Biostatistics 615/815 Lecture 8: Hash Tables, and **Dynamic Programming**

Hyun Min Kang

February 1st, 2011

Hyun Min Kang

Introduction

Biostatistics 615/815 - Lecture 8

February 1st, 2011

February 1st, 2011

Recap: Elementary data structures

Hash Tables

	Search	Insert	Remove
Array	$\Theta(n)$	$\Theta(1)$	$\Theta(n)$
SortedArray	$\Theta(\log n)$	$\Theta(n)$	$\Theta(n)$
List	$\Theta(n)$	$\Theta(1)$	$\Theta(n)$
Tree	$\Theta(\log n)$	$\Theta(\log n)$	$\Theta(\log n)$
Hash	$\Theta(1)$	$\Theta(1)$	$\Theta(1)$

- Array or list is simple and fast enough for small-sized data
- Tree is easier to scale up to moderate to large-sized data
- Hash is the most robust for very large datasets

Announcements

Introduction •00000

Homework #2

- For problem 3, assume that all the input values are unique
- Include the class definition into myTree.h and myTreeNode.h (do not make .cpp file)
- The homework .tex file containing the source code is uploaded in the class web page

Biostatistics 615/815 - Lecture 8

815 projects

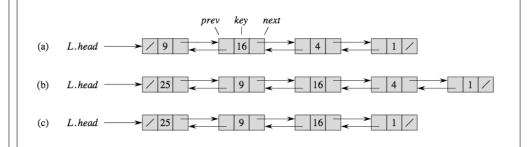
• Instructor sent out E-mails to individually today morning

Introduction

Hash Tables

Hyun Min Kang

Recap: Example of a linked list



- Example of a doubly-linked list
- Singly-linked list if prev field does not exist

Hyun Min Kang

Biostatistics 615/815 - Lecture 8

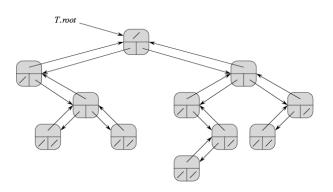
February 1st, 2011

Hyun Min Kang

Biostatistics 615/815 - Lecture 8

IntroductionHash TablesChainedHashOpenHashFibonacciSummary000 ● 00000000000000000000000

Recap: An example binary search tree



- Pointers to left and right children (NIL if absent)
- Pointers to its parent can be omitted.

Hyun Min Kang Biostatistics 615/815 - Lecture 8 February 1st, 2011 5 / 36

 Introduction 00000
 Hash Tables 000000
 ChainedHash 000000
 OpenHash 000000
 Fibonacci 0000000
 Summario

Today

Data structure

Hash table

Dynamic programming

Divide and conquer vs dynammic programming

Introduction

ChainedHash

)penHash

Fibonacci

Summary

Correction: Building your program (lecture 6)

Individually compile and link - Does NOT work with template

- Include the content of your .cpp files into .h
- For example, Main.cpp includes myArray.h

user@host: \(^/> g++ -o myArrayTest Main.cpp\)

Or create a Makefile and just type 'make'

all: myArrayTest # binary name is myArrayTest

myArrayTest: Main.cpp # link two object files to build binary
 g++ -o myArrayTest Main.cpp # must start with a tab

clean:

Hyun Min Kang

rm *.o myArrayTest

Biostatistics 615/815 - Lecture 8

February 1st, 2011

y 1st, 2011 b

Introduction 000000 Hash Tables ●000

Chained Hasi 00000000 OpenHash 00000000 Fibonacci 00000000 Summary

Two types of containers

Containers for single-valued objects - last lectures

- INSERT(T, x) Insert x to the container.
- SEARCH(T, x) Returns the location/index/existence of x.
- Remove(T, x) Delete x from the container if exists
- STL examples include std::vector, std::list, std::deque, std::set, and std::multiset.

Containers for (key, value) pairs - this lecture

- INSERT(T, x) Insert (x.key, x.value) to the container.
- Search (T, k) Returns the value associated with key k.
- Remove(T, x) Delete element x from the container if exitst
- Examples include std::map, std::multimap, and __gnu_cxx::hash_map

Hash Tables

Direct address tables

An example (key, value) container

- $U = \{0, 1, \dots, N-1\}$ is possible values of keys (N is not huge)
- No two elements have the same key

Direct address table : a constant-time continaer

Let $T[0, \dots, N-1]$ be an array space that can contain N objects

- INSERT(T, x): T[x.key] = x
- Search(T, k): return T[k]
- Remove(T, x): T[x.key] = Nil

Hyun Min Kang Biostatistics 615/815 - Lecture 8 February 1st, 2011 Hash Tables Hash Tables

Key features

- O(1) complexity for INSERT, SEARCH, and REMOVE
- Requires large memory space than the actual content for maintaining good performance
- But uses much smaller memory than direct-addres tables

Key components

- Hash function
 - h(x.key) mapping key onto smaller 'addressible' space H
 - Total required memory is the possible number of hash values
 - Good hash function minimize the possibility of key collisions
- Collision-resolution strategy, when $h(k_1) = h(k_2)$.

