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Last Lecture

= What is a Bayes Risk?

= What is the Bayes rule Estimator minimizing squared error loss?
= What is the Bayes rule Estimator minimizing absolute error loss?
= What are the tools for proving a point estimator is consistent?

= Can a biased estimator be consistent?
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Bayes Estimator based on absolute error loss

~

Suppose that L(6, é) =10 — 4.
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Bayes Estimator based on absolute error loss

Suppose that L(6, é) =10 — é] The posterior expected loss is

B[L(0,0(x))] = /Q\H—é(x)]w(e\x)dﬁ
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Bayes Estimator based on absolute error loss

Suppose that L(6, é) =10 — é] The posterior expected loss is

B[L(0,0(x))] = /\e 6(x) | (0]x) 0
E[6 — 0]|X = x]
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Bayes Estimator based on absolute error loss

Suppose that L(6, é) =10 — é] The posterior expected loss is

B[L(6,6(x))] = / 16— () =(6]x)db

= E[0—0||X =x]
0 o] R

_ / (O —O)m(0]x)d0 + / (0 — O)m(0)x) o
—00 0
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Bayes Estimator based on absolute error loss

Suppose that L(6, é) =10 — é] The posterior expected loss is

B[L(6,6(x))] = / 16— () =(6]x)db

= E[0—0||X =x]
0 o] R

_ / (O —O)m(0]x)d0 + / (0 — O)m(0)x) o
—00 0

o 00
iE[L(e,é(x))] = / 77(0|x)d0—/é 7(A]x)dd = 0
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Bayes Estimator based on absolute error loss

Suppose that L(6, é) =10 — é] The posterior expected loss is

B[L(6,6(x))] = / 16— () =(6]x)db

= E[0—0||X =x]
0 o] R

_ / (O —O)m(0]x)d0 + / (0 — O)m(0)x) o
—00 0

d 6 o0
SEL0.609)] = / 77(0|x)d9—/é ~(0x)d0 = 0

Therefore, 0 is posterior median.

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 3/33



Recap
[e]e] lelelelelele]e]

Asymptotic Evaluation of Point Estimators

When the sample size n approaches infinity, the behaviors of an estimator
are unknown as its asymptotic properties.
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Asymptotic Evaluation of Point Estimators

When the sample size n approaches infinity, the behaviors of an estimator
are unknown as its asymptotic properties.

Definition - Consistency

Let W, = W, (X1, -, Xy) = W,(X) be a sequence of estimators for

7(6). We say W, is consistent for estimating 7(6) if W, Py 7(6) under
Py for every 6 € ().
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Let W, = W, (X1, -, Xy) = W,(X) be a sequence of estimators for

7(6). We say W, is consistent for estimating 7(6) if W, Py 7(6) under
Py for every 6 € ().

W, —> 7(6) (converges in probability to 7(6)) means that, given any
e> 0.

li_>m Pr(|W, —7(0)| >¢) = 0
lim Pr(|W, —7(0)|<e) = 1
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Asymptotic Evaluation of Point Estimators

When the sample size n approaches infinity, the behaviors of an estimator
are unknown as its asymptotic properties.

Definition - Consistency

Let W, = W, (X1, -, Xy) = W,(X) be a sequence of estimators for

7(6). We say W, is consistent for estimating 7(6) if W, Py 7(6) under
Py for every 6 € ().

W, —> 7(6) (converges in probability to 7(6)) means that, given any
e> 0.

li_>m Pr(|W, —7(0)| >¢) = 0
lim Pr(|W, —7(0)|<e) = 1
n—00

When | W,, — 7(0)| < € can also be represented that W, is close to 7(0).
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Asymptotic Evaluation of Point Estimators

When the sample size n approaches infinity, the behaviors of an estimator
are unknown as its asymptotic properties.

Definition - Consistency

Let W, = W, (X1, -, Xy) = W,(X) be a sequence of estimators for

7(6). We say W, is consistent for estimating 7(6) if W, Py 7(6) under
Py for every 6 € ().

