Biostatistics 602 - Statistical Inference Lecture 17 Asymptotic Evaluation of Point Estimators

Hyun Min Kang

March 19th, 2013

What is a Bayes Risk?

- What is a Bayes Risk?
- What is the Bayes rule Estimator minimizing squared error loss?

- What is a Bayes Risk?
- What is the Bayes rule Estimator minimizing squared error loss?
- What is the Bayes rule Estimator minimizing absolute error loss?

- What is a Bayes Risk?
- What is the Bayes rule Estimator minimizing squared error loss?
- What is the Bayes rule Estimator minimizing absolute error loss?
- What are the tools for proving a point estimator is consistent?

- What is a Bayes Risk?
- What is the Bayes rule Estimator minimizing squared error loss?
- What is the Bayes rule Estimator minimizing absolute error loss?
- What are the tools for proving a point estimator is consistent?
- Can a biased estimator be consistent?

Suppose that
$$L(\theta, \hat{\theta}) = |\theta - \hat{\theta}|$$
.

Suppose that $L(\theta,\hat{\theta})=|\theta-\hat{\theta}|.$ The posterior expected loss is

$$E[L(\theta, \hat{\theta}(\mathbf{x}))] = \int_{\Omega} |\theta - \hat{\theta}(\mathbf{x})| \pi(\theta|\mathbf{x}) d\theta$$

Suppose that $L(\theta,\hat{\theta})=|\theta-\hat{\theta}|.$ The posterior expected loss is

$$\begin{split} \mathrm{E}[L(\theta, \hat{\theta}(\mathbf{x}))] &= \int_{\Omega} |\theta - \hat{\theta}(\mathbf{x})| \pi(\theta|\mathbf{x}) \, d\theta \\ &= \mathrm{E}[|\theta - \hat{\theta}||\mathbf{X} = \mathbf{x}] \end{split}$$

Suppose that $L(\theta, \hat{\theta}) = |\theta - \hat{\theta}|$. The posterior expected loss is

$$\begin{split} \mathrm{E}[L(\theta, \hat{\theta}(\mathbf{x}))] &= \int_{\Omega} |\theta - \hat{\theta}(\mathbf{x})| \pi(\theta|\mathbf{x}) d\theta \\ &= \mathrm{E}[|\theta - \hat{\theta}||\mathbf{X} = \mathbf{x}] \\ &= \int_{-\infty}^{\hat{\theta}} -(\theta - \hat{\theta}) \pi(\theta|\mathbf{x}) d\theta + \int_{\hat{\theta}}^{\infty} (\theta - \hat{\theta}) \pi(\theta|\mathbf{x}) d\theta \end{split}$$

Suppose that $L(\theta, \hat{\theta}) = |\theta - \hat{\theta}|$. The posterior expected loss is

$$\begin{split} \mathrm{E}[L(\theta, \hat{\theta}(\mathbf{x}))] &= \int_{\Omega} |\theta - \hat{\theta}(\mathbf{x})| \pi(\theta|\mathbf{x}) d\theta \\ &= \mathrm{E}[|\theta - \hat{\theta}||\mathbf{X} = \mathbf{x}] \\ &= \int_{-\infty}^{\hat{\theta}} -(\theta - \hat{\theta}) \pi(\theta|\mathbf{x}) d\theta + \int_{\hat{\theta}}^{\infty} (\theta - \hat{\theta}) \pi(\theta|\mathbf{x}) d\theta \end{split}$$

$$\frac{\partial}{\partial \hat{\theta}} \mathrm{E}[L(\theta, \hat{\theta}(\mathbf{x}))] = \int_{-\infty}^{\hat{\theta}} \pi(\theta|\mathbf{x}) d\theta - \int_{\hat{\theta}}^{\infty} \pi(\theta|\mathbf{x}) d\theta = 0$$

Suppose that $L(\theta,\hat{\theta})=|\theta-\hat{\theta}|.$ The posterior expected loss is

$$\begin{split} \mathrm{E}[L(\theta, \hat{\theta}(\mathbf{x}))] &= \int_{\Omega} |\theta - \hat{\theta}(\mathbf{x})| \pi(\theta|\mathbf{x}) d\theta \\ &= \mathrm{E}[|\theta - \hat{\theta}||\mathbf{X} = \mathbf{x}] \\ &= \int_{-\infty}^{\hat{\theta}} -(\theta - \hat{\theta}) \pi(\theta|\mathbf{x}) d\theta + \int_{\hat{\theta}}^{\infty} (\theta - \hat{\theta}) \pi(\theta|\mathbf{x}) d\theta \end{split}$$

$$\frac{\partial}{\partial \hat{\theta}} \mathrm{E}[L(\theta, \hat{\theta}(\mathbf{x}))] = \int_{-\infty}^{\theta} \pi(\theta|\mathbf{x}) d\theta - \int_{\hat{\theta}}^{\infty} \pi(\theta|\mathbf{x}) d\theta = 0$$

Therefore, $\hat{\theta}$ is posterior median.

When the sample size n approaches infinity, the behaviors of an estimator are unknown as its asymptotic properties.

When the sample size n approaches infinity, the behaviors of an estimator are unknown as its asymptotic properties.

Definition - Consistency

Let $W_n = W_n(X_1, \cdots, X_n) = W_n(\mathbf{X})$ be a sequence of estimators for $\tau(\theta)$. We say W_n is consistent for estimating $\tau(\theta)$ if $W_n \xrightarrow{P} \tau(\theta)$ under P_{θ} for every $\theta \in \Omega$.

Asymptotic Evaluation of Point Estimators

When the sample size n approaches infinity, the behaviors of an estimator are unknown as its asymptotic properties.

Definition - Consistency

Let $W_n = W_n(X_1, \cdots, X_n) = W_n(\mathbf{X})$ be a sequence of estimators for $\tau(\theta)$. We say W_n is consistent for estimating $\tau(\theta)$ if $W_n \stackrel{\mathrm{P}}{\longrightarrow} \tau(\theta)$ under P_{θ} for every $\theta \in \Omega$.

 $W_n \xrightarrow{P} \tau(\theta)$ (converges in probability to $\tau(\theta)$) means that, given any $\epsilon > 0$.

$$\lim_{n \to \infty} \Pr(|W_n - \tau(\theta)| \ge \epsilon) = 0$$

$$\lim_{n \to \infty} \Pr(|W_n - \tau(\theta)| < \epsilon) = 1$$

Asymptotic Evaluation of Point Estimators

When the sample size n approaches infinity, the behaviors of an estimator are unknown as its asymptotic properties.

