Biostatistics 615/815 Lecture 16:
Importance sampling
Single dimensional optimization

Hyun Min Kang

November 1st, 2012
The crude Monte-Carlo Methods

An example problem

Calculating

\[\theta = \int_{0}^{1} f(x) \, dx \]

where \(f(x) \) is a complex function with \(0 \leq f(x) \leq 1 \)

The problem is equivalent to computing \(E[f(u)] \) where \(u \sim U(0, 1) \).

Algorithm

- Generate \(u_1, u_2, \ldots, u_B \) uniformly from \(U(0, 1) \).
- Take their average to estimate \(\theta \)

\[\hat{\theta} = \frac{1}{B} \sum_{i=1}^{B} f(u_i) \]
Accept-reject (or hit-and-miss) Monte Carlo method

Algorithm

1. Define a rectangle R between $(0, 0)$ and $(1, 1)$
 - Or more generally, between (x_m, x_M) and (y_m, y_M).
2. Set $h = 0$ (hit), $m = 0$ (miss).
3. Sample a random point $(x, y) \in R$.
4. If $y < f(x)$, then increase h. Otherwise, increase m
5. Repeat step 3 and 4 for B times
6. $\hat{\theta} = \frac{h}{h+m}$.
Which method is better?

\[
\sigma_{AR}^2 - \sigma_{crude}^2 = \frac{\theta(1 - \theta)}{B} - \frac{1}{B} E[f(u)^2] + \frac{\theta^2}{B} \\
= \frac{\theta - E[f(u)]^2}{B} \\
= \frac{1}{B} \int_0^1 f(u)(1 - f(u)) du \geq 0
\]

The crude Monte-Carlo method has less variance than accept-rejection method.
Revisiting The Crude Monte Carlo

\[\theta = E[f(u)] = \int_0^1 f(u) \, du \]

\[\hat{\theta} = \frac{1}{B} \sum_{i=1}^B f(u_i) \]

More generally, when \(x \) has pdf \(p(x) \), if \(x_i \) is random variable following \(p(x) \),

\[\theta_p = E_p[f(x)] = \int f(x)p(x) \, dx \]

\[\hat{\theta}_p = \frac{1}{B} \sum_{i=1}^B f(x_i) \]
Let x_i be random variable, and let $p(x)$ be an arbitrary probability density function.

\[
\theta = E_u[f(x)] = \int f(x) \, dx = \int \frac{f(x)}{p(x)} p(x) \, dx = E_p \left[\frac{f(x)}{p(x)} \right]
\]

\[
\hat{\theta} = \frac{1}{B} \sum_{i=1}^{B} \frac{f(x_i)}{p(x_i)}
\]

where x_i is sampled from distribution represented by pdf $p(x)$
Key Idea

- When $f(x)$ is not uniform, variance of $\hat{\theta}$ may be large.
- The idea is to pretend sampling from (almost) uniform distribution.
Analysis of Importance Sampling

Bias

\[
E[\hat{\theta}] = \frac{1}{B} \sum_{i=1}^{B} E_p \left[\frac{f(x_i)}{p(x_i)} \right] = \frac{1}{B} \sum_{i=1}^{B} \theta = \theta
\]
Analysis of Importance Sampling

Bias

\[
E[\hat{\theta}] = \frac{1}{B} \sum_{i=1}^{B} E_p \left[\frac{f(x_i)}{p(x_i)} \right] = \frac{1}{B} \sum_{i=1}^{B} \theta = \theta
\]

Variance

\[
\text{Var}[\hat{\theta}] = \frac{1}{B} \int \left(\frac{f(x)}{p(x)} - \theta \right)^2 p(x) \, dx
\]

\[
= \frac{1}{B} E_p \left[\left(\frac{f(x)}{p(x)} \right)^2 \right] - \frac{\theta^2}{B}
\]

The variance may or may not increase. Roughly speaking, if \(p(x) \) is similar to \(f(x) \), \(f(x)/p(x) \) becomes flattened and will have smaller variance.
Simulation of rare events

Problem

- Consider a random variable \(X \sim N(0, 1) \)
- What is \(\Pr[X \geq 10] \)?
Simulation of rare events

Problem

- Consider a random variable $X \sim N(0, 1)$
- What is $\Pr[X \geq 10]$?