W, —> 7(6) (converges in probability to 7(6)) means that, given any
e> 0.

li_>m Pr(|W, —7(0)| >¢) = 0
lim Pr(|W, —7(0)|<e) = 1
n—00

When | W,, — 7(0)| < € can also be represented that W, is close to 7(0).
Consistency implies that the probability of W, close to 7(#) approaches to

1 as n goes to oo.
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Tools for proving consistency

= Use definition (complicated)

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 5/33



Recap
[e]e]e] lelelelele]e]

Tools for proving consistency

= Use definition (complicated)

= Chebychev's Inequality

Pr(|Wo—7(0)] =€) = Pr((Wo—7(0))*>¢)
E[W, —7(0)]?

= 62

MSE(W,) _ Bias®(W,) + Var(W,)

€2 €2
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Tools for proving consistency

= Use definition (complicated)

= Chebychev's Inequality

Pr(|Wy, —7(0)] = €) Pr((Wa —7(0))* =€)

E[W, — ()]
MSE(W,) Bias?(W,) + Var(W,)
= 2 = 2

Need to show that both Bias(W,) and Var(W,,) converges to zero
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Theorem for consistency

Theorem 10.1.3

If W, is a sequence of estimators of 7(f) satisfying
= lim,_-. Bias(W,) = 0.
= lim,_>o Var(W,) =0.

for all 6, then W, is consistent for 7(0)
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Weak Law of Large Numbers

Let Xi,---, X, be iid random variables with E(X) = p and
Var(X) = 02 < co. Then X, converges in probability to .
ie. X, Py .
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Consistent sequence of estimators

Theorem 10.1.5
Let W, is a consistent sequence of estimators of 7(6). Let a,, b, be
sequences of constants satisfying

O lim, . .a,=1
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Consistent sequence of estimators

Theorem 10.1.5

Let W, is a consistent sequence of estimators of 7(6). Let a,, b, be
sequences of constants satisfying

(1] hmn—>oo an =1

Then U, = a, W, + b, is also a consistent sequence of estimators of 7(6).

v
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Consistent sequence of estimators

Theorem 10.1.5

Let W, is a consistent sequence of estimators of 7(6). Let a,, b, be
sequences of constants satisfying

(1] hmn—>oo an =1

Then U, = a, W, + b, is also a consistent sequence of estimators of 7(6).

v

Continuous Map Theorem

If W, is consistent for 6§ and g is a continuous function, then g(W,,) is
consistent for g(f).
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Example - Exponential Family

Suppose X1, , X, 2L Exponential(3).
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Example - Exponential Family

Suppose X1, , X, 2L Exponential(3).
@ Propose a consistent estimator of the median.

@® Propose a consistent estimator of Pr(X < ¢) where ¢ is constant.
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Consistent estimator of Pr(X < ¢)

Pr(X<e¢) = /1e_z/5dx
o B
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Consistent estimator of Pr(X < ¢)

Pr(X<e¢) = /1e_z/5dx
o B

= 1—¢ 9P
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Consistent estimator of Pr(X < ¢)

Pr(X<e¢) = /1e_z/5dx
o B

= 1—¢ 9P

As X is consistent for 8, 1 — e~“/# is continuous function of 3.

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 10 / 33



Recap
0000000080

Consistent estimator of Pr(X < ¢)

Pr(X<e¢) = /1e_z/5dx
o B

= 1—¢ 9P

As X is consistent for 8, 1 — e~“/# is continuous function of 3.

