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Recap
@00

The crude Monte-Carlo Methods

An example problem

Calculating

0= /Olf(m)dm

where f(z) is a complex function with 0 < f(z) <1
The problem is equivalent to computing E[f(u)] where u ~ U(0,1).

Algorithm

| A\,

= Generate uy, ug, - - - , ug uniformly from U(0, 1).
= Take their average to estimate 6
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Accept-reject (or hit-and-miss) Monte Carlo method

@ Define a rectangle R between (0,0) and (1,1)
= Or more generally, between (z,,, zar) and (Y., Yps)-
® Set h =0 (hit), m =0 (miss).
© Sample a random point (z,y) € R.
O If y < f(z), then increase h. Otherwise, increase m

® Repeat step 3 and 4 for B times

N h
0 0=rin
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Which method is better?

O4R — Oorude = — 5 EE[f(U)2] + B
0 — E[f(w)]?

B
1
= 5/ M0 =)=

The crude Monte-Carlo method has less variance then accept-rejection
method
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Revisiting The Crude Monte Carlo

1
0 = Byl = [ fud
B

A 1
0 = 5D flw)

=1

More generally, when z has pdf p(z), if z; is random variable following p(z),

b, = Eylfiz)] = / f(2)p() de

. 1E
bp = 5> flm)
=1
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Importance sampling

Let z; be random variable, and let p(z) be an arbitrary probability density
function.

0 = mlw) = [ o= [T pm= 5, |17
1 flw)
B;p(%’i)

where z; is sampled from distribution represented by pdf p(z)

>
I
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Importance sampling
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Key Idea

= When f(z) is not uniform, variance of § may be large.

= The idea is to pretend sampling from (almost) uniform distribution.
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[e]ele] }

Analysis of Importance Sampling
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Analysis of Importance Sampling

Variance

Varl)] = / (fg 0)2 p(2)da
T 2
el

The variance may or may not increase. Roughly speaking, if p(z) is similar
to flz), f(x)/p(x) becomes flattened and will have smaller variance.

Hyun Min Kang Biostatistics 615/815 - Lecture 16 November 1st, 2012 8 /59



Rare Event
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Simulation of rare events

Problem
= Consider a random variable X ~ N(0, 1)
= What is Pr[X > 10]?
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Rare Event
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Simulation of rare events

Problem
= Consider a random variable X ~ N(0, 1)
= What is Pr[X > 10]?

| \

Possible Solutions
= Let f(z) and F(z) be pdf and CDF of standard normal distribution.
= Then Pr[X > 10] = 1 — F(10) = 7.62 x 10~2*, and we're all set.

A,

Hyun Min Kang Biostatistics 615/815 - Lecture 16 November 1st, 2012 9 /59



Rare Event
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Simulation of rare events

Problem
= Consider a random variable X ~ N(0, 1)
= What is Pr[X > 10]?

| \

Possible Solutions
= Let f(z) and F(z) be pdf and CDF of standard normal distribution.
= Then Pr[X > 10] = 1 — F(10) = 7.62 x 10~2*, and we're all set.

= But what if we don't have F(z) but only f(z)?

= In many cases, CDF is not easy to obtain compared to pdf or random
draws.

A,
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If we don’t have CDF: ways to calculate Pr[X > 10]

Accept-reject sampling

Sample random variables from N(0, 1), and count how many of them are
greater than 10
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Rare Event
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If we don’t have CDF: ways to calculate Pr[X > 10]

Accept-reject sampling

Sample random variables from N(0, 1), and count how many of them are
greater than 10

= How many random variables should be sampled to observe at least
one X > 107

= 1/Pr[X > 10] = 1.3 x 10?3
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ce sampling Rare Event
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If we don’t have CDF: ways to calculate Pr[X > 10]

Accept-reject sampling
Sample random variables from N(0,1), and count how many of them are
greater than 10

