occooccooccooccoocco

Summar

Exponential Family

Summary

Last Lecture

Biostatistics 602 - Statistical Inference Lecture 07 Exponential Family

Hyun Min Kang

January 31st, 2013

1 What are differences between complete statistic and minimal sufficient statistics?

- What is the relationship between complete statistic and ancillary statistics?
- 3 What is the characteristic shared among non-constant functions of complete statistics?
- 4 What is the Basu's Theorem?
- **5** Any example where Basu's Theorem is helpful?

Hyun Min Kang

Biostatistics 602 - Lecture 07

January 31st, 2013

Hyun Min Kang

Biostatistics 602 - Lecture 07

January 31st, 2013

2 / 24

Exponential Family

Summar

Exponential Family

Summar

Exponential Family

Definition 3.4.1

The random variable X belongs to an exponential family of distributions, if its pdf/pmf can be written in the form

$$f(x|\boldsymbol{\theta}) = h(x)c(\boldsymbol{\theta}) \exp \left[\sum_{j=1}^{k} w_j(\boldsymbol{\theta})t_j(x)\right]$$

where

- $\boldsymbol{\theta} = (\theta_1, \cdots, \theta_d), d < k.$
- $w_j(\theta), j \in \{1, \dots, k\}$ are functions of θ alone.
- and $t_i(x)$ and h(x) only involve data.

Example of Exponential Family

Problem

Show that a Poisson(λ) ($\lambda > 0$) belongs to the exponential family

Proof

$$f_X(x|\lambda) = \frac{e^{-\lambda}\lambda^x}{x!}$$

$$= \frac{1}{x!}e^{-\lambda}\exp(\log \lambda^x)$$

$$= \frac{1}{x!}e^{-\lambda}\exp(x\log \lambda)$$

Define h(x)=1/x!, $c(\lambda)=e^{-\lambda}$, $w(\lambda)=\log\lambda$, and t(x)=x, then

$$f_X(x|\lambda) = h(x)c(\lambda)\exp[w(\lambda)t(x)]$$

Hyun Min Kang Biostatistics 602 - Lecture 07

January 31st, 2013

3 / 24

Hyun Min Kang

Biostatistics 602 - Lecture 07

January 31st, 2013

Normal Distribution Belongs to an Exponential Family

$$f_X(x|\boldsymbol{\theta} = (\mu, \sigma^2)) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right]$$
$$= \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{x^2}{2\sigma^2} + \frac{2\mu x}{2\sigma^2} - \frac{\mu^2}{2\sigma^2}\right]$$

Define
$$h(x) = 1$$
, $c(\theta) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{\mu^2}{2\sigma^2}\right]$, $k = 2$, $w_1(\theta) = \frac{\mu}{\sigma^2}$, $t_1(x) = x$, $w_2(\theta) = -\frac{1}{2\sigma^2}$, $t_2(x) = x^2$, then

$$f_X(x|\boldsymbol{\theta}) = h(x)c(\boldsymbol{\theta}) \exp \left[\sum_{j=1}^k w_j(\boldsymbol{\theta})t_j(x)\right]$$

Hyun Min Kang

Biostatistics 602 - Lecture 07

January 31st, 2013 5

5 / 24

Hyun Min Kang

Biostatistics 602 - Lecture 07

January 31st, 2013

0 / 2

Exponential Family ooooo●ooooooooooooo Summar

Curved and Full Exponential Families

Definition

For an exponential family, if $d = \dim(\theta) < k$, then this exponential family is called *curved exponential family*. if $d = \dim(\theta) = k$, then this exponential family is called *full exponential family*.

Examples

- Poisson(λ), $\lambda > 0$ is a full exponential family
- $\mathcal{N}(\mu, \sigma^2), \mu \in \mathbb{R}, \sigma > 0$ is also a full exponential family
- $\mathcal{N}(\mu,\mu), \mu \in \mathbb{R}$ is also a curved exponential family

A Specialized Normal Distribution : $\mathcal{N}(\mu, \mu^2)$

$$f_X(x|\mu) = \frac{1}{\sqrt{2\pi\mu^2}} \exp\left[-\frac{(x-\mu)^2}{2\mu^2}\right]$$

$$= \frac{1}{\sqrt{2\pi\mu^2}} \exp\left[-\frac{x^2}{2\mu^2} + \frac{2\mu x}{2\mu^2} - \frac{\mu^2}{2\mu^2}\right]$$

$$= \frac{1}{\sqrt{2\pi\mu^2}} \exp\left(-\frac{1}{2}\right) \exp\left[-\frac{1}{2\mu^2}x^2 + \frac{1}{\mu}x\right]$$

Define
$$h(x)=1$$
, $c(\mu)=\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{1}{2}}$, $k=2$, $w_1(\mu)=\frac{1}{\mu}$, $t_1(x)=x$, $w_2(\mu)=-\frac{1}{2\mu^2}$, $t_2(x)=x^2$, then

$$f_X(x|\mu) = h(x)c(\mu) \exp \left[\sum_{j=1}^k w_j(\mu)t_j(x)\right]$$

Exponential Family

Summary

Alternative Parametrization of Exponential Families

An alternative parametrization of the exponential family of distributions in terms of "natural" or "canonical" parameters can be written as follows.