Definition - Consistency

Let $W_n = W_n(X_1, \cdots, X_n) = W_n(\mathbf{X})$ be a sequence of estimators for $\tau(\theta)$. We say W_n is consistent for estimating $\tau(\theta)$ if $W_n \stackrel{\mathrm{P}}{\longrightarrow} \tau(\theta)$ under P_{θ} for every $\theta \in \Omega$.

 $W_n \xrightarrow{P} \tau(\theta)$ (converges in probability to $\tau(\theta)$) means that, given any $\epsilon > 0$.

$$\lim_{n \to \infty} \Pr(|W_n - \tau(\theta)| \ge \epsilon) = 0$$

$$\lim_{n \to \infty} \Pr(|W_n - \tau(\theta)| < \epsilon) = 1$$

When $|W_n - \tau(\theta)| < \epsilon$ can also be represented that W_n is close to $\tau(\theta)$.

4 D > 4 A > 4 B > 4 B > B 9 9 9

Asymptotic Evaluation of Point Estimators

When the sample size n approaches infinity, the behaviors of an estimator are unknown as its asymptotic properties.

Definition - Consistency

Let $W_n = W_n(X_1, \cdots, X_n) = W_n(\mathbf{X})$ be a sequence of estimators for $\tau(\theta)$. We say W_n is consistent for estimating $\tau(\theta)$ if $W_n \stackrel{\mathrm{P}}{\longrightarrow} \tau(\theta)$ under P_{θ} for every $\theta \in \Omega$.

 $W_n \xrightarrow{P} \tau(\theta)$ (converges in probability to $\tau(\theta)$) means that, given any $\epsilon > 0$.

$$\lim_{n \to \infty} \Pr(|W_n - \tau(\theta)| \ge \epsilon) = 0$$
$$\lim_{n \to \infty} \Pr(|W_n - \tau(\theta)| < \epsilon) = 1$$

When $|W_n - \tau(\theta)| < \epsilon$ can also be represented that W_n is close to $\tau(\theta)$. Consistency implies that the probability of W_n close to $\tau(\theta)$ approaches to 1 as n goes to ∞ .

Tools for proving consistency

Use definition (complicated)

Tools for proving consistency

- Use definition (complicated)
- Chebychev's Inequality

$$\Pr(|W_n - \tau(\theta)| \ge \epsilon) = \Pr((W_n - \tau(\theta))^2 \ge \epsilon^2)$$

$$\le \frac{\mathrm{E}[W_n - \tau(\theta)]^2}{\epsilon^2}$$

$$= \frac{\mathrm{MSE}(W_n)}{\epsilon^2} = \frac{\mathrm{Bias}^2(W_n) + \mathrm{Var}(W_n)}{\epsilon^2}$$

Tools for proving consistency

- Use definition (complicated)
- Chebychev's Inequality

$$\Pr(|W_n - \tau(\theta)| \ge \epsilon) = \Pr((W_n - \tau(\theta))^2 \ge \epsilon^2)$$

$$\le \frac{\mathrm{E}[W_n - \tau(\theta)]^2}{\epsilon^2}$$

$$= \frac{\mathrm{MSE}(W_n)}{\epsilon^2} = \frac{\mathrm{Bias}^2(W_n) + \mathrm{Var}(W_n)}{\epsilon^2}$$

Need to show that both $\operatorname{Bias}(W_n)$ and $\operatorname{Var}(W_n)$ converges to zero

Theorem for consistency

Theorem 10.1.3

If W_n is a sequence of estimators of $\tau(\theta)$ satisfying

- $\lim_{n\to\infty} \operatorname{Bias}(W_n) = 0.$
- $\lim_{n\to\infty} \operatorname{Var}(W_n) = 0.$

for all θ , then W_n is consistent for $\tau(\theta)$

Weak Law of Large Numbers

Theorem 5.5.2

Let X_1, \cdots, X_n be iid random variables with $\mathrm{E}(X) = \mu$ and $\mathrm{Var}(X) = \sigma^2 < \infty$. Then \overline{X}_n converges in probability to μ . i.e. $\overline{X}_n \stackrel{\mathrm{P}}{\longrightarrow} \mu$.

Consistent sequence of estimators

Theorem 10.1.5

Let W_n is a consistent sequence of estimators of $\tau(\theta)$. Let a_n , b_n be sequences of constants satisfying

Consistent sequence of estimators

Theorem 10.1.5

Let W_n is a consistent sequence of estimators of $\tau(\theta)$. Let a_n , b_n be sequences of constants satisfying

Then $U_n = a_n W_n + b_n$ is also a consistent sequence of estimators of $\tau(\theta)$.

Consistent sequence of estimators

Theorem 10.1.5

Let W_n is a consistent sequence of estimators of $\tau(\theta)$. Let a_n , b_n be sequences of constants satisfying

Then $U_n = a_n W_n + b_n$ is also a consistent sequence of estimators of $\tau(\theta)$.

Continuous Map Theorem

If W_n is consistent for θ and g is a continuous function, then $g(W_n)$ is consistent for $g(\theta)$.

Example - Exponential Family

Problem

Suppose $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \text{Exponential}(\beta)$.

Example - Exponential Family

Problem

Suppose $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \text{Exponential}(\beta)$.

1 Propose a consistent estimator of the median.

Example - Exponential Family

Problem

Suppose $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \text{Exponential}(\beta)$.

- 1 Propose a consistent estimator of the median.
- 2 Propose a consistent estimator of $Pr(X \le c)$ where c is constant.

$$\Pr(X \le c) = \int_0^c \frac{1}{\beta} e^{-x/\beta} dx$$

$$\Pr(X \le c) = \int_0^c \frac{1}{\beta} e^{-x/\beta} dx$$
$$= 1 - e^{-c/\beta}$$

$$\Pr(X \le c) = \int_0^c \frac{1}{\beta} e^{-x/\beta} dx$$
$$= 1 - e^{-c/\beta}$$

As \overline{X} is consistent for β , $1 - e^{-c/\beta}$ is continuous function of β .

$$Pr(X \le c) = \int_0^c \frac{1}{\beta} e^{-x/\beta} dx$$
$$= 1 - e^{-c/\beta}$$

As \overline{X} is consistent for β , $1-e^{-c/\beta}$ is continuous function of β . By continuous mapping Theorem, $g(\overline{X})=1-e^{-c/\overline{X}}$ is consistent for $\Pr(X\leq c)=1-e^{-c/\beta}=g(\beta)$

Consistent estimator of $\Pr(X \leq c)$ - Alternative Method

Define $Y_i = I(X_i \le c)$. Then $Y_i \stackrel{\text{i.i.d.}}{\sim} \text{Bernoulli}(p)$ where $p = \Pr(X \le c)$.