By continuous mapping Theorem, g(X) = 1 — e=%/X is consistent for

Pr(X<c¢)=1—e 8 =g
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Consistent estimator of Pr(X < ¢) - Alternative Method

Define Y; = I(X; < ¢). Then Y; He Bernoulli(p) where p = Pr(X < ¢).
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Consistent estimator of Pr(X < ¢) - Alternative Method

Define Y; = I(X; < ¢). Then Y; He Bernoulli(p) where p = Pr(X < ¢).

fzy_fz (X: <o)

is consistent for p by Law of Large Numbers.
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Consistency of MLEs

Theorem 10.1.6 - Consistency of MLEs

Suppose X; L f(#]6). Let  be the MLE of 6, and 7(6) be a continuous
function of #. Then under "regularity conditions” on f(z|6), the MLE of

A~

7(0) (i.e. 7(0)) is consistent for 7(0).
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Asymptotic Normality

Definition: Asymptotic Normality
A statistic (or an estimator) W, (X) is asymptotically normal if

VW, —7(6)) —2> N(0,(6))

for all 6 .
where — stands for "converge in distribution”
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Asymptotic Normality

Definition: Asymptotic Normality
A statistic (or an estimator) W, (X) is asymptotically normal if

VW, —7(6)) —2> N(0,(6))

for all 6 .
where — stands for "converge in distribution”

= 7(6) : "asymptotic mean”

= () : "asymptotic variance”
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Asymptotic Normality

Definition: Asymptotic Normality

A statistic (or an estimator) W, (X) is asymptotically normal if
VW, = 7(6)) —> N (0, 1(6))

for all 6 .
where — stands for "converge in distribution”

= 7(6) : "asymptotic mean”
= () : "asymptotic variance”
We denote W,, ~ AN (T(Q), @).

n
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Central Limit Theorem

Central Limit Theorem

Assume X; “& f(2]0) with finite mean 1(0) and variance ().
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Central Limit Theorem

Central Limit Theorem

Assume X; =S f(2]6) with finite mean 1(6) and variance o2(6).

& Vr(X-uo) —=> N(0,0%0))

Theorem 5.5.17 - Slutsky's Theorem

d P .
If X,, — X, Y,, —> a, where a is a constant,

v
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Central Limit Theorem

Assume X; =S f(2]6) with finite mean 1(6) and variance o2(6).

& Vr(X-uo) —=> N(0,0%0))

Theorem 5.5.17 - Slutsky's Theorem

d P .
If X,, — X, Y,, —> a, where a is a constant,

OV, X, oXx

v
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Central Limit Theorem

Central Limit Theorem

Assume X; =S f(2]6) with finite mean 1(6) and variance o2(6).

& Vr(X-uo) —=> N(0,0%0))

Theorem 5.5.17 - Slutsky's Theorem

If X, —d> X Y, —P> a, where a is a constant,
07V, X, % aX

v
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Example - Estimator of Pr(X < ¢)

Define Y; = I(X; < ¢). Then Y; e Bernoulli(p) where p = Pr(X < ¢).
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Example - Estimator of Pr(X < ¢)

Define Y; = I(X; < ¢). Then Y; e Bernoulli(p) where p = Pr(X < ¢).

1 <& 1<
Y = n;Yi:nZI(Xigc)

=1

is consistent for p. Therefore,
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Example - Estimator of Pr(X < ¢)

Define Y; = I(X; < ¢). Then Y; e Bernoulli(p) where p = Pr(X < ¢).

1 <& 1<
Y = n;Yi:nZI(Xigc)

=1

is consistent for p. Therefore,

Varm)

n

p22)

1 n
=1
p
b,

(
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EE

Let X1,---, X, be iid samples with finite mean y and variance 0. Define

n

1 _
P = — D (X - X)?
=1
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EE

Let X1,---, X, be iid samples with finite mean y and variance 0. Define

n

1 _
P = — D (X - X)?
=1

By Central Limit Theorem,
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Let X1,---, X, be iid samples with finite mean y and variance 0. Define
1 n
2 _ 2

By Central Limit Theorem,
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Example (cont'd)
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Example (cont'd)

o /(X —p)
Sn Sn o

We showed previously $2 Lot 85, o= /S s
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Example (cont'd)

