Introduction
900000

Announcements

Biostatistics 615/815 Lecture 8:

Homework #2

Hash Tables, and e For problem 3, assume that all the input values are unique

Dynamic Programming e Include the class definition into myTree.h and myTreeNode.h (do not
make .cpp file)

_ e The homework .tex file containing the source code is uploaded in the
Hyun Min Kang class web page

February 1st, 2011 815 projects

e Instructor sent out E-mails to individually today morning

Hyun Min Kang Biostatistics 615/815 - Lecture 8 February 1st, 2011 1/36 Hyun Min Kang Biostatistics 615/815 - Lecture 8 February 1st, 2011 2 /36

Introduction
00®000

Introduction
0®0000

Recap : Elementary data structures Recap: Example of a linked list

SEARCH INSERT REMOVE prev key next
Array O(n) o(1) O(n) . . R L
SortedArray O(logn) O(n) O(n) @ Lheat ——Z]9 Tt e[T—t [+ T— uls]
Tree O©(logn) ©O(ogn) O(logn) ® Lheat ——{Zps| J—L o[T—L el 3—¢ [s[T—L 1l
Hash o1 ed) ew © Lhad — BT AL [L1/

e Array or list is simple and fast enough for small-sized data

e Tree is easier to scale up to moderate to large-sized data ¢ Example of a doubly-linked list

e Hash is the most robust for very large datasets e Singly-linked list if prev field does not exist

Hyun Min Kang Biostatistics 615/815 - Lecture 8 February 1st, 2011 3/36 Hyun Min Kang Biostatistics 615/815 - Lecture 8 February 1st, 2011 4 /36

Introduction
000e@00

Recap: An example binary search tree

e Pointers to left and right children (NIL if absent)

e Pointers to its parent can be omitted.

Hyun Min Kang Biostatistics 615/815 - Lecture 8 February 1st, 2011 5/ 36

Introduction
00000

Today

Data structure
e Hash table

Dynamic programming

¢ Divide and conquer vs dynammic programming

February 1st, 2011 7 /36

Introduction
O000e0

Correction: Building your program (lecture 6)

Individually compile and link - Does NOT work with template

e Include the content of your .cpp files into .h

e For example, Main.cpp includes myArray.h

user@host: /> g++ -o myArrayTest Main.cpp

Or create a Makefile and just type 'make’

11: myArrayTest # binary name is myArrayTest

myArrayTest: Main.cpp # link two object files to build binary

g++ -0 myArrayTest Main.cpp # must start with a tab

clean:

rm *.o myArrayTest

Hyun Min Kang Biostatistics 615/815 - Lecture 8

February 1st, 2011 6 /36

Hash Tables
©000

Two types of containers

Containers for single-valued objects - last lectures

e INSERT(T, z) - Insert z to the container.

e SEARCH(T, z) - Returns the location/index/existence of z.

e REMOVE(T, z) - Delete z from the container if exists

e STL examples include std::vector, std::1ist, std::deque, std::set

and std::multiset.

Containers for (key,value) pairs - this lecture

e INSERT(T, z) - Insert (z.key, z.value) to the container.
e SEARCH(T, k) -
e REMOVE(T, z) -

Returns the value associated with key k.
Delete element x from the container if exitst
:multimap, and __gnu_cxx::hash_map

e Examples include std: :map, std:

Hyun Min Kang Biostatistics 615/815 - Lecture 8

Hyun Min Kang Biostatistics 615/815 - Lecture 8 February 1st, 2011 8 /36

Hash Tables Hash Tables
0e00 [e]e] o]

Direct address tables Analysis of direct address tables

: Time complexit
S s e

e Requires a single memory access for each operation

e U={0,1,--- ,N— 1} is possible values of keys (N is not huge)
e No two elements have the same key

e O(1) - constant time complexity

Direct address table : a constant-time continaer M R Emen
e Requires to pre-allocate memory space for any possible input value
o 232 = 4GBx (size of data) for 4 bytes (32 bit) key
o 264 = 18EB(1.8 x 107 TB) x (size of data) for 8 bytes (64 bit) key