Consistent estimator of $\Pr(X \leq c)$ - Alternative Method

Define $Y_i = I(X_i \le c)$. Then $Y_i \stackrel{\text{i.i.d.}}{\sim} \text{Bernoulli}(p)$ where $p = \Pr(X \le c)$.

$$\overline{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i = \frac{1}{n} \sum_{i=1}^{n} I(X_i \le c)$$

is consistent for p by Law of Large Numbers.

Consistency of MLEs

Theorem 10.1.6 - Consistency of MLEs

Suppose $X_i \stackrel{\text{i.i.d.}}{\smile} f(x|\theta)$. Let $\hat{\theta}$ be the MLE of θ , and $\tau(\theta)$ be a continuous function of θ . Then under "regularity conditions" on $f(x|\theta)$, the MLE of $\tau(\theta)$ (i.e. $\tau(\hat{\theta})$) is consistent for $\tau(\theta)$.

Asymptotic Normality

Definition: Asymptotic Normality

A statistic (or an estimator) $W_n(\mathbf{X})$ is asymptotically normal if

$$\sqrt{n}(W_n - \tau(\theta)) \xrightarrow{\mathrm{d}} \mathcal{N}(0, \nu(\theta))$$

for all θ

where $\stackrel{d}{\longrightarrow}$ stands for "converge in distribution"

Definition: Asymptotic Normality

A statistic (or an estimator) $W_n(\mathbf{X})$ is asymptotically normal if

$$\sqrt{n}(W_n - \tau(\theta)) \xrightarrow{\mathrm{d}} \mathcal{N}(0, \nu(\theta))$$

for all θ

where $\stackrel{\mathrm{d}}{\longrightarrow}$ stands for "converge in distribution"

- $\tau(\theta)$: "asymptotic mean"
- $\nu(\theta)$: "asymptotic variance"

Definition: Asymptotic Normality

A statistic (or an estimator) $W_n(\mathbf{X})$ is asymptotically normal if

$$\sqrt{n}(W_n - \tau(\theta)) \xrightarrow{\mathrm{d}} \mathcal{N}(0, \nu(\theta))$$

for all θ

where $\stackrel{d}{\longrightarrow}$ stands for "converge in distribution"

- $\tau(\theta)$: "asymptotic mean"
- $\nu(\theta)$: "asymptotic variance"

We denote $W_n \sim \mathcal{AN}\left(\tau(\theta), \frac{\nu(\theta)}{n}\right)$.

Central Limit Theorem

Assume $X_i \stackrel{\text{i.i.d.}}{\smile} f(x|\theta)$ with finite mean $\mu(\theta)$ and variance $\sigma^2(\theta)$.

$$\overline{X} \sim \mathcal{AN}\left(\mu(\theta), \frac{\sigma^2(\theta)}{n}\right)$$

Central Limit Theorem

Assume $X_i \stackrel{\text{i.i.d.}}{\longleftarrow} f(x|\theta)$ with finite mean $\mu(\theta)$ and variance $\sigma^2(\theta)$.

$$\overline{X} \sim \mathcal{AN}\left(\mu(\theta), \frac{\sigma^2(\theta)}{n}\right)$$

$$\Leftrightarrow \sqrt{n}\left(\overline{X} - \mu(\theta)\right) \stackrel{d}{\longrightarrow} \mathcal{N}(0, \sigma^2(\theta))$$

Central Limit Theorem

Assume $X_i \stackrel{\text{i.i.d.}}{\smile} f(x|\theta)$ with finite mean $\mu(\theta)$ and variance $\sigma^2(\theta)$.

$$\overline{X} \sim \mathcal{AN}\left(\mu(\theta), \frac{\sigma^2(\theta)}{n}\right)$$

$$\Leftrightarrow \sqrt{n}\left(\overline{X} - \mu(\theta)\right) \xrightarrow{d} \mathcal{N}(0, \sigma^2(\theta))$$

Theorem 5.5.17 - Slutsky's Theorem

If $X_n \xrightarrow{d} X$, $Y_n \xrightarrow{P} a$, where a is a constant,

Central Limit Theorem

Assume $X_i \stackrel{\text{i.i.d.}}{\smile} f(x|\theta)$ with finite mean $\mu(\theta)$ and variance $\sigma^2(\theta)$.

$$\overline{X} \sim \mathcal{AN}\left(\mu(\theta), \frac{\sigma^2(\theta)}{n}\right)$$

$$\Leftrightarrow \sqrt{n}\left(\overline{X} - \mu(\theta)\right) \stackrel{\mathrm{d}}{\longrightarrow} \mathcal{N}(0, \sigma^2(\theta))$$

Theorem 5.5.17 - Slutsky's Theorem

If $X_n \stackrel{\mathrm{d}}{\longrightarrow} X$, $Y_n \stackrel{\mathrm{P}}{\longrightarrow} a$, where a is a constant,

$$Y_n \cdot X_n \stackrel{\mathrm{d}}{\longrightarrow} aX$$

Central Limit Theorem

Assume $X_i \stackrel{\text{i.i.d.}}{\smile} f(x|\theta)$ with finite mean $\mu(\theta)$ and variance $\sigma^2(\theta)$.

$$\overline{X} \sim \mathcal{AN}\left(\mu(\theta), \frac{\sigma^2(\theta)}{n}\right)$$

$$\Leftrightarrow \sqrt{n}\left(\overline{X} - \mu(\theta)\right) \xrightarrow{d} \mathcal{N}(0, \sigma^2(\theta))$$

Theorem 5.5.17 - Slutsky's Theorem

If $X_n \xrightarrow{d} X$, $Y_n \xrightarrow{P} a$, where a is a constant,

- $2 X_n + Y_n \xrightarrow{d} X + a$

Example - Estimator of $Pr(X \le c)$

Define $Y_i = I(X_i \le c)$. Then $Y_i \stackrel{\text{i.i.d.}}{\smile} \text{Bernoulli}(p)$ where $p = \Pr(X \le c)$.