$$f_X(x|\boldsymbol{\eta}) = h(x)c^*(\boldsymbol{\eta}) \exp \left[\sum_{j=1}^k \boldsymbol{\eta} t_j(x)\right]$$

The alternative parametrization can be achieved by defining $\eta_i = w_j(\boldsymbol{\theta})$ from the following equation,

$$f_X(x|\boldsymbol{\theta}) = h(x)c(\boldsymbol{\theta}) \exp \left[\sum_{j=1}^k w_j(\boldsymbol{\theta}) t_j(x) \right]$$

where $c^*(\eta) = c \circ w(\theta)$. This alternative parametrization is most often used in a GLM (Generalized Linear Model) course.

Sufficient Statistic for Exponential Families

Theorem 6.2.10

• Let $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} f_X(x|\theta)$ that belongs to an exponential family given by

$$f_X(x|\boldsymbol{\theta}) = h(x)c(\boldsymbol{\theta}) \exp \left[\sum_{j=1}^k w_j(\boldsymbol{\theta})t_j(x)\right]$$

where $\theta = (\theta_1, \dots, \theta_d), d < k$.

• Then the following $T(\mathbf{X})$ is a sufficient statistic for $\boldsymbol{\theta}$.

$$T(\mathbf{X}) = \left(\sum_{j=1}^n t_1(X_j), \cdots, \sum_{j=1}^n t_k(X_j)\right)$$

Hyun Min Kang

Biostatistics 602 - Lecture 07

January 31st, 2013

Biostatistics 602 - Lecture 07

January 31st, 2013

Sufficient Statistic for Normal Distribution - Solution

$$f_X(x|\mu) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right]$$

$$= \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{x^2}{2\sigma^2}\right) \exp\left(-\frac{\mu^2}{2\sigma^2}\right) \exp\left(\frac{\mu}{\sigma^2}x\right)$$

$$= h(x)c(\mu) \exp\left[w(\mu)t(x)\right]$$

where

$$\begin{cases} h(x) &= \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{x^2}{2\sigma^2}\right] \\ c(\mu) &= \exp\left(-\frac{\mu^2}{2\sigma^2}\right) \\ w(\mu) &= \mu/\sigma^2 \\ t(x) &= x \end{cases}$$

Therefore, $T(\mathbf{X}) = \sum_{i=1}^{n} t(X_i) = \sum_{i=1}^{n} X_i$ is a sufficient statistic for μ by Theorem 6.2.10.

Problem

Let $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mu, \sigma^2)$, where $\mu \in \mathbb{R}$, and σ^2 is known. Find a sufficient statistic for μ .

Hyun Min Kang

Exponential Family

Theorem 5.2.11

Suppose X_1, \dots, X_n is a random sample from pdf or pmf $f_X(x|\theta)$ where

$$f_X(x|\boldsymbol{\theta}) = h(x)c(\boldsymbol{\theta}) \exp \left[\sum_{j=1}^k w_j(\boldsymbol{\theta})t_j(x)\right]$$

is a member of an exponential family. Define a statistic $T(\mathbf{X})$ by

$$\mathbf{T}(\mathbf{X}) = \left(\sum_{j=1}^n t_1(X_j), \cdots, \sum_{j=1}^n t_k(X_j)\right)$$

If the set $\{w_1(\boldsymbol{\theta}), \cdots, w_k(\boldsymbol{\theta}), \forall \boldsymbol{\theta} \in \boldsymbol{\Theta}\}\$ contains an open subset of \mathbb{R}^k , then the distribution of T(X) is an exponential family of the form

$$f_T(u_1,\cdots,u_k|oldsymbol{ heta}) = H(u_1,\cdots,u_k)[c(oldsymbol{ heta})]^n \exp\left[\sum_{j=1}^k w_j(oldsymbol{ heta})u_i
ight]$$

Hyun Min Kang

Biostatistics 602 - Lecture 07

January 31st, 2013

Hyun Min Kang

Biostatistics 602 - Lecture 07

January 31st, 2013

Theorem 6.2.25

Suppose X_1, \dots, X_n is a random sample from pdf or pmf $f_X(x|\theta)$ where

$$f_X(x|\boldsymbol{\theta}) = h(x)c(\boldsymbol{\theta}) \exp \left[\sum_{j=1}^k w_j(\boldsymbol{\theta})t_j(x)\right]$$

is a member of an exponential family. Then the statistic $T(\mathbf{X})$

$$\mathbf{T}(\mathbf{X}) = \left(\sum_{j=1}^n t_1(X_j), \cdots, \sum_{j=1}^n t_k(X_j)\right)$$

is complete as long as the parameter space Θ contains an open set in \mathbb{R}^k