An infinite amount of memory space needed for storing a set of
arbitrary-length strings (or exponential to the length of the string)

Let 770,---, N— 1] be an array space that can contain N objects
e INSERT(T,z) : Tlz.key =z
e SEARCH(T, k) : RETURN T[k]
e REMOVE(T, z) : T[x.key] = NIL

A\

Hyun Min Kang Biostatistics 615/815 - Lecture 8 February 1st, 2011 9 /36 Hyun Min Kang Biostatistics 615/815 - Lecture 8 February 1st, 2011 10 / 36

Hash Tables ChainedHash
oooe ©0000000

Hash Tables Chained hash : A simple example

A good hash function

e O(1) complexity for INSERT, SEARCH, and REMOVE e Assume that we have a good hash function h(z.key) that 'fairly
uniformly’ distribute key values to H

e Requires large memory space than the actual content for maintainng
good performance e What makes a good hash function will be discussed later today.

" A ChainedHash
Key components e Each possible hash key contains a linked list

e Hash function e Each linked list is originally empty

e But uses much smaller memory than direct-addres tables

o h(z.key) mapping key onto smaller 'addressible’ space H e An input (key,value) pair is appened to the linked list when inserted
e Total required memory is the possible number of hash values
e Good hash function minimize the possibility of key collisions

O(1) time complexity is guaranteed when no collision occurs

. _ When collision occurs, the time complexity is proportional to size of
e Collision-resolution strategy, when h(k;) = h(k2). linked list assocated with h(z.key)

Hyun Min Kang Biostatistics 615/815 - Lecture 8 February 1st, 2011 11 / 36 Hyun Min Kang Biostatistics 615/815 - Lecture 8 February 1st, 2011 12 /36

ChainedHash
0O®000000

[[lustration of CHAINEDHASH

ChainedHash
00®00000

Simplfied algorithms on CHAINEDHASH

/| T k] /]

— k] L[] T [b]/]

—/|kl/]
1/ k] L &[]

\||\I\\\I\”

o Allocate an array of list of size m as the number of possible key values

INSERT(T, z)
e Insert z at the head of list T[h(z.key)].

SEARCH(T, k)
e Search for an element with key & in list TTh(k)].

REMOVE(T, 1)
o Delete z fom the list T[h(z.key)].

Biostatistics 615/815 - Lecture 8 February 1st, 2011 14 / 36

Hyun Min Kang Biostatistics 615/815 - Lecture 8 February 1st, 2011 13 / 36

ChainedHash
0000000

Analysis of hashing with chaining

e Simple uniform hashing
e Pr(h(ki) = h(k2)) = 1/m input key pairs k1 and ks.

e 7 is the number of elements stores

e Load factor o = n/m.

o’

Expected time complexity for SEARCH

e X;; € {0,1} a random variable of key collision between z; and z;.
o E[XZJ] = l/m

E Zn: 1+ 3 (X))

=1 j=i+1

=0(1+)

=
S
I
S|

Biostatistics 615/815 - Lecture 8

Hyun Min Kang February 1st, 2011 15 / 36

Hyun Min Kang

ChainedHash
0000®000

Interesting properties (under uniform hash)

Probability of an empty slot

1 n
Pr(kl#k,kg#k,---,kn#k):(1——) ~e @
m

Birthday paradox : expected # of elements before the first collision

expect # of elements to fill every slot

Coupon collector problem :

Hyun Min Kang Biostatistics 615/815 - Lecture 8 February 1st, 2011 16 / 36

ChainedHash
0O0000e00

Hash functions

ChainedHash
0O00000e0

'Good’ and 'bad’ hash functions

Making a good hash functions

e A hash function h(k) is a deterministic function from k£ € K onto
h(k) € H.

e A good hash function distributes map the keys to hash values as
uniform as possible

e The uniformity of hash function should not be affected by the pattern
of input sequences

A

Example hash functions
o ke [0,1), h(k) = [km]
e ke N, h(k) =k mod m

Biostatistics 615/815 - Lecture 8

Hyun Min Kang February 1st, 2011 17 / 36

ChainedHash
0000000e

Examples of good hash functions

For integers
e Make the hash size m to be a large prime
e h(k) =k mod m

\

For floating point values k € [0, 1)
e Make the hash size m to be a large prime
e h(k) = |k+ N| mod m for a large number N.