Analysis of direct address tables

Time complexity

- Requires a single memory access for each operation
- O(1) constant time complexity

Memory requirement

- Requires to pre-allocate memory space for any possible input value
- $2^{32} = 4GB \times (\text{size of data})$ for 4 bytes (32 bit) key
- $2^{64} = 18EB(1.8 \times 10^7 TB) \times \text{(size of data) for 8 bytes (64 bit) key}$
- An infinite amount of memory space needed for storing a set of arbitrary-length strings (or exponential to the length of the string)

Hash Tables ChainedHash

February 1st, 2011

Biostatistics 615/815 - Lecture 8

Chained hash: A simple example

A good hash function

- Assume that we have a good hash function h(x.key) that 'fairly uniformly' distribute key values to H
- What makes a good hash function will be discussed later today.

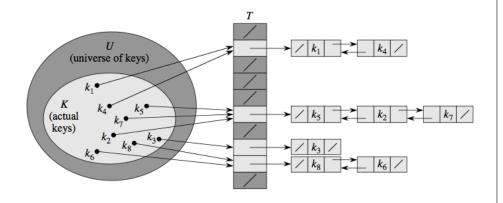
A ChainedHash

- Each possible hash key contains a linked list
- Each linked list is originally empty
- An input (key, value) pair is appened to the linked list when inserted
- O(1) time complexity is guaranteed when no collision occurs
- When collision occurs, the time complexity is proportional to size of linked list assocated with h(x.key)

Biostatistics 615/815 - Lecture 8 February 1st, 2011 Biostatistics 615/815 - Lecture 8 February 1st, 2011

ChainedHash

Illustration of CHAINEDHASH



Hyun Min Kang

Biostatistics 615/815 - Lecture 8

February 1st, 2011

Simplfied algorithms on CHAINEDHASH

Initialize (T)

• Allocate an array of list of size m as the number of possible key values

$\overline{\text{Insert}}(T, x)$

• Insert x at the head of list T[h(x.key)].

SEARCH(T, k)

• Search for an element with key k in list T[h(k)].

Remove(T, x)

• Delete x fom the list T[h(x.key)].

Hash Tables

Biostatistics 615/815 - Lecture 8

ChainedHash

February 1st, 2011

ChainedHash

Interesting properties (under uniform hash)

Probability of an empty slot

$$\Pr(k_1 \neq k, k_2 \neq k, \dots, k_n \neq k) = \left(1 - \frac{1}{m}\right)^n \approx e^{-\alpha}$$

Birthday paradox : expected # of elements before the first collision

$$Q(H) pprox \sqrt{rac{\pi}{2}m}$$

Coupon collector problem : expect # of elements to fill every slot

$$\sum_{i=1}^{m} \frac{m}{i} \approx m(\ln m + 0.577)$$

Hash Tables

Analysis of hashing with chaining

Assumptions

- Simple uniform hashing
 - $Pr(h(k_1) = h(k_2)) = 1/m$ input key pairs k_1 and k_2 .
- n is the number of elements stores
- Load factor $\alpha = n/m$.

Expected time complexity for SEARCH

- $X_{ij} \in \{0,1\}$ a random variable of key collision between x_i and x_i .
- $E[X_{ij}] = 1/m$.

$$T(n) = \frac{1}{n}E\left[\sum_{i=1}^{n} \left(1 + \sum_{j=i+1}^{n} (X_{ij})\right)\right] = \Theta(1+\alpha)$$

Hyun Min Kang

Biostatistics 615/815 - Lecture 8

February 1st, 2011

Biostatistics 615/815 - Lecture 8

Hash functions

Making a good hash functions

- A hash function h(k) is a deterministic function from $k \in K$ onto $h(k) \in H$.
- A good hash function distributes map the keys to hash values as uniform as possible
- The uniformity of hash function should not be affected by the pattern of input sequences

Example hash functions

- $k \in [0,1)$, $h(k) = \lfloor km \rfloor$
- $k \in \mathbb{N}$, $h(k) = k \mod m$

Hash Tables

Hyun Min Kang Biostatistics 615/815 - Lecture 8 February 1st, 2011 17 / 3

ChainedHash

Examples of good hash functions

For integers

- ullet Make the hash size m to be a large prime
- $h(k) = k \mod m$

For floating point values $k \in [0, 1)$

- ullet Make the hash size m to be a large prime
- $h(k) = \lfloor k * N \rfloor \mod m$ for a large number N.

