The Lander-Green Algorithm

Biostatistics 666

Last Lecture... Relationship Inferrence

- Likelihood of genotype data
- Adapt calculation to different relationships
 - Siblings
 - Half-Siblings
 - Unrelated individuals
- Importance of modeling error

Today ...

The Lander-Green Algorithm

Multipoint analysis in general pedigrees

The basis of modern pedigree analysis packages

Hidden Markov Model

The final ingredient connects IBD states along the chromosome ...

Fundamental Calculations

Enumerate possible IBD states

Transition probability for neighboring IBD states

Probability of genotype data given IBD state

Lander-Green Algorithm

$$L = \sum_{I_1} ... \sum_{I_m} P(I_1) \prod_{i=2}^m P(I_i \mid I_{i-1}) \prod_{i=1}^m P(G_i \mid I_i)$$

- More general definition for I, the "IBD vector"
- Probability of genotypes given "IBD vector"
- Transition probabilities for the "IBD vectors"

Part I

"IBD Vectors"

Inheritance Vectors

Descent Graphs

Gene Flow Pattern

"IBD Vector" Specifications

Specify IBD between all individuals

Must be compact

- Must allow calculation of:
 - Conditional probabilities for neighboring markers
 - Probability of observed genotypes

"IBD Vector"

- Specify the outcome of each meiosis
 - Which of the two parental alleles transmitted?
- Implies founder allele carried by each individual
- Implies whether a pair of chromosomes is identical-by-descent

For any pedigree, consider ...

• What are the meioses?

 What are the possible outcomes for the entire set of meioses?

Example ...

What we are doing ...

- Listing meioses
- Alternating outcomes
- The outcomes of all meioses define our "IBD vector"

So far ...

 A set of 2n binary digits specifies IBD in a pedigree with n non-founders

• There are 2^{2n} such sets ...

 Next, must calculate the probability of the observed genotypes for each one...

Part II

Probability of Observed Genotypes

Founder Allele Graph Founder Allele Frequencies

Founder Allele Graphs / Sets

- Calculated for each marker individually
- List of founder alleles compatible with:
 - Observed genotypes for all individuals
 - A particular gene flow pattern
- Likelihood of each set is a product of allele frequencies

Observed Genotypes

- For each family
- For each marker
- Some pattern of observed genotypes

Gene flow pattern

- In turn, specify gene flow throughout the pedigree
- For each individual, we know precisely what founder allele they carry

Combine the two...

- Conditional on gene flow...
- Founder allele states are restricted
 - In this case, there is only one founder allele set: {1, 1, 1, ?}
- Likelihood is a product of allele frequencies
 - P(allele 1)³ P(any allele)

Finding founder allele sets

- Group founder alleles transmitted to the same genotyped individuals
- If a founder allele passes through a single homozygote or two different heterozygotes
 - Its state will either be fixed or impossible
 - Fixes state of other alleles in the group

No. of Possible States for Grouped Founder Alleles

- No compatible states
- One Possible State
 - If at least founder allele passes through different homozygotes or incompatible heterozygotes
- Two Possible States For Each Allele
 - Observed genotypes are all identical and heterozygous
- Every marker allele is possible
 - Only for unconnected founder alleles

Example: Observed Genotypes

Example ... Descent Graph

Possible founder allele states...

Founder Alleles in Group	Corresponding Allele States	Probability
(B)	(any allele)	1
(A,C,E)	(1,2,1) or (2,1,2)	$P(1)^{2}P(2)+P(2)P(1)^{2}$
(D,F,G,H)	(1,2,3,4)	P(1)P(2)P(3)P(4)

Lander-Green inheritance vector

2²ⁿ elements

- Meiotic outcomes specified in index bit
- Stores probability of genotypes for each set of meiotic outcomes

So far ...

Generalized the "IBD vector"

Probability of observed genotypes

- Next step: Transition probabilities
 - HMM to combine information along the genome

Part III

Transition Probabilities

Recombination Fraction
Changes in IBD Along Chromosome

With one meiosis

$$T = \begin{bmatrix} (1 - \theta) & \theta \\ \theta & (1 - \theta) \end{bmatrix}$$

With two meiosis

$$T^{\otimes 2} = \begin{bmatrix} (1-\theta)T & \theta T \\ \theta T & (1-\theta)T \end{bmatrix}$$

With two meiosis

$$T^{\otimes 2} = \begin{bmatrix} (1-\theta)^2 & (1-\theta)\theta & \theta(1-\theta) & \theta^2 \\ (1-\theta)\theta & (1-\theta)^2 & \theta^2 & \theta(1-\theta) \\ \theta(1-\theta) & \theta^2 & (1-\theta)^2 & (1-\theta)\theta \\ \theta^2 & \theta(1-\theta) & (1-\theta)\theta & (1-\theta)^2 \end{bmatrix}$$