A\

For strings

e Pretend the string is a number with numeral system of |X|, where ¥
is the set of possible characters.

e Apply the same hash function for integers

\

An example : h(k) = |km]

o When the input if uniformly distributed

e h(k) is uniformly distributed between 0 and m — 1.
e h(k) is a good hash function

e When the input is skewed : Pr(k < 1/m)=0.9

e More than 80% of input key pairs will have collisions
e h(k) is a bad hash function
o Time complexity is close to a single linked list

V.

Good hash functions

e 'Goodness' of a hash function can be dependent on the data

e If it is hard to create adversary inputs to make the hash function
'bad’, it is generally a good hash function.

Biostatistics 615/815 - Lecture 8

Hyun Min Kang February 1st, 2011 18 / 36

OpenHash
©0000000

Open Addressing

Chained Hash - Pros and Cons

/A Easy to understand

/A Behavior at collision is easy to track
v Every slots maintains pointer - extra memory consumption
v Inefficient to dereference pointers for each access

v Larger and unpredictable memory consumption

| \

Open Addressing

Store all the elements within an array

Resolve conflicts based on predefined probing rule.

Avoid using pointers - faster and more memory efficient.

e Implementation of REMOVE can be very complicated

Hyun Min Kang Biostatistics 615/815 - Lecture 8 February 1st, 2011

19 / 36

Hyun Min Kang Biostatistics 615/815 - Lecture 8 February 1st, 2011 20 / 36

OpenHash
0@®000000

Probing in open hash

OpenHash
QO0e00000

Algorithm OPENHASHINSERT

Modified hash functions
e h: Kx H—H

o For every k € K, the probe sequence
< h(k,0), h(k,1),- -, h(k,m — 1) > must be a permutation of
<0,1,---,m—1>.

Hyun Min Kang Biostatistics 615/815 - Lecture 8 February 1st, 2011 21 /36

OpenHash
00080000

Algorithm OPENHASHSEARCH

Data: 7T : hash, k: key value to search
Result: Return TTk| if exist, otherwise return NIL
for i=0to m—1do
Jj= h<k7 i>;
if 7]j] == k then
‘ return j;
end
else if 7j) ==NIL then
| return Nir;
end

end
return NIL;

Biostatistics 615/815 - Lecture 8 February 1st, 2011

23/ 36

Hyun Min Kang

Data: 7T': hash, k: key value to insert
Result: £ is inserted to T'
fori=0tom—1do
j = h(k, 1) if T[j] ==NIL then
M) = k;
return j;
end
end
error "hash table overflow”;

Biostatistics 615/815 - Lecture 8 February 1st, 2011

22/ 36

Hyun Min Kang

OpenHash
00000000

Strategies for Probing

Linear Probing
o h(k, i) = (W (k) + i) mod m

e Easy to implement

e Suffer from primary clustering, increasing the average search time

4

Quadratic Probing
o h(k,i) = (K(k) + c1i+ c2i®) mod m
e Beter than linear probing

e Seconary clustering : h(k1,0) = h(kz,0) implies h(ki, i) = k(ka,)

Hyun Min Kang Biostatistics 615/815 - Lecture 8 February 1st, 2011 24 / 36

OpenHash
00000e00

Strategies for Probing

OpenHash
Q00000e0

Hash tables : summary

h(k,7) = (h1(k) + iho(k)) mod m
The probe sequence depends in two ways upon k.
For example, hy(k) = k mod m, ha(k) =1+ (kK mod m/)

Avoid clustering problem

Performance close to ideal scheme of uniform hashing.