Possible Solutions

- Let $f(x)$ and $F(x)$ be pdf and CDF of standard normal distribution.
- Then $\Pr[X \geq 10] = 1 - F(10) = 7.62 \times 10^{-24}$, and we’re all set.
Simulation of rare events

Problem

- Consider a random variable $X \sim \mathcal{N}(0, 1)$
- What is $\Pr[X \geq 10]$?

Possible Solutions

- Let $f(x)$ and $F(x)$ be pdf and CDF of standard normal distribution.
- Then $\Pr[X \geq 10] = 1 - F(10) = 7.62 \times 10^{-24}$, and we’re all set.
- But what if we don’t have $F(x)$ but only $f(x)$?
 - In many cases, CDF is not easy to obtain compared to pdf or random draws.
If we don’t have CDF: ways to calculate $\Pr[X \geq 10]$

Accept-reject sampling

Sample random variables from $N(0, 1)$, and count how many of them are greater than 10.
If we don’t have CDF: ways to calculate \(\Pr[X \geq 10] \)

Accept-reject sampling

Sample random variables from \(N(0, 1) \), and count how many of them are greater than 10

- How many random variables should be sampled to observe at least one \(X \geq 10 \)?

- \(\frac{1}{\Pr[X \geq 10]} = 1.3 \times 10^{23} \)
If we don’t have CDF: ways to calculate \(\Pr[X \geq 10] \)

Accept-reject sampling

Sample random variables from \(N(0, 1) \), and count how many of them are greater than 10

- How many random variables should be sampled to observe at least one \(X \geq 10 \)?
- \(1/\Pr[X \geq 10] = 1.3 \times 10^{23} \)

Monte-Carlo Integration

- If we have pdf \(f(x) \), \(\Pr[X \geq 10] = \int_{10}^{\infty} f(x) \, dx \)
- Use Monte-Carlo integration to compute this quantity
 1. Sample \(B \) values uniformly from \([10, 10 + W]\) for a large value of \(W \) (e.g. 50).
 2. Estimate \(\hat{\theta} = \frac{1}{B} \sum_{i=1}^{B} f(u_i) \).
An Importance Sampling Solution

1. Transform the problem into an unbounded integration problem (to make it simple)

\[
\Pr[X \geq 10] = \int_{10}^{\infty} f(x) \, dx = \int_{x \geq 10} f(x) \, dx
\]

2. Sample \(B \) random values from \(N(\mu, 1) \) where \(\mu \) is a large value nearby 10, and let \(f_\mu(x) \) be the pdf.

3. Estimate the probability as an weighted average

\[
\hat{\theta} = \frac{1}{B} \left[I(x_i \geq 10) \frac{f(x)}{f_\mu(x)} \right]
\]
An Example R code

```r
## pnormUpper() function to calculate Pr[x>t] using n random samples

pnormUpper <- function(n, t) {
  lo <- t
  hi <- t + 50  ## hi is a reasonably large number

  ## accept-reject sampling
  r <- rnorm(n)  ## random sampling from N(0,1)
  v1 <- sum(r > t)/n  ## count how many meets the condition

  ## Monte-Carlo integration
  u <- runif(n,lo,hi)  ## uniform sampling [t,t+50]
  v2 <- mean(dnorm(u))*(hi-lo)  ## Monte-Carlo integration

  ## importance sampling using N(t,1)
  g <- rnorm(n,t,1)  ## sample from N(t,1)
  v3 <- sum((g > t) * dnorm(g)/dnorm(g,t,1)) / n;  ## take a weighted average

  return (c(v1,v2,v3))  ## return three values
}
```