With three meiosis

$$T^{\otimes 3} = \begin{bmatrix} (1 - \theta)T^{\otimes 2} & \theta T^{\otimes 2} \\ \theta T^{\otimes 2} & (1 - \theta)T^{\otimes 2} \end{bmatrix}$$

With three meiosis

$$T^{\otimes 3} = \begin{bmatrix} (1-\theta)^3 & (1-\theta)^2\theta & (1-\theta)^2\theta & \theta^2(1-\theta) & (1-\theta)^2\theta & \theta^2(1-\theta) & \theta^2(1-\theta) & \theta^3 \\ (1-\theta)^2\theta & (1-\theta)^3 & \theta^2(1-\theta) & (1-\theta)^2\theta & \theta^2(1-\theta) & (1-\theta)^2\theta & \theta^3 & \theta^2(1-\theta) \\ (1-\theta)^2\theta & \theta^2(1-\theta) & (1-\theta)^3 & (1-\theta)^2\theta & \theta^2(1-\theta) & \theta^3 & (1-\theta)^2\theta & \theta^2(1-\theta) \\ \theta^2(1-\theta) & (1-\theta)^2\theta & (1-\theta)^2\theta & (1-\theta)^3 & \theta^3 & \theta^2(1-\theta) & \theta^2(1-\theta) & (1-\theta)^2\theta \\ (1-\theta)^2\theta & \theta^2(1-\theta) & \theta^2(1-\theta) & \theta^3 & (1-\theta)^3 & (1-\theta)^2\theta & \theta^2(1-\theta) & (1-\theta)^2\theta \\ \theta^2(1-\theta) & (1-\theta)^2\theta & \theta^3 & \theta^2(1-\theta) & (1-\theta)^2\theta & (1-\theta)^3 & (1-\theta)^2\theta & \theta^2(1-\theta) \\ \theta^2(1-\theta) & \theta^3 & (1-\theta)^2\theta & \theta^2(1-\theta) & (1-\theta)^2\theta & (1-\theta)^3 & (1-\theta)^2\theta \\ \theta^3 & \theta^2(1-\theta) & \theta^2(1-\theta) & (1-\theta)^2\theta & (1-\theta)^2\theta & \theta^2(1-\theta) & (1-\theta)^3 \end{bmatrix}$$

In general ...

Transition matrix is patterned

- Transition probability depends on:
 - No. of meiosis were outcome changed
 - No. of meiosis were outcome did not change
- Product of powers of θ and (1θ)

Recursive Formulation

$$T^{\otimes n+1} = \begin{bmatrix} (1-\theta)T^{\otimes n} & \theta T^{\otimes n} \\ \theta T^{\otimes n} & (1-\theta)T^{\otimes n} \end{bmatrix}$$

Lander-Green Markov Model

Transition matrix T^{⊗2n}

$$\mathbf{T} = \begin{bmatrix} 1 - \theta & \theta \\ \theta & 1 - \theta \end{bmatrix}$$

- $\mathbf{v}_{\ell|1..\ell} = \mathbf{v}_{\ell-1|1..\ell-1} \mathbf{T}^{\otimes 2n} \mathbf{v}_{\ell}$
- $\mathbf{v}_{\ell \mid \ell \dots m} = \mathbf{v}_{\ell+1 \mid \ell+1 \dots m} \mathbf{T}^{\otimes 2n} \mathbf{v}_{\ell}$
- $\mathbf{v}_{\ell|1..m} = (\mathbf{v}_{1..\ell-1} \mathbf{T}^{\otimes 2n}) \cdot \mathbf{v}_{\ell} \cdot (\mathbf{v}_{\ell+1..m} \mathbf{T}^{\otimes 2n})$

All The Ingredients To ...

Single Marker

Left Conditional

Right Conditional

Full Likelihood

Appropriate Problems

- Large number of markers
 - Analysis of >5,000 markers possible
- Relatively small pedigrees
 - 20-30 individuals
 - 2x larger pedigrees for the X chromosome. Why?

So far ...

Key components for Lander-Green

- Extending definition of IBD vector
- Probability of genotypes given IBD
- Transition probabilities

Next: Practical applications!

Lander-Green Algorithm

$$L = \sum_{I_1} ... \sum_{I_m} P(I_1) \prod_{i=2}^m P(I_i \mid I_{i-1}) \prod_{i=1}^m P(G_i \mid I_i)$$

- More general definition for I, the "IBD vector"
- Probability of genotypes given "IBD vector"
- Transition probabilities for the "IBD vectors"

Reading

Historically, two key papers:

Lander and Green (1987)PNAS 84:2363-7

Kruglyak, Daly, Reeve-Daly, Lander (1996)
 Am J Hum Genet 58:1347-63