For strings

- Pretend the string is a number with numeral system of $|\Sigma|$, where Σ is the set of possible characters.
- Apply the same hash function for integers

'Good' and 'bad' hash functions

An example : h(k) = |km|

- When the input if uniformly distributed
 - h(k) is uniformly distributed between 0 and m-1.
 - h(k) is a good hash function
- When the input is skewed : Pr(k < 1/m) = 0.9
 - More than 80% of input key pairs will have collisions
 - h(k) is a bad hash function
 - Time complexity is close to a single linked list

Good hash functions

- 'Goodness' of a hash function can be dependent on the data
- If it is hard to create adversary inputs to make the hash function 'bad', it is generally a good hash function.

Hyun Min Kang Biostatistics 615/815 - Lecture 8 February 1st, 2011

on Hash Tables ChainedHash OpenHash Fibonacci

Open Addressing

Chained Hash - Pros and Cons

- \triangle Easy to understand
- △ Behavior at collision is easy to track
- \bigtriangledown Every slots maintains pointer - extra memory consumption
- $\,\,\bigtriangledown\,$ Inefficient to dereference pointers for each access
- abla Larger and unpredictable memory consumption

Open Addressing

- Store all the elements within an array
- Resolve conflicts based on predefined probing rule.
- Avoid using pointers faster and more memory efficient.
- \bullet Implementation of $\ensuremath{\mathrm{REMOVE}}$ can be very complicated

lyun Min Kang Biostatistics 615/815 - Lecture 8 February 1st, 2011 19 / 36 Hyun Min Kang Biostatistics 615/815 - Lecture 8 February 1st, 2011 20 / 36

Probing in open hash

Modified hash functions

- $h: K \times H \rightarrow H$
- For every $k\in K$, the probe sequence $< h(k,0), h(k,1), \cdots, h(k,m-1)>$ must be a permutation of $<0,1,\cdots,m-1>$.

Algorithm OpenHashInsert

Data: T: hash, k: key value to insert

T[j] = k; return j;

end .

error "hash table overflow";

Hyun Min Kang

Biostatistics 615/815 - Lecture 8

February 1st, 2011

21 / 30

Hyun Min Kang

Biostatistics 615/815 - Lecture 8

February 1st, 2011

22 / 3

Introduction 000000 Hash Tables

ChainedHash

OpenHash

Fibonacci

Summar

Introductio 000000 Hash Tables

ChainedHash

OpenHash

Fibonacci

Summar

Algorithm OPENHASHSEARCH

Data: T: hash, k: key value to search

Result: Return T[k] if exist, otherwise return NIL

 $\begin{array}{c|c} \text{for } i=0 \text{ to } m-1 \text{ do} \\ j=h(k,i); \\ \text{if } T[j]==k \text{ then} \\ | \text{ return } j; \\ \text{end} \\ \text{else if } T[j]==\text{NIL then} \\ | \text{ return NIL}; \\ \text{end} \end{array}$

end

return NIL;

Strategies for Probing

Linear Probing

- $h(k, i) = (h'(k) + i) \mod m$
- Easy to implement
- Suffer from primary clustering, increasing the average search time

Quadratic Probing

- $h(k, i) = (h'(k) + c_1 i + c_2 i^2) \mod m$
- Beter than linear probing
- Seconary clustering : $h(k_1,0) = h(k_2,0)$ implies $h(k_1,i) = k(k_2,i)$

Hyun Min Kang Biostatistics 615/815 - Lecture 8

February 1st, 2011

Hyun Min Kang

Biostatistics 615/815 - Lecture 8

Introduction Hash Tables ChainedHash OpenHash Fibonacci Summary Introduction Hash Tables ChainedHash OpenHash Fibonacci Summary

Strategies for Probing

Double Hashing

Hyun Min Kang

- $h(k, i) = (h_1(k) + ih_2(k)) \mod m$
- The probe sequence depends in two ways upon k.
- For example, $h_1(k) = k \mod m$, $h_2(k) = 1 + (k \mod m')$
- Avoid clustering problem
- Performance close to ideal scheme of uniform hashing.