Hyun Min Kang

Biostatistics 602 - Lecture 07

January 31st, 2013

13 / 24

Hyun Min Kang

January 31st, 2013

Examples of open set test

- A=(-1,1): A is open in $\mathbb R$
- A = [-1,1]: A is not open in \mathbb{R}
- $A = (-\infty, 0) \times \mathbb{R}$: A is open in \mathbb{R}^2
- $A = (-\infty, 0] \times \mathbb{R}$: A is not open in \mathbb{R}^2
- $A = \{(x, y) : x \in (-1, 1), y = 0\}$: A is not open in \mathbb{R}^2
- $A = \{(x, y) : x \in \mathbb{R}, y \in x^2\}$: A is not open in \mathbb{R}^2
- $A = \{(x, y) : x^2 + y^2 < 1\}$: A is open in \mathbb{R}^2

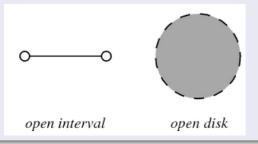
What is the "open set"?

Definition: Open Set

A set A is open in \mathbb{R}^k of for every $x \in A$, there exists a ϵ -ball $B(x, \epsilon)$ around x such that $B(x, \epsilon) \subset A$.

$$B(x,\epsilon) = \{ y : |y - x| < \epsilon, \ y \in \mathbb{R}^k \}$$

Examples (from Wolfram MathWorld)



Exponential Family Example

Biostatistics 602 - Lecture 07

Exponential Family

Problem

 $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} f_X(x|\theta) = \theta x^{\theta-1}$ where $0 < x < 1, \theta > 0$. Is $\prod_{i=1}^n X_i$ (1) a sufficient statistic? (2) a complete statistic? (3) a minimal sufficient statistic?

How to solve it

- Show that $f_X(x|\theta)$ is a member of an exponential family.
- Apply Theorem 6.2.10 to obtain a sufficient statistic and see if it is equivalent to or related to $\prod_{i=1}^n X_i$.
- Apply Theorem 6.2.25 to show that it is complete.
- If they are both sufficient and complete, Theorem 6.2.28 will imply that it is also a minimal sufficient statistic.

$f_X(x|\theta)$ belong to an exponential family

$$f_X(x|\theta) = \theta x^{\theta-1} I(0 < x < 1)$$

$$= I(0 < x < 1) x^{-1} \theta x^{\theta}$$

$$= I(0 < x < 1) x^{-1} \theta \exp(\log x^{\theta})$$

$$= I(0 < x < 1) x^{-1} \theta \exp(\theta \log x)$$

$$= h(x) c(\theta) \exp(w(\theta) t(x))$$

where

$$\begin{cases} h(x) = I(0 < x < 1)x^{-1} \\ c(\theta) = \theta \\ w(\theta) = \theta \\ t(x) = \log x \end{cases}$$

Therefore, $f_X(x|\theta)$ belongs to an exponential family.

Hyun Min Kang

Biostatistics 602 - Lecture 07

January 31st 2013

Exponential Family

Apply Theorem 6.2.25 and 6.2.28

$T(\mathbf{X})$ is a complete statistic

Let $A = \{w(\theta) : \theta \in \Omega\} = \{\theta : \theta > 0\}$. A contains an open subset in \mathbb{R} . By Theorem 6.2.25, $T(\mathbf{X}) = \sum_{i=1}^{n} \log X_i$ is a complete statistic for θ .

$T(\mathbf{X})$ is a minimal sufficient statistic

By Theorem 6.2.28, because $T(\mathbf{X})$ is both sufficient and complete, it is also minimal sufficient.

$\prod_{i=1}^n X_i = e^{T(\mathbf{X})}$ is also minimal sufficient and complete

Because $\prod_{i=1}^n X_i = e^{T(\mathbf{X})}$ is an one-to-one function of $T(\mathbf{X})$, $\prod_{i=1}^n X_i$ is sufficient, complete, and minimal sufficient.

Apply Theorem 6.2.10

$$f_X(x|\theta) = h(x)c(\theta)\exp(w(\theta)t(x))$$

$$\begin{cases} h(x) = I(0 < x < 1)x^{-1} \\ c(\theta) = \theta \\ w(\theta) = \theta \\ t(x) = \log x \end{cases}$$

By Theorem 6.2.10, $T(\mathbf{X}) = \sum_{i=1}^n t(X_i) = \sum_{i=1}^n \log X_i$ is a sufficient statistic for θ .

$$\prod_{i=1}^{n} X_i = \exp\left(\log \prod_{i=1}^{n} X_i\right) = \exp\left(\sum_{i=1}^{n} \log X_i\right) = e^{T(\mathbf{X})}$$

Because $\prod_{i=1}^n X_i$ is an one-to-one function of $T(\mathbf{X})$, it is also a sufficient statistic.

Hyun Min Kang

Biostatistics 602 - Lecture 07

Exponential Family

Today

- Curved and full exponential families
- Sufficient statistics for exponential families
- Complete statistics for exponential families

Next Lecture

Review of Chapter 6

Hyun Min Kang

Biostatistics 602 - Lecture 07

January 31st, 2013

19 / 24

Hyun Min Kang

Biostatistics 602 - Lecture 07

January 31st, 2013