Example - Estimator of $Pr(X \le c)$

Define $Y_i = I(X_i \le c)$. Then $Y_i \stackrel{\text{i.i.d.}}{\sim} \text{Bernoulli}(p)$ where $p = \Pr(X \le c)$.

$$\overline{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i = \frac{1}{n} \sum_{i=1}^{n} I(X_i \le c)$$

is consistent for p. Therefore,

Example - Estimator of $Pr(X \le c)$

Define $Y_i = I(X_i \leq c)$. Then $Y_i \stackrel{\text{i.i.d.}}{\sim} \text{Bernoulli}(p)$ where $p = \Pr(X \leq c)$.

$$\overline{Y} = \frac{1}{n} \sum_{i=1}^{n} Y_i = \frac{1}{n} \sum_{i=1}^{n} I(X_i \le c)$$

is consistent for p. Therefore,

$$\frac{1}{n} \sum_{i=1}^{n} I(X_i \le c) \sim \mathcal{AN}\left(E(Y), \frac{Var(Y)}{n}\right)$$
$$= = \mathcal{AN}\left(p, \frac{p(1-p)}{n}\right)$$

Let X_1, \dots, X_n be iid samples with finite mean μ and variance σ^2 . Define

$$S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$$

Let X_1, \dots, X_n be iid samples with finite mean μ and variance σ^2 . Define

$$S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$$

By Central Limit Theorem,

$$\overline{X}_n \sim \mathcal{AN}\left(\mu, \frac{\sigma^2}{n}\right)$$

Let X_1, \dots, X_n be iid samples with finite mean μ and variance σ^2 . Define

$$S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$$

By Central Limit Theorem,

$$\overline{X}_n \sim \mathcal{AN}\left(\mu, \frac{\sigma^2}{n}\right)$$
 $\Leftrightarrow \sqrt{n}(\overline{X} - \mu) \stackrel{d}{\longrightarrow} \mathcal{N}(0, \sigma^2)$

Let X_1, \dots, X_n be iid samples with finite mean μ and variance σ^2 . Define

$$S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$$

By Central Limit Theorem,

$$\overline{X}_n \sim \mathcal{AN}\left(\mu, \frac{\sigma^2}{n}\right)$$

$$\Leftrightarrow \sqrt{n}(\overline{X} - \mu) \stackrel{d}{\longrightarrow} \mathcal{N}(0, \sigma^2)$$

$$\Leftrightarrow \frac{\sqrt{n}(\overline{X} - \mu)}{\sigma} \stackrel{d}{\longrightarrow} \mathcal{N}(0, 1)$$

Example (cont'd)

$$\frac{\sqrt{n}(\overline{X} - \mu)}{S_n} = \frac{\sigma}{S_n} \frac{\sqrt{n}(\overline{X} - \mu)}{\sigma}$$

Example (cont'd)

$$\frac{\sqrt{n}(\overline{X} - \mu)}{S_n} = \frac{\sigma}{S_n} \frac{\sqrt{n}(\overline{X} - \mu)}{\sigma}$$

We showed previously $S_n^2 \xrightarrow{P} \sigma^2 \Rightarrow S_n \xrightarrow{P} \sigma \Rightarrow \sigma/S_n \xrightarrow{P} 1$.

Example (cont'd)

$$\frac{\sqrt{n}(\overline{X} - \mu)}{S_n} = \frac{\sigma}{S_n} \frac{\sqrt{n}(\overline{X} - \mu)}{\sigma}$$

We showed previously $S_n^2 \stackrel{\mathrm{P}}{\longrightarrow} \sigma^2 \Rightarrow S_n \stackrel{\mathrm{P}}{\longrightarrow} \sigma \Rightarrow \sigma/S_n \stackrel{\mathrm{P}}{\longrightarrow} 1$. Therefore, By Slutsky's Theorem $\frac{\sqrt{n}(\overline{X}-\mu)}{S_n} \stackrel{\mathrm{P}}{\longrightarrow} \mathcal{N}(0,1)$.

Delta Method

Theorem 5.5.24 - Delta Method

Assume $W_n \sim \mathcal{AN}\left(\theta, \frac{\nu(\theta)}{n}\right)$. If a function g satisfies $g'(\theta) \neq 0$, then $g(W_n) \sim \mathcal{AN}\left(g(\theta), [g'(\theta)]^2 \frac{\nu(\theta)}{n}\right)$

 $X_1, \cdots, X_n \overset{\text{i.i.d.}}{\sim} \operatorname{Bernoulli}(p)$ where $p \neq \frac{1}{2}$, we want to know the asymptotic distribution of $\overline{X}(1-\overline{X})$.

 $X_1, \dots, X_n \overset{\text{i.i.d.}}{\sim} \operatorname{Bernoulli}(p)$ where $p \neq \frac{1}{2}$, we want to know the asymptotic distribution of $\overline{X}(1-\overline{X})$. By central limit Theorem,

$$\frac{\sqrt{n}(\overline{X}_n - p)}{\sqrt{p(1-p)}} \quad \stackrel{\mathrm{d}}{\longrightarrow} \quad \mathcal{N}(0,1)$$

 $X_1, \cdots, X_n \overset{\text{i.i.d.}}{\sim} \operatorname{Bernoulli}(p)$ where $p \neq \frac{1}{2}$, we want to know the asymptotic distribution of $\overline{X}(1-\overline{X})$. By central limit Theorem,

$$\frac{\sqrt{n}(\overline{X}_n - p)}{\sqrt{p(1-p)}} \xrightarrow{d} \mathcal{N}(0,1)$$

$$\Leftrightarrow \overline{X}_n \sim \mathcal{A}\mathcal{N}\left(p, \frac{p(1-p)}{n}\right)$$

 $X_1, \dots, X_n \overset{\text{i.i.d.}}{\sim} \operatorname{Bernoulli}(p)$ where $p \neq \frac{1}{2}$, we want to know the asymptotic distribution of $\overline{X}(1-\overline{X})$. By central limit Theorem,

$$\frac{\sqrt{n}(\overline{X}_n - p)}{\sqrt{p(1-p)}} \xrightarrow{\mathrm{d}} \mathcal{N}(0,1)$$

$$\Leftrightarrow \overline{X}_n \sim \mathcal{A}\mathcal{N}\left(p, \frac{p(1-p)}{n}\right)$$

Define g(y) = y(1-y), then $\overline{X}(1-\overline{X}) = g(\overline{X})$.

 $X_1, \dots, X_n \overset{\text{i.i.d.}}{\sim} \operatorname{Bernoulli}(\underline{p})$ where $p \neq \frac{1}{2}$, we want to know the asymptotic distribution of $\overline{X}(1-\overline{X})$. By central limit Theorem,

$$\frac{\sqrt{n}(\overline{X}_n - p)}{\sqrt{p(1-p)}} \xrightarrow{\mathrm{d}} \mathcal{N}(0,1)$$

$$\Leftrightarrow \overline{X}_n \sim \mathcal{A}\mathcal{N}\left(p, \frac{p(1-p)}{n}\right)$$

Define
$$g(y) = y(1 - y)$$
, then $\overline{X}(1 - \overline{X}) = g(\overline{X})$.

$$g'(y) = (y - y^2)' = 1 - 2y$$

 $X_1, \dots, X_n \overset{\text{i.i.d.}}{\sim} \operatorname{Bernoulli}(p)$ where $p \neq \frac{1}{2}$, we want to know the asymptotic distribution of $\overline{X}(1-\overline{X})$. By central limit Theorem,

$$\frac{\sqrt{n}(\overline{X}_n - p)}{\sqrt{p(1-p)}} \xrightarrow{d} \mathcal{N}(0,1)$$

$$\Leftrightarrow \overline{X}_n \sim \mathcal{A}\mathcal{N}\left(p, \frac{p(1-p)}{n}\right)$$