= How many random variables should be sampled to observe at least
one X > 107

= 1/Pr[X > 10] = 1.3 x 10?3

| \

Monte-Carlo Integration

= If we have pdf f(z), Pr[X > 10] = [[J flz
= Use Monte-Carlo integration to compute thls quantity
@ Sample B values uniformly from [10,10 + W] for a large value of W
(e.g. 50).
@ Estimate 0 = £ 5°7 | flu,).
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An Importance Sampling Solution

@ Transform the problem into an unbounded integration problem (to
make it simple)

Pr[X > 10] = /1:of(x)dx: /I(x > 10)f(x)dx

® Sample B random values from N(u, 1) where p is a large value nearby
10, and let f,(z) be the pdf.

© Estimate the probability as an weighted average

== 075
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An Example R code

## pnormUpper() function to calculate Pr[x>t] using n random samples
pnormUpper <- function(n, t) {

lo <- t

hi <- t + 50 ## hi is a reasonably large number

## accept-reject sampling
r <- rnorm(n) ## random sampling from N(©,1)
vl <- sum(r > t)/n ## count how many meets the condition

## Monte-Carlo integration
u <- runif(n,lo,hi) ## uniform sampling [t,t+50]
v2 <- mean(dnorm(u))*(hi-lo) ## Monte-Carlo integration

## importance sampling using N(t,1)
g <- rnorm(n,t,1) ## sample from N(t,1)

v3 <- sum( (g > t) * dnorm(g)/dnorm(g,t,1)) / n; ## take a weighted average

return (c(vl,v2,v3)) ## return three values
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Evaluating different methods

## test pnormUpperTest(n,t) function using r times of repetition
pnormUpperTest <- function(r, n, t) {
gold <- pnorm(t,lower.tail=FALSE) ## gold standard answer
emp <- matrix(nrow=r,ncol=3) ## matrix containing empirical answers
for(i in 1:r) { emp[i,] <- pnormUpper(n,t) } ## repeat r times

m <- colMeans(emp) ## obtain mean of the estimates
s <- apply(emp,2,sd) ## obtain stdev of the estimates
print("GOLD :")

print(gold); ## print gold standard answer
print("BIAS (ABSOLUTE) :")

print(m-gold) ## print bias

print("STDEV (ABSOLUTE) :")

print(s) ## print stdev

print("BIAS (RELATIVE) :")

print((m-gold)/gold) ## print relative bias
print("STDEV (RELATIVE) :")

print(s/gold) ## print relative stdev
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An example output

> pnormUpperTest (100,1000,10)

[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]
[1]

"GOLD :"

7.619853e-24

"BIAS (ABSOLUTE) :"

-7.619853e-24 -5.596279e-26 4.806933e-26
"STDEV (ABSOLUTE) :"

0.000000e+00 3.917905e-24 7.559024e-25
"BIAS (RELATIVE) :"

-1.000000000 -0.007344339 0.006308433
"STDEV (RELATIVE) :"

0.0000000 0.5141707 0.0992017
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Another example output

> pnormUpperTest (100,10000,10)

[1] "GOLD :"

[1] 7.619853e-24

[1] "BIAS (ABSOLUTE) :"

[1] -7.619853e-24 2.202168e-26 1.972362e-26
[1] "STDEV (ABSOLUTE) :"

[1] ©.000000e+00 1.186711e-24 2.935474e-25
[1] "BIAS (RELATIVE) :"

[1] -1.000000000 ©0.002890040 ©0.002588451
[1] "STDEV (RELATIVE) :"

[1] ©.00000000 ©.15573932 0.03852402

1,000 importance sampling gives smaller variance than Monte-Carlo
integration with 10,000 random samples.
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Integral of probit normal distribution

= Disease risk score of an individual follows z ~ N(u, 0?).

= Probability of disease Pr(y = 1) = ®(z), where ®(z) is CDF of
standard normal distribution.
= Want to compute the disease prevalence across the population.