Biostatistics 615/815 - Lecture 8 February 1st, 2011 25 / 3

• Linear-time performance container with larger storage

- Key components
 - Hash function

Hash tables: summary

- Conflict-resolution strategy
- Chained hash
 - Linked list for every possible key values
 - Large memory consumption + deferencing overhead

Biostatistics 615/815 - Lecture 8

February 1st, 2011

Fibonacci

Open Addressing

Hyun Min Kang

- Probing strategy is important
- Double hashing is close to ideal hashing

Untroduction occool Hash Tables ChainedHash occool occool Summary occool occool

Recap: Divide and conquer algorithms

Hash Tables

• When the memory efficiency is more important than the search efficiency

- When many input key values are not unique
- When querying by ranges or trying to find closest value.

Good examples of divide and conquer algorithms

- TowerOfHanoi
- MergeSort
- QuickSort
- BINARYSEARCHTREE algorithms

These algorithms divide a problem into smaller and disjoint subproblems until they become trivial.

Hyun Min Kang Biostatistics 615/815 - Lecture 8 February 1st, 2011 27 / 36 Hyun Min Kang Biostatistics 615/815 - Lecture 8 February 1st, 2011 28 / 36

Introduction

Hash Tabl

ChainedHas

OpenHash

Fibonacci

Summary

Hash Tal

Performance of recursive FIBONACCI

ChainedHash

penHash

Fibonacci 00•00000 Summary

A divide-and-conquer algorithms for Fibonacci numbers

Fibonacci numbers

$$F_n = \begin{cases} F_{n-1} + F_{n-2} & n > 1\\ 1 & n = 1\\ 0 & n = 0 \end{cases}$$

A recursive implementation of fibonacci numbers

```
int fibonacci(int n) {
  if ( n < 2 ) return n;
  else return fibonacci(n-1)+fibonacci(n-2);
}</pre>
```

Hyun Min Kang

Biostatistics 615/815 - Lecture 8

February 1st, 2011

Hyun Min Kang

Computational time

Biostatistics 615/815 - Lecture 8

February 1st, 2011

30 / 36

Introduction 000000 Hash Tables 0000 ChainedHash

OpenHash 00000000 Fibonacci 000•0000

Introducti 000000 Hash Tables

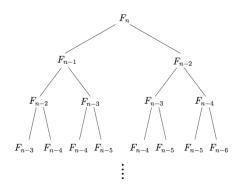
• 4.4 seconds for calculating F_{40} • 49 seconds for calculating F_{45}

• ∞ seconds for calculating F_{100} !

occoc c

Fibonacci 0000●000 Summary

What is happening in the recursive FIBONACCI



Time complexity of redundant FIBONACCI

$$T(n) = T(n-1) + T(n-2)$$

$$T(1) = 1$$

$$T(0) = 1$$

$$T(n) = F_{n+1}$$

The time complexity is exponential

Hyun Min Kang Biostatistics 615/815 - Lecture 8 February 1st, 2011 31 / 36 Hyun Min Kang Biostatistics 615/815 - Lecture 8 February 1st, 2011

Fibonacci Fibonacci 00000000 00000000

A non-redundant FIBONACCI

```
int fibonacci(int n) {
 int* fibs = new int[n+1];
 fibs[0] = 0;
  fibs[1] = 1;
 for(int i=2; i <= n; ++i) {</pre>
    fibs[i] = fibs[i-1]+fibs[i-2];
 }
 int ret = fibs[n];
 delete [] fibs;
 return ret;
}
```

Key idea in non-redundant FIBONACCI

- Each F_n will be reused to calculate F_{n+1} and F_{n+2}
- Store F_n into an array so that we don't have to recalculate it

Hyun Min Kang

Biostatistics 615/815 - Lecture 8

February 1st, 2011

Hyun Min Kang

Biostatistics 615/815 - Lecture 8

February 1st, 2011

Hash Tables

Fibonacci

Hash Tables

Summary

A recursive, but non-redundant FIBONACCI

```
int fibonacci(int* fibs, int n) {
 if ( fibs[n] > 0 ) {
    return fibs[n];
                     // reuse stored solution if available
 }
  else if ( n < 2 ) {</pre>
                       // terminal condition
    return n;
 }
  fibs[n] = fibonacci(n-1) + fibonacci(n-2); // store the solution once computed
  return fibs[n];
}
```

Summary

Today

- Hashing
- Dynamic programming

Next Lecture

- More on dynamic programming
- Graph algorithms

Reading materials

• CLRS Chapter 15

Hyun Min Kang Biostatistics 615/815 - Lecture 8

February 1st, 2011

Hyun Min Kang

Biostatistics 615/815 - Lecture 8