𝐴𝐴𝐴) = 𝑛𝑛𝑝𝑝𝐴𝐴2 = 95.0625 
 
   𝐸𝐸(𝑛𝑛𝐴𝐴𝐴𝐴) = 𝑛𝑛𝑝𝑝𝐴𝐴2 = 0.0625 
 
   𝐸𝐸(𝑛𝑛𝐴𝐴𝐴𝐴) = 2𝑛𝑛𝑝𝑝𝐴𝐴𝑝𝑝𝐴𝐴 = 4.875 
 

Finally, we compare observed and expected counts to obtain a chi-squared statistic: 
 
   𝜒𝜒2 = ∑ (𝑂𝑂−𝐸𝐸)2

𝐸𝐸
= 63.18 



 
3. Consider two loci in disequilibrium in a large population. Assume that the recombination fraction 

between the two loci is 0.0001.  In how many generations do you expect the disequilibrium coefficient 
D to be halved? 

 
Here, we can use the very simple expectation for the decay of D, which is: 

 
  𝐷𝐷𝐴𝐴𝐴𝐴𝑡𝑡 = (1 − 𝜃𝜃)𝑡𝑡𝐷𝐷𝐴𝐴𝐴𝐴0  
  

We have to solve: 
 
  (1 − 𝜃𝜃)𝑡𝑡 = 0.5 
  

Which gives: 
 

𝑡𝑡 =
𝑙𝑙𝑙𝑙𝑙𝑙(0.5)

𝑙𝑙𝑙𝑙𝑙𝑙(1 − 0.0001)
 

 
And finally: 

 
  𝑡𝑡 = 6931.13 or ~6932 generations 
  

  



 
4. Consider the following set of haplotype frequencies: 

 
pAB = 0.4, pAb = 0.2; paB = 0.2; pab = 0.2 

 
a) Calculate the frequency of alleles A, a, B, and b.  

 
The estimated allele frequencies are pA = 0.6, pa = 0.4, pB = 0.6, pb = 0.4. 
 

b) Calculate D, D’ and Δ2 between the two markers. 
 

DAB = pAB – pApB = 0.40 - 0.36 = 0.04  
 

Since DAB > 0, we have 
 

 𝐷𝐷𝐴𝐴𝐴𝐴′ = 𝐷𝐷𝐴𝐴𝐴𝐴
𝑚𝑚𝑚𝑚𝑛𝑛(𝑝𝑝𝐴𝐴𝑝𝑝𝑏𝑏,𝑝𝑝𝑎𝑎𝑝𝑝𝐴𝐴)

= .04
.24

= .167 
 

And finally: 
 
 Δ2 = 𝐷𝐷𝐴𝐴𝐴𝐴

2

𝑝𝑝𝐴𝐴𝑝𝑝𝑎𝑎𝑝𝑝𝐴𝐴𝑝𝑝𝑏𝑏
= 0.0278 

 
c) What is the probability that allele A will be present in a chromosome that carries allele b? 

 
To solve this, we need to consider the frequency of chromosomes carrying the b allele, Pb, and the 
frequency of chromosomes carrying alleles A and b, PAb. Thus: 
 
 𝑃𝑃(𝐴𝐴|𝑏𝑏) = 𝑃𝑃(𝐴𝐴𝐴𝐴)

𝑃𝑃(𝐴𝐴)
= .2

.4
= 0.5 

 
d) What is the maximum possible value of r2 for this marker pair? 

 
This will occur when DAB takes its maximum or minimum value. So, we first consider the bounds 
of DAB, which are: 
 

𝑚𝑚𝑚𝑚𝑚𝑚(−𝑃𝑃𝐴𝐴𝑃𝑃𝐴𝐴,−𝑝𝑝𝑎𝑎𝑝𝑝𝐴𝐴) < 𝐷𝐷𝐴𝐴𝐴𝐴 < 𝑚𝑚𝑚𝑚𝑛𝑛(𝑝𝑝𝐴𝐴𝑝𝑝𝐴𝐴,𝑃𝑃𝑎𝑎𝑃𝑃𝐴𝐴) 
 
This gives 
 

−0.36 < 𝐷𝐷𝐴𝐴𝐴𝐴 < 0.24 
 
So that the maximum value of Δ2 will occur when D is 0.36 (this is the larger absolute value and 
maximizes D2 and, therefore Δ2). 
 
 Δ𝑚𝑚𝑎𝑎𝑚𝑚

2 = |𝐷𝐷𝐴𝐴𝐴𝐴
2 |𝑚𝑚𝑎𝑎𝑚𝑚 

𝑝𝑝𝐴𝐴𝑝𝑝𝑎𝑎𝑝𝑝𝐴𝐴𝑝𝑝𝑏𝑏
= 1 

 
  



5. The BRAVO browser (https://bravo.sph.umich.edu) lists variants and allele frequency information 
for many genes.  Pick a gene whose name starts with the same initial as your last name. Download 
frequency information for missense variants in the gene and plot a histogram to summarize the 
data.  
 

There should be a large excess of very rare variants. For the typical gene, nearly 50% of variants 
are seen in only one individual and have frequency of ~1 x 10-5 

https://bravo.sph.umich.edu/