0= /OO ()N (z; i, 0?)dz

—0o0

where N(; 1, 02) is pdf of normal distribution.

November 1st, 2012
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4e-09
|

2e-09

0e+00
]

-10 5 0 5 10
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Monte-Carlo integration using uniform samples

@ Sample z uniformly from a sufficiently large interval (e.g. [—50,50]).
® Evaluate integrals using
1

B
0 = Z D ()N (253 1, 02)
=1

|

Note that, for some p and o2, [-50,50] may not be a sufficiently large
interval.
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Monte-Carlo integration using normal distribution

® Sample z from N(p, 0?)
® Evaluate integrals by

>
Il
|~
iy
&

s
Il
—
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N (z; —8,1%) (red) and ®(z)N (z; —8,1%) (black)

@
<
L]
<

2e-09

0e+00
|

\ I T I 1
-10 -5 0 5 10

Two distributions are quite different — A/(z; —8,12) may not be an ideal
distribution for Monte-Carlo integration
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Monte-Carlo integration by importance sampling

@ Sample z from a new distribution

= For example, N(i/, o'?)

" I — Iz
o= o241

= o =o0.

® Evaluate integrals by weighting importance samples

i L [y M@ o?)
U

1=
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An Example R code

probitNormIntegral <- function(n,mu,sigma) {
## integration across uniform distribution
lo <- -50
hi <- 50
u <- runif(n,lo,hi)
vl <- mean(dnorm(u,mu,sigma)*pnorm(u))*(hi-1lo)

## integration using random samples from N(mu,sigma”2)
g <- rnorm(n,mu,sigma)
v2 <- mean(pnorm(g))

## importance sampling using N(mu',sigma~2)

adjm <- mu/(sigma~2+1)

r <- rnorm(n,adjm,sigma)

v3 <- mean(pnorm(r)*dnorm(r,mu,sigma)/dnorm(r,adjm,sigma))
return (c(vl,v2,v3))
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Testing different methods

probitNormTest <- function(r, n, mu,sigma) {
emp <- matrix(nrow=r,ncol=3)
for(i in 1:r) {
emp[i,] <- probitNormIntegral(n,mu,sigma)
}
m <- colMeans(emp)
s <- apply(emp,2,sd)
print("MEAN :")

print(m)

print("STDEV :")

print(s)

print("STDEV (RELATIVE) :")
print(s/m)
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Example Output

> probitNormTest (100,1000,-8,1)

[1] "MEAN :"
[1] 7.643951e-89 6.205931e-09 7.701978e-09
[1] "STDEV :"

[1] 1.579951e-09 1.239459¢-08 1.019870e-10
[1] "STDEV (RELATIVE) :"
[1] ©.20669298 1.99721608 0.01324166

Importance sampling shows smallest variance.
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Summary

= Crude Monte Carlo method

= Use uniform distribution (or other original generative model) to
calculate the integration

= Every random sample is equally weighted.

= Straightforward to understand

= Rejection sampling
= Estimation from discrete count of random variables
= Larger variance than crude Monte-Carlo method
= Typically easy to implement

* Importance sampling
= Reweight the probability distribution
= Possible to reduce the variance in the estimation
= Effective for inference involving rare events
= Challenge is how to find the good sampling distribution.
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The Minimization Problem
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Root Finding
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Specific Objectives

Finding global minimum
= The lowest possible value of the function

= Very hard problem to solve generally

Finding local minimum

= Smallest value within finite neighborhood

= Relatively easier problem

Hyun Min Kang Biostatistics 615/815 - Lecture 16 November 1st, 2012



Root Finding
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A quick detour - The root finding problem

= Consider the problem of finding zeros for f(x)
= Assume that you know

= Point a where f(a) is positive
= Point b where f(b) is negative
= f(z) is continuous between a and b

= How would you proceed to find x such that f(z) = 07
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A C++ Example : defining a function object