ViX—p) o X —p)
Sn Sn o

We showed previously $2 Ly 02 = Sp Lo /S s
Therefore, By Slutsky’s Theorem %{“) L5 N(0,1).
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Delta Method

Theorem 5.5.24 - Delta Method
Assume W,, ~ AJ\/( () ) If a function g satisfies ¢/(0) # 0, then

o(W) ~ AN (gw), W)F@)

n
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Delta Method - Example

X1, , Xy i Bernoulli(p) where p # % we want to know the
asymptotic distribution of X(1 — X).
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Delta Method - Example

X1, , Xy i Bernoulli(p) where p # % we want to know the
asymptotic distribution of X(1 — X). By central limit Theorem,
X —
ALCLThal ) R NV
p(1—p)
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Delta Method - Example

X1, , Xy i Bernoulli(p) where p # % we want to know the
asymptotic distribution of X(1 — X). By central limit Theorem,

\/?l(j(n - p) d, ./\/'(07 1)
p(1—p)

s X, ~ AN(p,p(l_p)>

n
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Delta Method - Example

X1, , Xy i Bernoulli(p) where p # % we want to know the
asymptotic distribution of X(1 — X). By central limit Theorem,

\/?l(j(n - p) d, ./\/'(07 1)
p(1—p)
X, ~ AN <p, p(ln_p)>

Define g(y) = y(1 — y), then X(1 — X) = g(X).
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Delta Method - Example

X1, , Xy i Bernoulli(p) where p # % we want to know the
asymptotic distribution of X(1 — X). By central limit Theorem,

\/?l(j(n - p) d, ./\/'(07 1)
p(1—p)
X, ~ AN <p, p(ln_p)>

Define g(y) = y(1 — y), then X(1 — X) = g(X).

Jy)=w—y)=1-2y
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Delta Method - Example

X1, , Xy i Bernoulli(p) where p # % we want to know the
asymptotic distribution of X(1 — X). By central limit Theorem,
X —
p(1—p)
_ 1—
X, ~ AN <p, pl=p) - p)>

Define g(y) = y(1 — y), then X(1 — X) = g(X).
J) =(—v) =1-2y
By Delta Method,

(X =F1-T) ~ AN(g<p>,[g’<p>]2p(1"’>)

n
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Delta Method - Example

X1, , Xy i Bernoulli(p) where p # % we want to know the
asymptotic distribution of X(1 — X). By central limit Theorem,
X —
p(1—p)
_ 1—
X, ~ AN <p, pl=p) - p)>

Define g(y) = y(1 — y), then X(1 — X) = g(X).

Jy)=@—y) =1-2y
By Delta Method,

n

(X =F1-T) ~ AN(g<p>,[g’<p>]2p(1"’>)

Y <p(1 —p), (1~ 2p)2p(1n—p))
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Asymptotic Normality

Given a statistic W,,(X), for example X, si, X
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Asymptotic Normality

Given a statistic W,,(X), for example X, si, X

VW, —1(0)) - N(0,v(0))  forall
=W, ~ AN (T(0)71/(9)>

n
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Asymptotic Normality

Given a statistic W,,(X), for example X, si, X
VW, —1(0)) - N(0,v(0))  forall
0
=W, ~ AN (7(0), V(n)>
Tools to show asymptotic normality

® Central Limit Theorem
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Asymptotic Normality

Given a statistic W,,(X), for example X, si, X
VW, —1(0)) - N(0,v(0))  forall
0
=W, ~ AN (7(0), V(n)>
Tools to show asymptotic normality
® Central Limit Theorem

® Slutsky Theorem
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Asymptotic Normality