Define g(y)=y(1-y), then $\overline{X}(1-\overline{X})=g(\overline{X})$.

$$g'(y) = (y - y^2)' = 1 - 2y$$

By Delta Method,

$$g(\overline{X}) = \overline{X}(1 - \overline{X}) \sim \mathcal{AN}\left(g(p), [g'(p)]^2 \frac{p(1-p)}{n}\right)$$

 $X_1, \dots, X_n \overset{\text{i.i.d.}}{\sim} \operatorname{Bernoulli}(\underline{p})$ where $p \neq \frac{1}{2}$, we want to know the asymptotic distribution of $\overline{X}(1-\overline{X})$. By central limit Theorem,

$$\frac{\sqrt{n}(\overline{X}_n - p)}{\sqrt{p(1-p)}} \xrightarrow{d} \mathcal{N}(0,1)$$

$$\Leftrightarrow \overline{X}_n \sim \mathcal{A}\mathcal{N}\left(p, \frac{p(1-p)}{n}\right)$$

Define g(y)=y(1-y), then $\overline{X}(1-\overline{X})=g(\overline{X})$.

$$g'(y) = (y - y^2)' = 1 - 2y$$

By Delta Method,

$$g(\overline{X}) = \overline{X}(1 - \overline{X}) \sim \mathcal{AN}\left(g(p), [g'(p)]^2 \frac{p(1-p)}{n}\right)$$
$$= \mathcal{AN}\left(p(1-p), (1-2p)^2 \frac{p(1-p)}{n}\right)$$

Given a statistic $W_n(\mathbf{X})$, for example \overline{X} , $s_{\mathbf{X}}^2$, $e^{-\overline{X}}$

Given a statistic $W_n(\mathbf{X})$, for example \overline{X} , $s_{\mathbf{X}}^2$, $e^{-\overline{X}}$

$$\sqrt{n}(W_n - \tau(\theta)) \xrightarrow{\mathrm{d}} \mathcal{N}(0, \nu(\theta)) \quad \text{for all } \theta$$

$$\iff W_n \quad \sim \quad \mathcal{A}\mathcal{N}\left(\tau(\theta), \frac{\nu(\theta)}{n}\right)$$

Given a statistic $W_n(\mathbf{X})$, for example \overline{X} , $s_{\mathbf{X}}^2$, $e^{-\overline{X}}$

$$\sqrt{n}(W_n - \tau(\theta)) \xrightarrow{\mathrm{d}} \mathcal{N}(0, \nu(\theta)) \quad \text{for all } \theta$$

$$\iff W_n \quad \sim \quad \mathcal{A}\mathcal{N}\left(\tau(\theta), \frac{\nu(\theta)}{n}\right)$$

Tools to show asymptotic normality

Central Limit Theorem

Given a statistic $W_n(\mathbf{X})$, for example \overline{X} , $s_{\mathbf{X}}^2$, $e^{-\overline{X}}$

$$\sqrt{n}(W_n - \tau(\theta)) \xrightarrow{\mathrm{d}} \mathcal{N}(0, \nu(\theta)) \quad \text{for all } \theta$$

$$\iff W_n \quad \sim \quad \mathcal{A}\mathcal{N}\left(\tau(\theta), \frac{\nu(\theta)}{n}\right)$$

Tools to show asymptotic normality

- Central Limit Theorem
- Slutsky Theorem

Given a statistic $W_n(\mathbf{X})$, for example \overline{X} , $s_{\mathbf{X}}^2$, $e^{-\overline{X}}$

$$\sqrt{n}(W_n - \tau(\theta)) \xrightarrow{\mathrm{d}} \mathcal{N}(0, \nu(\theta)) \quad \text{for all } \theta$$

$$\iff W_n \quad \sim \quad \mathcal{A}\mathcal{N}\left(\tau(\theta), \frac{\nu(\theta)}{n}\right)$$

Tools to show asymptotic normality

- Central Limit Theorem
- Slutsky Theorem
- 3 Delta Method (Theorem 5.5.24)

$$\overline{X} \sim \mathcal{AN}\left(\mu(\theta), \frac{\sigma^2(\theta)}{n}\right)$$

where $\mu(\theta) = E(X)$, and $\sigma^2(\theta) = Var(X)$.

$$\overline{X} \sim \mathcal{AN}\left(\mu(\theta), \frac{\sigma^2(\theta)}{n}\right)$$

where $\mu(\theta) = E(X)$, and $\sigma^2(\theta) = Var(X)$.

For example, in order to get the asymptotic distribution of $\frac{1}{n} \sum_{i=1}^{n} X_i^2$,

$$\overline{X} \sim \mathcal{AN}\left(\mu(\theta), \frac{\sigma^2(\theta)}{n}\right)$$

where $\mu(\theta) = E(X)$, and $\sigma^2(\theta) = Var(X)$.

For example, in order to get the asymptotic distribution of $\frac{1}{n}\sum_{i=1}^n X_i^2$, define $Y_i=X_i^2$, then

$$\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2} = \frac{1}{n}\sum_{i=1}^{n}Y_{i} = \overline{Y}$$

$$\overline{X} \sim \mathcal{AN}\left(\mu(\theta), \frac{\sigma^2(\theta)}{n}\right)$$

where $\mu(\theta) = E(X)$, and $\sigma^2(\theta) = Var(X)$.

For example, in order to get the asymptotic distribution of $\frac{1}{n}\sum_{i=1}^n X_i^2$, define $Y_i=X_i^2$, then

$$\frac{1}{n} \sum_{i=1}^{n} X_i^2 = \frac{1}{n} \sum_{i=1}^{n} Y_i = \overline{Y}$$

$$\sim \mathcal{AN}\left(EY, \frac{\text{Var}(Y)}{n}\right)$$

$$\overline{X} \sim \mathcal{AN}\left(\mu(\theta), \frac{\sigma^2(\theta)}{n}\right)$$

where $\mu(\theta) = E(X)$, and $\sigma^2(\theta) = Var(X)$.