Biostatistics 615/815 - Lecture 8

Hyun Min Kang February 1st, 2011 25 / 36

OpenHash
0000000

When are binary search trees better than hash tables?

Linear-time performance container with larger storage
e Key components

e Hash function

o Conflict-resolution strategy
Chained hash

e Linked list for every possible key values
e Large memory consumption + deferencing overhead

Open Addressing

e Probing strategy is important
e Double hashing is close to ideal hashing

Hyun Min Kang Biostatistics 615/815 - Lecture 8 February 1st, 2011

Fibonacci
©0000000

Recap: Divide and conquer algorithms

e When the memory efficiency is more important than the search
efficiency

e When many input key values are not unique

e When querying by ranges or trying to find closest value.

Hyun Min Kang

27 / 36

Good examples of divide and conquer algorithms
TowEROFHANOI

MERGESORT

QUICKSORT

BINARYSEARCHTREE algorithms

These algorithms divide a problem into smaller and disjoint subproblems
until they become trivial.

Biostatistics 615/815 - Lecture 8 February 1st, 2011

Hyun Min Kang Biostatistics 615/815 - Lecture 8 February 1st, 2011 28 / 36

Fibonacci
O®000000

A divide-and-conquer algorithms for Fibonacci numbers

Fibonacci numbers

Foi1+F, o n>1
F, = 1 n=1
0 n=>0

A recursive implementation of fibonacci numbers

int fibonacci(int n) {
if (n < 2) return n;
else return fibonacci(n-1)+fibonacci(n-2);

}

Hyun Min Kang Biostatistics 615/815 - Lecture 8 February 1st, 2011

Fibonacci
00080000

What is happening in the recursive FIBONACCI

Fibonacci
00®00000

Performance of recursive FIBONACCI

Computational time

e 4.4 seconds for calculating Fjyo
e 49 seconds for calculating Fy5

e 00 seconds for calculating Figo!

Hyun Min Kang Biostatistics 615/815 - Lecture 8 February 1st, 2011

Fibonacci
0000®000

Time complexity of redundant FIBONACCI

N
VAVNVAN

Hyun Min Kang Biostatistics 615/815 - Lecture 8

February 1st, 2011

T(n) = T(n—1)+ T(n—2)
(1) = 1

T0) = 1

T(n) = Fnpr

The time complexity is exponential

Hyun Min Kang Biostatistics 615/815 - Lecture 8 February 1st, 2011

Fibonacci
O0000e00

A non-redundant FIBONACCI

Fibonacci
0O00000e0

Key idea in non-redundant FIBONACCI

int fibonacci(int n) {
int* fibs = new int[n+1];

fibs[@] = @;
fibs[1] = 1;
for(int i=2; i <= n; ++i) {

i
fibs[i] = fibs[i-1]+fibs[i-2];
}
int ret = fibs[n];
delete [] fibs;

return ret;

Hyun Min Kang Biostatistics 615/815 - Lecture 8 February 1st, 2011 33 /36

Fibonacci
0000000e

A recursive, but non-redundant FIBONACCI

int fibonacci(int* fibs, int n) {
if (fibs[n] > @) {

return fibs[n]; // reuse stored solution if available

}
else if ((n < 2) {

return n; // terminal condition
}

fibs[n] = fibonacci(n-1) + fibonacci(n-2); // store the solution once computed
return fibs[n];

Hyun Min Kang Biostatistics 615/815 - Lecture 8 February 1st, 2011

35/ 36

e Each F), will be reused to calculate F,;1 and F, 2

e Store F), into an array so that we don’t have to recalculate it

Hyun Min Kang Biostatistics 615/815 - Lecture 8 February 1st, 2011 34 /36

Summary
°

Summary

Today
e Hashing

e Dynamic programming

Next Lecture

| A

e More on dynamic programming

e Graph algorithms

Reading materials
e CLRS Chapter 15

A

A

Hyun Min Kang Biostatistics 615/815 - Lecture 8 February 1st, 2011 36 / 36