Hyun Min Kang
Biostatistics 615/815 - Lecture 16
November 1st, 2012
12 / 59
Evaluating different methods

```r
## test pnormUpperTest(n,t) function using r times of repetition

pnormUpperTest <- function(r, n, t) {
  gold <- pnorm(t, lower.tail=FALSE)  ## gold standard answer
  emp <- matrix(nrow=r, ncol=3)  ## matrix containing empirical answers
  for(i in 1:r) { emp[i,] <- pnormUpper(n, t) }  ## repeat r times
  m <- colMeans(emp)  ## obtain mean of the estimates
  s <- apply(emp, 2, sd)  ## obtain stdev of the estimates
  print("GOLD :")
  print(gold);  ## print gold standard answer
  print("BIAS (ABSOLUTE) :")
  print(m-gold)  ## print bias
  print("STDEV (ABSOLUTE) :")
  print(s)  ## print stdev
  print("BIAS (RELATIVE) :")
  print(((m-gold)/gold)  ## print relative bias
  print("STDEV (RELATIVE) :")
  print(s/gold)  ## print relative stdev
}
```

Hyun Min Kang

Biostatistics 615/815 - Lecture 16

November 1st, 2012

13 / 59
An example output

```r
> pnormUpperTest(100,1000,10)
[1] "GOLD :"
[1] 7.619853e-24
[1] "BIAS (ABSOLUTE) :"
[1] "STDEV (ABSOLUTE) :"
[1] 0.000000e+00 3.917905e-24 7.559024e-25
[1] "BIAS (RELATIVE) :"
[1] -1.000000000 -0.007344339 0.006308433
[1] "STDEV (RELATIVE) :"
[1] 0.000000 0.5141707 0.0992017
```
> pnormUpperTest(100,10000,10)
[1] "GOLD :"
[1] 7.619853e-24
[1] "BIAS (ABSOLUTE) :"
[1] "STDEV (ABSOLUTE) :"
[1] 0.000000e+00 1.186711e-24 2.935474e-25
[1] "BIAS (RELATIVE) :"
[1] -1.000000000 0.002890040 0.002588451
[1] "STDEV (RELATIVE) :"
[1] 0.00000000 0.15573932 0.03852402

1,000 importance sampling gives smaller variance than Monte-Carlo integration with 10,000 random samples.
Disease risk score of an individual follows $x \sim N(\mu, \sigma^2)$.

Probability of disease $\Pr(y = 1) = \Phi(x)$, where $\Phi(x)$ is CDF of standard normal distribution.

Want to compute the disease prevalence across the population.

$$\theta = \int_{-\infty}^{\infty} \Phi(x) N(x; \mu, \sigma^2) \, dx$$

where $N(\cdot; \mu, \sigma^2)$ is pdf of normal distribution.
Plot of $\Phi(x)\mathcal{N}(x; -8, 1^2)$
Monte-Carlo integration using uniform samples

1. Sample x uniformly from a sufficiently large interval (e.g. $[-50, 50]$).
2. Evaluate integrals using

$$\hat{\theta} = \frac{1}{B} \sum_{i=1}^{B} \Phi(x_i) \mathcal{N}(x_i; \mu, \sigma^2)$$

Note that, for some μ and σ^2, $[-50, 50]$ may not be a sufficiently large interval.
Monte-Carlo integration using normal distribution

1. Sample x from $N(\mu, \sigma^2)$
2. Evaluate integrals by

$$\hat{\theta} = \frac{1}{B} \sum_{i=1}^{B} \Phi(x_i)$$
$\mathcal{N}(x; -8, 1^2)$ (red) and $\Phi(x)\mathcal{N}(x; -8, 1^2)$ (black)

Two distributions are quite different – $\mathcal{N}(x; -8, 1^2)$ may not be an ideal distribution for Monte-Carlo integration
Monte-Carlo integration by importance sampling

1. Sample x from a new distribution
 - For example, $N(\mu', \sigma'^2)$
 - $\mu' = \frac{\mu}{\sigma^2 + 1}$
 - $\sigma' = \sigma$.