For example, in order to get the asymptotic distribution of $\frac{1}{n}\sum_{i=1}^{n}X_{i}^{2}$, define $Y_{i}=X_{i}^{2}$, then

$$\begin{split} \frac{1}{n} \sum_{i=1}^{n} X_{i}^{2} &= \frac{1}{n} \sum_{i=1}^{n} Y_{i} = \overline{Y} \\ &\sim \mathcal{AN}\left(\operatorname{E}Y, \frac{\operatorname{Var}(Y)}{n} \right) \\ &\sim \mathcal{AN}\left(\operatorname{E}X^{2}, \frac{\operatorname{Var}(X^{2})}{n} \right) \end{split}$$

Using Slutsky Theorem

When $X_n \stackrel{\mathrm{d}}{\longrightarrow} X$, $Y_n \stackrel{\mathrm{P}}{\longrightarrow} a$, then

- $2 X_n + Y_n \stackrel{\mathrm{d}}{\longrightarrow} X + a.$

Using Delta Method (Theorem 5.5.24)

Assume $W_n \sim \mathcal{AN}\left(\theta, \frac{\nu(\theta)}{n}\right)$. If a function g satisfies $g'(\theta) \neq 0$, then

$$g(W_n) \sim \mathcal{AN}\left(g(\theta), [g'(\theta)]^2 \frac{\nu(\theta)}{n}\right)$$

Problem

$$X_1, \cdots, X_n \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mu, \sigma^2) \qquad \mu \neq 0$$

Find the asymptotic distribution of MLE of μ^2 .

Problem

$$X_1, \cdots, X_n \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mu, \sigma^2) \qquad \mu \neq 0$$

Find the asymptotic distribution of MLE of μ^2 .

Solution

1 It can be easily shown that MLE of μ is \overline{X} .

Problem

$$X_1, \cdots, X_n \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mu, \sigma^2) \qquad \mu \neq 0$$

Find the asymptotic distribution of MLE of μ^2 .

Solution

- **1** It can be easily shown that MLE of μ is \overline{X} .
- 2 By the invariance property of MLE, MLE of μ^2 is \overline{X}^2 .

Problem

$$X_1, \cdots, X_n \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mu, \sigma^2) \qquad \mu \neq 0$$

Find the asymptotic distribution of MLE of μ^2 .

Solution

- **1** It can be easily shown that MLE of μ is \overline{X} .
- 2 By the invariance property of MLE, MLE of μ^2 is \overline{X}^2 .
- 3 By central limit theorem, we know that

$$\overline{X} \sim \mathcal{AN}\left(\mu, \frac{\sigma^2}{n}\right)$$

4 Define $g(y) = y^2$, and apply Delta Method.

4 Define $g(y) = y^2$, and apply Delta Method. g'(y) = 2y

4 Define $g(y) = y^2$, and apply Delta Method.

$$g'(y) = 2y$$

$$\overline{X}^2 \sim \mathcal{AN}\left(g(\mu), [g'(\mu)]^2 \frac{\sigma^2}{n}\right)$$

4 Define $g(y) = y^2$, and apply Delta Method.

$$g'(y) = 2y$$

$$\overline{X}^2 \sim \mathcal{AN}\left(g(\mu), [g'(\mu)]^2 \frac{\sigma^2}{n}\right)$$

$$\sim \mathcal{AN}\left(\mu^2, (2\mu)^2 \frac{\sigma^2}{n}\right)$$

If both estimators are consistent and asymptotic normal, we can compare their asymptotic variance.

If both estimators are consistent and asymptotic normal, we can compare their asymptotic variance.

Definition 10.1.16: Asymptotic Relative Efficiency

If two estimators W_n and V_n satisfy

$$\sqrt{n}[W_n - \tau(\theta)] \xrightarrow{\mathrm{d}} \mathcal{N}(0, \sigma_W^2)$$

$$\sqrt{n}[V_n - \tau(\theta)] \xrightarrow{\mathrm{d}} \mathcal{N}(0, \sigma_V^2)$$

If both estimators are consistent and asymptotic normal, we can compare their asymptotic variance.

Asymptotic Efficiency

Definition 10.1.16: Asymptotic Relative Efficiency

If two estimators W_n and V_n satisfy

$$\sqrt{n}[W_n - \tau(\theta)] \xrightarrow{d} \mathcal{N}(0, \sigma_W^2)$$

$$\sqrt{n}[V_n - \tau(\theta)] \stackrel{\mathrm{d}}{\longrightarrow} \mathcal{N}(0, \sigma_V^2)$$

The asymptotic relative efficiency (ARE) of V_n with respect to W_n is

$$ARE(V_n, W_n) = \frac{\sigma_W^2}{\sigma_V^2}$$

If both estimators are consistent and asymptotic normal, we can compare their asymptotic variance.

Definition 10.1.16: Asymptotic Relative Efficiency

If two estimators W_n and V_n satisfy

$$\sqrt{n}[W_n - \tau(\theta)] \stackrel{\mathrm{d}}{\longrightarrow} \mathcal{N}(0, \sigma_W^2)$$

$$\sqrt{n}[V_n - \tau(\theta)] \stackrel{\mathrm{d}}{\longrightarrow} \mathcal{N}(0, \sigma_V^2)$$

The asymptotic relative efficiency (ARE) of V_n with respect to W_n is

$$ARE(V_n, W_n) = \frac{\sigma_W^2}{\sigma_V^2}$$

If ARE $(V_n, W_n) \ge 1$ for every $\theta \in \Omega$, then V_n is asymptotically more efficient than W_n .

Problem

Let $X_i \stackrel{\text{i.i.d.}}{\sim} \text{Poisson}(\lambda)$. consider estimating $\Pr(X=0) = e^{-\lambda}$

Problem

Let $X_i \stackrel{\text{i.i.d.}}{\sim} \operatorname{Poisson}(\lambda)$. consider estimating

$$\Pr(X=0) = e^{-\bar{\lambda}}$$

Our estimators are

$$W_n = \frac{1}{n} \sum_{i=1}^n I(X_i = 0)$$

Problem

Let $X_i \stackrel{\text{i.i.d.}}{\sim} \text{Poisson}(\lambda)$. consider estimating

$$\Pr(X=0) = e^{-\bar{\lambda}}$$

Our estimators are

$$W_n = \frac{1}{n} \sum_{i=1}^n I(X_i = 0)$$
$$V_n = e^{-\overline{X}}$$

$$V_n = e^{-\overline{X}}$$

Problem

Let $X_i \stackrel{\text{i.i.d.}}{\sim} \text{Poisson}(\lambda)$. consider estimating

$$\Pr(X=0) = e^{-\lambda}$$

Our estimators are

$$W_n = \frac{1}{n} \sum_{i=1}^n I(X_i = 0)$$

$$V_n = e^{-\overline{X}}$$

Determine which one is more asymptotically efficient estimator.