Given a statistic W,,(X), for example X, si, X

VW, —1(0)) - N(0,v(0))  forall
=W, ~ AN (T(0)71/(9)>

n

Tools to show asymptotic normality
® Central Limit Theorem
® Slutsky Theorem
© Delta Method (Theorem 5.5.24)
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Using Central Limit Theorem

where 11(6) = E(X), and 0%(0) = Var(X).
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Using Central Limit Theorem

where 11(6) = E(X), and 0%(0) = Var(X).
For example, in order to get the asymptotic distribution of %Z?Zl X?
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Using Central Limit Theorem

where 11(6) = E(X), and 0%(0) = Var(X).
For example, in order to get the asymptotic distribution of %Z?Zl X?
define Y; = X? then
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Using Central Limit Theorem

where 11(6) = E(X), and 0%(0) = Var(X).
For example, in order to get the asymptotic distribution of %Z?Zl X?
define Y; = X? then

1= o 1 — _
;LZXi = ;LZYZ-_Y
=1 =1
~ AN(EY,Var(Y)>
n
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Using Central Limit Theorem

where 11(6) = E(X), and 0%(0) = Var(X).
For example, in order to get the asymptotic distribution of %Z?Zl X?
define Y; = X? then

1= o 1 — _
;LZXi = ;LZYZ-_Y
=1 =1

~ AN(EY,Var(Y)>

n

~ AN (EX2, VM(XQ))
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Using Slutsky Theorem

When X, —d> XY, —P> a, then
® vV, X, % ax
® X, +Y, % xXta
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Using Delta Method (Theorem 5.5.24)

Assume W, ~ .AN( v ) If a function g satisfies ¢ (6) # 0, then

o(W) ~ AN (gw), [g’wn”e))

n

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 23 /33



Asymptotic Normality
000000000000 e0

EE

Problem

ii.d.
Xla"'7an"l\" (/%0-2) p#0

Find the asymptotic distribution of MLE of 2.

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 24 /33



Asymptotic Normality
000000000000 e0

EE

Problem

iid.
Xi,- Xn 7S N(p,0%) p#0

Find the asymptotic distribution of MLE of 2.

Solution
© It can be easily shown that MLE of y is X.

| \

\
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EE

Problem

iid.
Xi,- Xn 7S N(p,0%) p#0

Find the asymptotic distribution of MLE of 2.

Solution
© It can be easily shown that MLE of y is X.
@® By the invariance property of MLE, MLE of 2 is X
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Problem

iid.
Xi,- Xn 7S N(p,0%) p#0

Find the asymptotic distribution of MLE of 2.

| \

Solution
© It can be easily shown that MLE of y is X.
@® By the invariance property of MLE, MLE of 2 is X

® By central limit theorem, we know that

2
XNAN(,u, 2)

\
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Solution (cont'd)

0 Define g(y) = 42, and apply Delta Method.
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Solution (cont'd)

0 Define g(y) = 42, and apply Delta Method.
Jy) = 2y
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Solution (cont'd)

0 Define g(y) = 42, and apply Delta Method.
Jy) = 2y

X~ v (o). 1P )

n
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Solution (cont'd)

0 Define g(y) = 42, and apply Delta Method.
Jy) = 2y

X~ v (o). 1P )

n

~ AN <u2, (2M)20—:)
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Asymptotic Relative Efficiency (ARE)

If both estimators are consistent and asymptotic normal, we can compare
their asymptotic variance.
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Asymptotic Relative Efficiency (ARE)

If both estimators are consistent and asymptotic normal, we can compare
their asymptotic variance.

Definition 10.1.16 : Asymptotic Relative Efficiency

If two estimators W, and V,, satisfy
VAW, —7(0)] = N(0,0%)
VAl Vo = 7(6)] = N(0,0%)
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Asymptotic Relative Efficiency (ARE)

If both estimators are consistent and asymptotic normal, we can compare

their asymptotic variance.

Definition 10.1.16 : Asymptotic Relative Efficiency

If two estimators W, and V,, satisfy
VAW, —7(0)] = N(0,0%)

V[V, —7(8)] = N(0,0%)

The asymptotic relative efficiency (ARE) of V,, with respect to W, is
2
ARE(Vy, Wy) = W
oy
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Asymptotic Relative Efficiency (ARE)

If both estimators are consistent and asymptotic normal, we can compare
their asymptotic variance.