2. Evaluate integrals by weighting importance samples

$$\hat{\theta} = \frac{1}{B} \sum_{i=1}^{B} \left[\Phi(x_i) \frac{N(x; \mu, \sigma^2)}{N(x; \mu', \sigma'^2)} \right]$$
An Example R code

probitNormIntegral <- function(n,mu,sigma) {
 ## integration across uniform distribution
 lo <- -50
 hi <- 50
 u <- runif(n,lo,hi)
 v1 <- mean(dnorm(u,mu,sigma)*pnorm(u))*(hi-lo)

 ## integration using random samples from N(mu,sigma^2)
 g <- rnorm(n,mu,sigma)
 v2 <- mean(pnorm(g))

 ## importance sampling using N(mu',sigma^2)
 adjm <- mu/(sigma^2+1)
 r <- rnorm(n,adjm,sigma)
 v3 <- mean(pnorm(r)*dnorm(r,mu,sigma)/dnorm(r,adjm,sigma))
 return (c(v1,v2,v3))
}

Hyun Min Kang

Biostatistics 615/815 - Lecture 16
November 1st, 2012
Testing different methods

```r
probitNormTest <- function(r, n, mu, sigma) {
  emp <- matrix(nrow=r,ncol=3)
  for(i in 1:r) {
    emp[i,] <- probitNormIntegral(n,mu,sigma)
  }
  m <- colMeans(emp)
  s <- apply(emp,2,sd)
  print("MEAN :")
  print(m)
  print("STDEV :")
  print(s)
  print("STDEV (RELATIVE) :")
  print(s/m)
}
```

Hyun Min Kang
Biostatistics 615/815 - Lecture 16
November 1st, 2012
23 / 59
Example Output

```r
> probitNormTest(100,1000,-8,1)
[1] "MEAN :"
[1] 7.643951e-09 6.205931e-09 7.701978e-09
[1] "STDEV :"
[1] 1.579951e-09 1.239459e-08 1.019870e-10
[1] "STDEV (RELATIVE) :"
[1] 0.20669298 1.99721608 0.01324166
```

Importance sampling shows smallest variance.
Summary

- **Crude Monte Carlo method**
 - Use uniform distribution (or other original generative model) to calculate the integration
 - Every random sample is equally weighted.
 - Straightforward to understand

- **Rejection sampling**
 - Estimation from discrete count of random variables
 - Larger variance than crude Monte-Carlo method
 - Typically easy to implement

- **Importance sampling**
 - Reweight the probability distribution
 - Possible to reduce the variance in the estimation
 - Effective for inference involving rare events
 - Challenge is how to find the good sampling distribution.
The Minimization Problem
Specific Objectives

Finding global minimum
- The lowest possible value of the function
- Very hard problem to solve generally

Finding local minimum
- Smallest value within finite neighborhood
- Relatively easier problem
A quick detour - The root finding problem

- Consider the problem of finding zeros for $f(x)$
- Assume that you know
 - Point a where $f(a)$ is positive
 - Point b where $f(b)$ is negative
 - $f(x)$ is continuous between a and b
- How would you proceed to find x such that $f(x) = 0$?
A C++ Example: defining a function object

```cpp
#include <iostream>

class myFunc {  // a typical way to define a function object
public:
    double operator()(double x) const {
        return (x*x-1);
    }
};

int main(int argc, char** argv) {
    myFunc foo;
    std::cout << "foo(0) = " << foo(0) << std::endl;
    std::cout << "foo(2) = " << foo(2) << std::endl;
}
```
// binary-search-like root finding algorithm

double binaryZero(myFunc foo, double lo, double hi, double e) {
 for (int i=0;; ++i) {
 double d = hi - lo;
 double point = lo + d * 0.5; // find midpoint between lo and hi
 double fpoint = foo(point); // evaluate the value of the function
 if (fpoint < 0.0) {
 d = lo - point; lo = point;
 } else {
 d = point - hi; hi = point;
 }
 // e is tolerance level (higher e makes it faster but less accurate)
 if (fabs(d) < e || fpoint == 0.0) {
 std::cout << "Iteration " << i << ", point = " << point
 << ", d = " << d << std::endl;
 return point;
 }
 }
}