Solution - Asymptotic Distribution of $\,V_n\,$

$$V_n(\mathbf{X}) = e^{-\overline{X}}$$
, by CLT,

Solution - Asymptotic Distribution of V_n

$$V_n(\mathbf{X})=e^{-\overline{X}}$$
, by CLT,
$$\overline{X}\sim\mathcal{AN}(\mathrm{E}X,\mathrm{Var}X/n)\sim\mathcal{AN}(\lambda,\lambda/n)$$

$$V_n(\mathbf{X}) = e^{-\overline{X}}$$
, by CLT,

$$\overline{X} \sim \mathcal{AN}(EX, Var X/n) \sim \mathcal{AN}(\lambda, \lambda/n)$$

Define $q(y) = e^{-y}$, then $V_n = q(\overline{X})$ and $q'(y) = -e^{-y}$. By Delta Method

Asymptotic Efficiency 0000000

Solution - Asymptotic Distribution of V_n

$$V_n(\mathbf{X}) = e^{-\overline{X}}$$
, by CLT,

$$\overline{X} \sim \mathcal{AN}(EX, Var X/n) \sim \mathcal{AN}(\lambda, \lambda/n)$$

Define $q(y) = e^{-y}$, then $V_n = q(\overline{X})$ and $q'(y) = -e^{-y}$. By Delta Method

Asymptotic Efficiency

$$V_n = e^{-\overline{X}} \sim \mathcal{AN}\left(g(\lambda), [g'(\lambda)]^2 \frac{\lambda}{n}\right)$$

Solution - Asymptotic Distribution of V_n

$$V_n(\mathbf{X}) = e^{-\overline{X}}$$
, by CLT,

$$\overline{X} \sim \mathcal{AN}(EX, Var X/n) \sim \mathcal{AN}(\lambda, \lambda/n)$$

Define $q(y) = e^{-y}$, then $V_n = q(\overline{X})$ and $q'(y) = -e^{-y}$. By Delta Method

Asymptotic Efficiency

$$V_n = e^{-\overline{X}} \sim \mathcal{AN}\left(g(\lambda), [g'(\lambda)]^2 \frac{\lambda}{n}\right)$$

$$\sim \mathcal{AN}\left(e^{-\lambda}, e^{-2\lambda} \frac{\lambda}{n}\right)$$

Solution - Asymptotic Distribution of W_n

Define
$$Z_i = I(X_i = 0)$$

Solution - Asymptotic Distribution of W_n

Define
$$Z_i = I(X_i = 0)$$

$$W_n = \frac{1}{n} \sum_{i=1}^n I(X_i = 0) = \overline{Z}_n$$

Solution - Asymptotic Distribution of W_n

Define
$$Z_i = I(X_i = 0)$$

$$W_n = \frac{1}{n} \sum_{i=1}^n I(X_i = 0) = \overline{Z}_n$$

 $Z_i \sim \text{Bernoulli}(E(Z))$

Solution - Asymptotic Distribution of W_n

Define
$$Z_i = I(X_i = 0)$$

$$W_n = \frac{1}{n} \sum_{i=1}^n I(X_i = 0) = \overline{Z}_n$$

 $Z_i \sim \text{Bernoulli}(E(Z))$

$$E(Z) = Pr(X=0) = e^{-\lambda}$$

Solution - Asymptotic Distribution of W_n

Define
$$Z_i = I(X_i = 0)$$

$$W_n = \frac{1}{n} \sum_{i=1}^n I(X_i = 0) = \overline{Z}_n$$

$$Z_i \sim \text{Bernoulli}(E(Z))$$

$$E(Z) = \Pr(X = 0) = e^{-\lambda}$$

$$Var(Z) = e^{-\lambda}(1 - e^{-\lambda})$$

Solution - Asymptotic Distribution of W_n

Define $Z_i = I(X_i = 0)$

$$W_n = \frac{1}{n} \sum_{i=1}^n I(X_i = 0) = \overline{Z}_n$$

$$Z_i \sim \text{Bernoulli}(E(Z))$$

$$E(Z) = \Pr(X = 0) = e^{-\lambda}$$

$$Var(Z) = e^{-\lambda}(1 - e^{-\lambda})$$

By CLT,

$$W_n = \overline{Z}_n \sim \mathcal{AN}(E(Z), Var(Z)/n)$$

Solution - Asymptotic Distribution of W_n

Define $Z_i = I(X_i = 0)$

$$W_n = \frac{1}{n} \sum_{i=1}^n I(X_i = 0) = \overline{Z}_n$$

$$Z_i \sim \text{Bernoulli}(E(Z))$$

$$E(Z) = \Pr(X = 0) = e^{-\lambda}$$

$$Var(Z) = e^{-\lambda} (1 - e^{-\lambda})$$

By CLT,

$$W_n = \overline{Z}_n \sim \mathcal{AN}(E(Z), Var(Z)/n)$$

 $\sim \mathcal{AN}\left(e^{-\lambda}, \frac{e^{-\lambda}(1 - e^{-\lambda})}{n}\right)$

◆ロト ◆団ト ◆豆ト ◆豆ト ・豆 ・ 夕久(*)

$$ARE(W_n, V_n) = \frac{e^{-2\lambda} \lambda/n}{e^{-\lambda} (1 - e^{-\lambda})/n}$$

ARE(
$$W_n$$
, V_n) = $\frac{e^{-2\lambda}\lambda/n}{e^{-\lambda}(1 - e^{-\lambda})/n}$
= $\frac{\lambda}{e^{\lambda}(1 - e^{-\lambda})}$

ARE
$$(W_n, V_n)$$
 = $\frac{e^{-2\lambda}\lambda/n}{e^{-\lambda}(1 - e^{-\lambda})/n}$
 = $\frac{\lambda}{e^{\lambda}(1 - e^{-\lambda})}$
 = $\frac{\lambda}{e^{\lambda} - 1}$

ARE(
$$W_n$$
, V_n) = $\frac{e^{-2\lambda}\lambda/n}{e^{-\lambda}(1 - e^{-\lambda})/n}$
= $\frac{\lambda}{e^{\lambda}(1 - e^{-\lambda})}$
= $\frac{\lambda}{e^{\lambda} - 1}$
= $\frac{\lambda}{\left(1 + \lambda + \frac{\lambda^2}{2} + \frac{\lambda^3}{3!} + \cdots\right) - 1}$

$$ARE(W_n, V_n) = \frac{e^{-2\lambda}\lambda/n}{e^{-\lambda}(1 - e^{-\lambda})/n}$$

$$= \frac{\lambda}{e^{\lambda}(1 - e^{-\lambda})}$$

$$= \frac{\lambda}{e^{\lambda} - 1}$$

$$= \frac{\lambda}{\left(1 + \lambda + \frac{\lambda^2}{2} + \frac{\lambda^3}{3!} + \cdots\right) - 1}$$

$$\leq 1 \quad (\forall \lambda \geq 0)$$

ARE(
$$W_n$$
, V_n) = $\frac{e^{-2\lambda}\lambda/n}{e^{-\lambda}(1 - e^{-\lambda})/n}$
= $\frac{\lambda}{e^{\lambda}(1 - e^{-\lambda})}$
= $\frac{\lambda}{e^{\lambda} - 1}$
= $\frac{\lambda}{\left(1 + \lambda + \frac{\lambda^2}{2} + \frac{\lambda^3}{3!} + \cdots\right) - 1}$
 $\leq 1 \quad (\forall \lambda \geq 0)$

Therefore $W_n = \frac{1}{n} \sum I(X_i = 0)$ is less efficient than V_n (MLE), and ARE attains maximum at $\lambda = 0$.