#include <iostream>

class myFunc { // a typical way to define a function object
public:
double operator() (double x) const {
return (x*x-1);
}
s

int main(int argc, char** argv) {
myFunc foo;
std::cout << "foo(@) = " << foo(@) << std::endl;
std::cout << "foo(2) = " << foo(2) << std::endl;

Hyun Min Kang Biostatistics 615/815 - Lecture 16 November 1st, 2012 29 / 59



Root Finding
0000e00000

Root Finding with C++

// binary-search-like root finding algorithm
double binaryZero(myFunc foo, double lo, double hi, double e) {
for (int i=0;; ++i) {
double d = hi - lo;
double point = lo + d * 0.5; // find midpoint between lo and hi
double fpoint = foo(point); // evaluate the value of the function
if (fpoint < @.0) {
d = lo - point; 1lo = point;
}
else {
d = point - hi; hi = point;
}
// e is tolerance level (higher e makes it faster but less accurate)
if (fabs(d) < e || fpoint == 0.0) {

std::cout << "Iteration " << i << ", point ="

<< ", d =" << d << std::endl;
return point;

<< point
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Improvements to Root Finding

Approximation using linear interpolation

Root Finding Strategy
= Select a new trial point such that f*(z) =0
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Root Finding Using Linear Interpolation

double linearZero (myFunc foo, double lo, double hi, double e) {
double flo = foo(lo); // evaluate the function at the end points
double fhi = foo(hi);
for(int i=0;;++i) {
double d = hi - lo;
double point = lo + d * flo / (flo - fhi); //
double fpoint = foo(point);
if (fpoint < 0.0) {
d = lo - point;
lo = point;
flo = fpoint;

}

else {
d = point - hi;
hi = point;
fhi = fpoint;

}

if (fabs(d) < e || fpoint == 0.0) {

std::cout << "Iteration << 1 << ", point = " << point << ", d = " << d << std::endl;

return point;
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Performance Comparison

Finding sin(x)

#include <cmath>
class myFunc {
public:
double operator() (double x) const {
s

return sin(x); }

int main(int argc, char** argv) {
myFunc foo;
binaryZero(foo,0-M_PI/4,M_PI/2,1e-5);
linearzZero(foo,0-M_PI/4,M_PI/2,1le-5);
return 0;

}
Experimental results

binaryZero() Iteration 17,

Iteration 5,

point = -2.99606e-06, d =

linearZero() -4.47489e-18

point = 0, d =

-8.98817e-06

Hyun Min Kang
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R example of root finding

> uniroot( sin, c(@-pi/4,pi/2) )
$root
[1] -3.531885e-09

$f.root
[1] -3.531885e-09

$iter
[1] 4

$estim.prec
[1] 8.719466e-05
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Summary on root finding

= |Implemented two methods for root finding

= Bisection Method : binaryzero()
= False Position Method : linearzero()

= In the bisection method, the bracketing interval is halved at each step

= For well-behaved function, the False Position Method will converge
faster, but there is no performance guarantee.
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Back to the Minimization Problem

= Consider a complex function f(z) (e.g. likelihood)

= Find z which f(z) is maximum or minimum value
= Maximization and minimization are equivalent
= Replace f(z) with —f(z)
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Notes from Root Finding

= Two approaches possibly applicable to minimization problems
= Bracketing

= Keep track of intervals containing solution
= Accuracy

= Recognize that solution has limited precision
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Notes on Accuracy - Consider the Machine Precision

= When estimating minima and bracketing intervals, floating point
accuracy must be considered

= In general, if the machine precision is ¢, the achievable accuracy is no
more than /e.

= /e comes from the second-order Taylor approximation

flz) = f(b) + f’( (2= b)?

= For functions where higher order terms are important, accuracy could
be even lower.