Hyun Min Kang
Improvements to Root Finding

Approximation using linear interpolation

\[f^*(x) = f(a) + (x - a) \frac{f(b) - f(a)}{b - a} \]

Root Finding Strategy

- Select a new trial point such that \(f^*(x) = 0 \)
Root Finding Using Linear Interpolation

double linearZero (myFunc foo, double lo, double hi, double e) {
 double flo = foo(lo); // evaluate the function at the end points
 double fhi = foo(hi);
 for(int i=0;;++i) {
 double d = hi - lo;
 double point = lo + d * flo / (flo - fhi); //
 double fpoint = foo(point);
 if (fpoint < 0.0) {
 d = lo - point;
 lo = point;
 flo = fpoint;
 }
 else {
 d = point - hi;
 hi = point;
 fhi = fpoint;
 }
 if (fabs(d) < e || fpoint == 0.0) {
 std::cout << "Iteration " << i << ", point = " << point << ", d = " << d << std::endl;
 return point;
 }
 }
}
Performance Comparison

Finding \(\sin(x) = 0 \) between \(-\pi/4\) and \(\pi/2\)

```cpp
#include <cmath>
class myFunc {
public:
    double operator()(double x) const { return sin(x); }
};
...
int main(int argc, char** argv) {
    myFunc foo;
    binaryZero(foo,0-M_PI/4,M_PI/2,1e-5);
    linearZero(foo,0-M_PI/4,M_PI/2,1e-5);
    return 0;
}
```

Experimental results

- \texttt{binaryZero()} : Iteration 17, point = -2.99606e-06, d = -8.98817e-06
- \texttt{linearZero()} : Iteration 5, point = 0, d = -4.47489e-18
R example of root finding

```r
> uniroot( sin, c(0-pi/4, pi/2) )
$root
[1] -3.531885e-09

$f.root
[1] -3.531885e-09

$iter
[1] 4

$estim.prec
[1] 8.719466e-05
```
Summary on root finding

- Implemented two methods for root finding
 - Bisection Method: binaryZero()
 - False Position Method: linearZero()

- In the bisection method, the bracketing interval is halved at each step
- For well-behaved function, the False Position Method will converge faster, but there is no performance guarantee.
Consider a complex function $f(x)$ (e.g. likelihood)
Find x which $f(x)$ is maximum or minimum value
Maximization and minimization are equivalent
 - Replace $f(x)$ with $-f(x)$
Two approaches possibly applicable to minimization problems

Bracketing
- Keep track of intervals containing solution

Accuracy
- Recognize that solution has limited precision
Notes on Accuracy - Consider the Machine Precision

- When estimating minima and bracketing intervals, floating point accuracy must be considered.
- In general, if the machine precision is ϵ, the achievable accuracy is no more than $\sqrt{\epsilon}$.
- $\sqrt{\epsilon}$ comes from the second-order Taylor approximation:
 \[
 f(x) \approx f(b) + \frac{1}{2}f''(b)(x - b)^2
 \]
- For functions where higher order terms are important, accuracy could be even lower.
 - For example, the minimum for $f(x) = 1 + x^4$ is only estimated to about $\epsilon^{1/4}$.

Hyun Min Kang
Biostatistics 615/815 - Lecture 16
November 1st, 2012 38 / 59
Outline of Minimization Strategy

1. Bracket minimum
2. Successively tighten bracket interval
Detailed Minimization Strategy

1. Find 3 points such that
 - $a < b < c$
 - $f(b) < f(a)$ and $f(b) < f(c)$

2. Then search for minimum by
 - Selecting trial point in the interval
 - Keep minimum and flanking points
Minimization after Bracketing
Part I : Finding a Bracketing Interval