Definition 10.1.16 : Asymptotic Relative Efficiency

If two estimators W, and V,, satisfy
VAW, —7(0)] = N(0,0%)
VAl Vo = 7(6)] = N(0,0%)

The asymptotic relative efficiency (ARE) of V,, with respect to W, is
2

ARE(Vy, Wy) = W
oy

If ARE(V,, W,) > 1 for every 0 € Q, then V,, is asymptotically more
efficient than W,,.
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Let X; << Poisson(\). consider estimating
Pr(X=0)=¢*
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Let X; << Poisson(\). consider estimating
Pr(X=0)=¢*

Our estimators are

1 n
Wa = =5 I(X;=0)

n-
=1
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Asymptotic Efficiency
0®00000

EE

Let X; << Poisson(\). consider estimating
Pr(X=0)=¢*

Our estimators are

1 n
W, = — I(X;=0)
n <
=1
V., = g

Determine which one is more asymptotically efficient estimator.
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Solution - Asymptotic Distribution of V,

Va(X) = e, by CLT,
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Solution - Asymptotic Distribution of V,

Va(X) = e, by CLT,

X ~ AN (EX, VarX/n) ~ AN (A, \/n)
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Solution - Asymptotic Distribution of V,

Va(X) = e, by CLT,
X ~ AN (EX, VarX/n) ~ AN (A, \/n)

Define g(y) = e Y, then V,, = ¢(X) and ¢/(y) = —e~ Y. By Delta Method

Hyun Min Kang Biostatistics 602 - Lecture 16 March 19th, 2013 28 /33



Asymptotic Efficiency
00e0000

Solution - Asymptotic Distribution of V,

Va(X) = e, by CLT,
X ~ AN (EX, VarX/n) ~ AN (A, \/n)

Define g(y) = e Y, then V,, = ¢(X) and ¢/(y) = —e~ Y. By Delta Method

I (N ey
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Solution - Asymptotic Distribution of V,

Va(X) = e, by CLT,
X ~ AN (EX, VarX/n) ~ AN (A, \/n)

Define g(y) = e Y, then V,, = ¢(X) and ¢/(y) = —e~ Y. By Delta Method

I (N ey

n
~ AN(eA,e”‘)\>

n
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Solution - Asymptotic Distribution of W,
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Asymptotic Efficiency
[e]e]e] Jeele]

Solution - Asymptotic Distribution of W,

=1

Z; ~ Bernoulli(E(2))
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Asymptotic Efficiency
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Solution - Asymptotic Distribution of W,

Z; ~ Bernoulli(E(2))
E(2) = Pr(x=0)=¢"
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Asymptotic Efficiency
[e]e]e] Jeele]

Solution - Asymptotic Distribution of W,

Wo = =) I(X;=0)=12,

Z; ~ Bei":nloulli(E(Z))
B() = Pr(X=0)=¢>
Var(7) = e M1- e
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Asymptotic Efficiency
[e]e]e] Jeele]

Solution - Asymptotic Distribution of W,

~ Bernoulli(E(Z))
= Pr(X=0)=¢?
Var(Z2) = eM1—e?)

By CLT,
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Solution - Asymptotic

Asymptotic Efficiency
[e]e]e] Jeele]

Distribution of W,

By CLT,

~ Bernoulli(E(Z))
= Pr(X=0)=¢"
eM1l—e?)