Definition: Asymptotic Efficiency for iid samples

Definition: Asymptotic Efficiency for iid samples

$$\sqrt{n}(W_n - \tau(\theta)) \stackrel{\mathrm{d}}{\longrightarrow} \mathcal{N}\left(0, \frac{[\tau'(\theta)]^2}{I(\theta)}\right)$$

Definition: Asymptotic Efficiency for iid samples

$$\sqrt{n}(W_n - \tau(\theta)) \stackrel{\mathrm{d}}{\longrightarrow} \mathcal{N}\left(0, \frac{[\tau'(\theta)]^2}{I(\theta)}\right)$$

$$\iff W_n \sim \mathcal{A}\mathcal{N}\left(\tau(\theta), \frac{[\tau'(\theta)]^2}{nI(\theta)}\right)$$

Definition: Asymptotic Efficiency for iid samples

$$\sqrt{n}(W_n - \tau(\theta)) \xrightarrow{d} \mathcal{N}\left(0, \frac{[\tau'(\theta)]^2}{I(\theta)}\right)
\iff W_n \sim \mathcal{A}\mathcal{N}\left(\tau(\theta), \frac{[\tau'(\theta)]^2}{nI(\theta)}\right)
I(\theta) = E\left[\left\{\frac{\partial}{\partial \theta} \log f(X|\theta)\right\}^2 |\theta\right]$$

Definition: Asymptotic Efficiency for iid samples

$$\sqrt{n}(W_n - \tau(\theta)) \xrightarrow{d} \mathcal{N}\left(0, \frac{[\tau'(\theta)]^2}{I(\theta)}\right) \\
\iff W_n \sim \mathcal{A}\mathcal{N}\left(\tau(\theta), \frac{[\tau'(\theta)]^2}{nI(\theta)}\right) \\
I(\theta) = E\left[\left\{\frac{\partial}{\partial \theta}\log f(X|\theta)\right\}^2|\theta\right] \\
= -E\left[\frac{\partial^2}{\partial \theta^2}\log f(X|\theta)|\theta\right] \text{ (if interchangeability holds}$$

Definition: Asymptotic Efficiency for iid samples

A sequence of estimators W_n is asymptotically efficient for $\tau(\theta)$ if for all $\theta \in \Omega$,

$$\sqrt{n}(W_n - \tau(\theta)) \xrightarrow{d} \mathcal{N}\left(0, \frac{[\tau'(\theta)]^2}{I(\theta)}\right) \\
\iff W_n \sim \mathcal{A}\mathcal{N}\left(\tau(\theta), \frac{[\tau'(\theta)]^2}{nI(\theta)}\right) \\
I(\theta) = E\left[\left\{\frac{\partial}{\partial \theta} \log f(X|\theta)\right\}^2 |\theta\right] \\
= -E\left[\frac{\partial^2}{\partial \theta^2} \log f(X|\theta)|\theta\right] \text{ (if interchangeability holds}$$

Note: $\frac{|\tau'(\theta)|^2}{nI(\theta)}$ is the C-R bound for unbiased estimators of $\tau(\theta)$.

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 31 / 33

Asymptotic Efficiency of MLEs

Theorem 10.1.12

Let X_1, \dots, X_n be iid samples from $f(x|\theta)$. Let $\hat{\theta}$ denote the MLE of θ . Under same regularity conditions, $\hat{\theta}$ is consistent and asymptotically normal for θ , i.e.

$$\sqrt{n}(\hat{\theta} - \theta) \stackrel{\mathrm{d}}{\longrightarrow} \mathcal{N}\left(0, \frac{1}{I(\theta)}\right) \text{ for every } \theta \in \Omega$$

Asymptotic Efficiency of MLEs

Theorem 10.1.12

Let X_1, \dots, X_n be iid samples from $f(x|\theta)$. Let $\hat{\theta}$ denote the MLE of θ . Under same regularity conditions, $\hat{\theta}$ is consistent and asymptotically normal for θ , i.e.

$$\sqrt{n}(\hat{\theta} - \theta) \xrightarrow{d} \mathcal{N}\left(0, \frac{1}{I(\theta)}\right) \text{ for every } \theta \in \Omega$$

And if $\tau(\theta)$ is continuous and differentiable in θ , then

$$\sqrt{n}(\hat{\theta} - \theta) \xrightarrow{d} \mathcal{N}\left(0, \frac{[\tau'(\theta)]}{I(\theta)}\right) \\
\implies \tau(\hat{\theta}) \sim \mathcal{A}\mathcal{N}\left(\tau(\theta), \frac{[\tau'(\theta)]^2}{nI(\theta)}\right)$$

32 / 33

Asymptotic Efficiency of MLEs

Theorem 10.1.12

Let X_1, \dots, X_n be iid samples from $f(x|\theta)$. Let $\hat{\theta}$ denote the MLE of θ . Under same regularity conditions, $\hat{\theta}$ is consistent and asymptotically normal for θ , i.e.

$$\sqrt{n}(\hat{\theta} - \theta) \xrightarrow{d} \mathcal{N}\left(0, \frac{1}{I(\theta)}\right) \text{ for every } \theta \in \Omega$$

And if $\tau(\theta)$ is continuous and differentiable in θ , then

$$\sqrt{n}(\hat{\theta} - \theta) \xrightarrow{d} \mathcal{N}\left(0, \frac{[\tau'(\theta)]}{I(\theta)}\right)$$

$$\Rightarrow \tau(\hat{\theta}) \sim \mathcal{A}\mathcal{N}\left(\tau(\theta), \frac{[\tau'(\theta)]^2}{nI(\theta)}\right)$$

Again, note that the asymptotic variance of $\tau(\hat{\theta})$ is Cramer-Rao lower bound for unbiased estimators of $\tau(\theta)$.

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013

Summary

Today

- Central Limit Theorem
- Slutsky Theorem
- Delta Method
- Asymptotic Relative Efficiency

Summary

Today

- Central Limit Theorem
- Slutsky Theorem
- Delta Method
- Asymptotic Relative Efficiency

Next Lecture

Hypothesis Testing