= For example, the minimum for f(z) = 1 + 2# is only estimated to about
1/4
et/
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Outline of Minimization Strategy

@ Bracket minimum

® Successively tighten bracket interval
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Detailed Minimization Strategy

® Find 3 points such that

= a<b<ec

= f(b) < fla) and f(b) < flc)
® Then search for minimum by

= Selecting trial point in the interval
= Keep minimum and flanking points
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Minimization after Bracketing
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Part | : Finding a Bracketing Interval

= Consider two points
= x-values a, b

= y-values f(a) > f(b)
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Bracketing in C++

#define SCALE 1.618

void bracket( myFunc foo, double& a, double& b, double& c) {
double fa = foo(a);
double fb = foo(b);
double fc = foo(c = b + SCALE*(b-a) );
while( fb > fc ) {
a = b; fa = fb;
b =c; fb = fc;
c = b + SCALE * (b-a);
fc = foo(c);
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Part Il : Finding Minimum After Bracketing

= Given 3 points such that
s a<b<c

* f(b) < f(a) and f(b) < flc)

= How do we select new trial point?
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What is the best location for a new point X7
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What we want

We want to minimize the size of next search interval, which will be either
from A to X or from Bto C
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Minimizing worst case possibility

= Formulae
b—a
w =
c—a
z—0b
VA =
c—a

Segments will have length either 1 — w or w+ 2.

= Optimal case

= Solve It

3-+5

Hyun Min Kang Biostatistics 615/815 - Lecture 16 November 1st, 2012



Minimization
0000000000000 O0O00000

The Golden Search
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The Golden Ratio

Bracketing Triplet
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The Golden Ratio

New Point
) © ® ©
O N
0.38196 0.38196

The number 0.38196 is related to the golden mean studied by Pythagoras
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The Golden Ratio

New Bracketing Triplet

-

0.38196
Alternative New Bracketing Triplet

@
| T @

O 38196
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Golden Search

= Reduces bracketing by ~ 40% after function evaluation
= Performance is independent of the function that is being minimized

= In many cases, better schemes are available
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Golden Step

#define GOLD ©.38196

#define ZEPS 1le-10 // precision tolerance
double goldenStep (double a, double b, double c) {
double mid = ( a + ¢ ) * .5;
if (b > mid )
return GOLD * (a-b);
else
return GOLD * (c-b);
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Golden Search

double goldenSearch(myFunc foo, double a, double b, double c, double e) {
int i = o;
double fb = foo(b);
while ( fabs(c-a) > fabs(b*e) ) {
double x = b + goldenStep(a, b, c);
double fx = foo(x);
if ( fx < fb ) {
(x >b) ? (a=Db): (c=Db);
b = x; fb = fx;
}
else {
(x <b)y ? (a=x):(c=x);
}
++1;
}
std::cout << "i = " << i << ", b="<x<b<< ", f(b) =" << foo(b) << std::endl;
return b;
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A running example

Finding minimum of

class myFunc {
public:
double operator() (double x) const {
return @-cos(x);
}
}s

int main(int argc, char** argv) {
myFunc foo;
goldenSearch(foo,0-M_PI/4,M_PI/4,M_PI/2,1e-5);
return 0;

i =66, b = -4.42163e-09, f(b) = -1
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R example of minimization

> optimize(cos,interval=c(@-pi/4,pi/2),maximum=TRUE)
$maximum
[1] -8.648147e-07

$objective
[1] 1
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Further improvements

= As with root finding, performance can improve substantially when
local approximation is used

= However, a linear approximation won't do in this case.
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Approximation Using Parabola

_______ parabola through @ @ ®
..es. parabola through @ ® @
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Summary

= Root Finding Algorithms

= Bisection Method : Simple but likely less efficient
= False Position Method : More efficient for most well-behaved function

= Single-dimensional minimization
= Golden Search
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Summary

= Root Finding Algorithms

= Bisection Method : Simple but likely less efficient
= False Position Method : More efficient for most well-behaved function

= Single-dimensional minimization
= Golden Search

V.

Next Lecture

= More Single-dimensional minimization
= Brent's method

= Multidimensional optimization
= Simplex method
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