- Consider two points
 - x-values \(a, b \)
 - y-values \(f(a) > f(b) \)
Bracketing in C++

```c++
#define SCALE 1.618

void bracket( myFunc foo, double& a, double& b, double& c) {
    double fa = foo(a);
    double fb = foo(b);
    double fc = foo(c = b + SCALE*(b-a) );
    while( fb > fc ) {
        a = b; fa = fb;
        b = c; fb = fc;
        c = b + SCALE * (b-a);
        fc = foo(c);
    }
}
```
Part II : Finding Minimum After Bracketing

- Given 3 points such that
 - \(a < b < c \)
 - \(f(b) < f(a) \) and \(f(b) < f(c) \)

- How do we select new trial point?
What is the best location for a new point X?
What we want

We want to minimize the size of next search interval, which will be either from \(A \) to \(X \) or from \(B \) to \(C \).
Minimizing worst case possibility

- Formulae

\[
\begin{align*}
 w &= \frac{b - a}{c - a} \\
 z &= \frac{x - b}{c - a}
\end{align*}
\]

Segments will have length either \(1 - w\) or \(w + z\).

- Optimal case

\[
\begin{cases}
 1 - w = w + z \\
 \frac{z}{1 - w} = w
\end{cases}
\]

- Solve It

\[
w = \frac{3 - \sqrt{5}}{2} = 0.38197
\]
The Golden Search
The Golden Ratio

Bracketing Triplet

A

B

C
The Golden Ratio

The number 0.38196 is related to the *golden mean* studied by Pythagoras.

The diagram shows points A, B, X, and C with the number 0.38196 indicating the golden mean position between A and B as well as between B and C.
The Golden Ratio

New Bracketing Triplet

Alternative New Bracketing Triplet

0.38196
Golden Search

- Reduces bracketing by \(\sim 40\% \) after function evaluation
- Performance is independent of the function that is being minimized
- In many cases, better schemes are available
Golden Step

```c
#define GOLD 0.38196
#define ZEPS 1e-10   // precision tolerance
double goldenStep (double a, double b, double c) {
    double mid = (a + c) * .5;
    if (b > mid)
        return GOLD * (a - b);
    else
        return GOLD * (c - b);
}
```
Golden Search

double goldenSearch(myFunc foo, double a, double b, double c, double e) {
 int i = 0;
 double fb = foo(b);
 while (fabs(c-a) > fabs(b*e)) {
 double x = b + goldenStep(a, b, c);
 double fx = foo(x);
 if (fx < fb) {
 (x > b) ? (a = b) : (c = b);
 b = x; fb = fx;
 } else {
 (x < b) ? (a = x) : (c = x);
 }
 ++i;
 }
 std::cout << "i = " << i << " , b = " << b << " , f(b) = " << foo(b) << std::endl;
 return b;
}
A running example

Finding minimum of $f(x) = -\cos(x)$

class myFunc {
public:
 double operator() (double x) const {
 return 0 - cos(x);
 }
};

int main(int argc, char** argv) {
 myFunc foo;
 goldenSearch(foo, 0 - M_PI/4, M_PI/4, M_PI/2, 1e-5);
 return 0;
}

Results

$i = 66$, $b = -4.42163e-09$, $f(b) = -1$
R example of minimization

```r
> optimize(cos, interval = c(0 - pi / 4, pi / 2), maximum = TRUE)
$maximum
[1] -8.648147e-07

$objective
[1] 1
```
Further improvements

- As with root finding, performance can improve substantially when local approximation is used.
- However, a linear approximation won’t do in this case.
Approximation Using Parabola
Today

- Root Finding Algorithms
 - Bisection Method: Simple but likely less efficient
 - False Position Method: More efficient for most well-behaved function
- Single-dimensional minimization
 - Golden Search
Summary

Today

- Root Finding Algorithms
 - Bisection Method: Simple but likely less efficient
 - False Position Method: More efficient for most well-behaved function
- Single-dimensional minimization
 - Golden Search

Next Lecture

- More Single-dimensional minimization
 - Brent’s method
- Multidimensional optimization
 - Simplex method