Hyun Min Kang

n

~A/\/<,

Biostatistics 602 - Lecture 16

—-A —-A
1

)
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Solution - Calculating ARE

e \/n
eM1l—eN)/n

ARE(W,, V,) =
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Asymptotic Efficiency
0000e00

Solution - Calculating ARE

e \/n

ARE(W,, Vy,) = eM1—eN/n

M1l —eH)

er—1
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Solution - Calculating ARE

(+A+%+3+) -1
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Asymptotic Efficiency
0000e00

Solution - Calculating ARE

—2X\
ARE(W,, V) = ﬂfl _Ae/f)/n
_ A
Ml —e)
B A
-1
A

A2 A3
T+A+ 5 +4+) -1
<1 (VA0

/N
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Asymptotic Efficiency
0000e00

Solution - Calculating ARE

A2 )3
T+A+ 5 +4+) -1
<1 (VA0

/N

Therefore W), = I(X; = 0) is less efficient than V,, (MLE), and ARE
attains maximum at A = 0.
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Asymptotic Efficiency

Definition : Asymptotic Efficiency for iid samples

A sequence of estimators W, is asymptotically efficient for 7(6) if for all
0 €,
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Asymptotic Efficiency

Definition : Asymptotic Efficiency for iid samples

A sequence of estimators W, is asymptotically efficient for 7(6) if for all

0 €, -
Vi, = 20) > (0. 700)
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Asymptotic Efficiency

Definition : Asymptotic Efficiency for iid samples

A sequence of estimators W, is asymptotically efficient for 7(6) if for all
0 €,

Va(Wy, —7(0)) —2> N(QI(&)
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Asymptotic Efficiency

Definition : Asymptotic Efficiency for iid samples

A sequence of estimators W, is asymptotically efficient for 7(6) if for all

0 €,

= W, ~ AN(T(H), )

2
10 = 5|{ e} |9]
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Asymptotic Efficiency

Definition : Asymptotic Efficiency for iid samples
A sequence of estimators W, is asymptotically efficient for 7(6) if for all
0eQ,

(W, —1(0) - /\/(0, 0
= W, ~ AN<T(0), oT(0) >

{2 ossm)} |9]

2
= [8892 log f(X|0)|9} (if interchangeability holds

) = E

w0 .

v
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Asymptotic Efficiency

Definition : Asymptotic Efficiency for iid samples

A sequence of estimators W, is asymptotically efficient for 7(6) if for all

0 €,

— W, ~ AN<T(9), [T'(9”2>

{2 ossm)} |9]

2
= [ 0 log f(X|0)|9} (if interchangeability hold

) = E

06?

v

Note: % is the C-R bound for unbiased estimators of 7(0).
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Asymptotic Efficiency of MLEs

Theorem 10.1.12

Let X, , X, be iid samples from f(z]0). Let 0 denote the MLE of 6.

Under same regularity conditions, 6 is consistent and asymptotically
normal for 6, i.e.

vVl -6 -3 N (0, 1(10)> for every 6 € Q
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Asymptotic Efficiency of MLEs

Theorem 10.1.12

Let X,,---, X, be iid samples from f(z|0). Let 6 denote the MLE of 6.
Under same regularity conditions, 6 is consistent and asymptotically
normal for 6, i.e.

vVl -6 -3 N (0,

1(0)> for every 6 € Q

And if 7(6) is continuous and differentiable in 6, then

Vil -0 % N <o, [T['((:))U

= 7(

>
N—

2
VRS
\]

D
:_/

BN
—
=
o
N~
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Asymptotic Efficiency of MLEs

Theorem 10.1.12

Let X,,---, X, be iid samples from f(z|0). Let 6 denote the MLE of 6.
Under same regularity conditions, 6 is consistent and asymptotically
normal for 6, i.e.

vVl -6 -3 N (0, 1(10)> for every 6 € Q

And if 7(6) is continuous and differentiable in 6, then

Vil -0 % N <o, [T['((:))])

. e 2
— () ~ AN<T(9), [n% )

Again, note that the asymptotic variance of 7(f) is Cramer-Rao lower
bound for unbiased estimators of 7(6).
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Summary

= Central Limit Theorem

= Slutsky Theorem
= Delta Method
= Asymptotic Relative Efficiency
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Summary

= Central Limit Theorem

= Slutsky Theorem

= Delta Method

= Asymptotic Relative Efficiency

= Hypothesis Testing
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