Human Genetic Studies:
Challenges and Opportunities

Goncalo Abecasis
Ann Arbor, Ml



Goal of Human Genetic Studies

Find biological processes that,
when changed, alter disease course

Understand Disease:
Enable new treatments

Predict disease:
Enable early prevention and early decision making
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Current State of Genetic Association Studies

e Surveying common variation across 10,000s - 100,000s of individuals
IS Nnow routine

* Many common alleles have been associated with a variety of human
complex traits

* The functional consequences of these alleles are often subtle, and
translating the results into mechanistic insights remains challenging



Global Lipids Genetics Consortium

Sekar Cristen
Kathiresan Willer

 An example of the current standard for genetic association studies

* Most recent analysis includes 188,578 individuals and identifies 157
loci associated with blood lipid levels

* Associated loci can:
e Suggest new targets for therapy
e Confirm suspected targets or known biology
e Provide insights on the relationship between lipids and other phenotypes

Willer et al, Nat Genet, 2008; Teslovich et al, Nature, 2010; Willer et al, Nat Genet, 2013; Do et al, Nat Genet, 2013



A SNAPSHOT OF LIPID GENETICS
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Insights about biology ...

 In our first lipid GWAS, we showed that every allele that increased LDL-C
was also associated with increased coronary heart disease risk...

e Later, we showed that alleles with the largest impact on HDL-C in blood,
also modify the risk of age related macular degeneration

e Our most recent analysis show that the impact of an allele on triglyceride
levels predicts heart disease risk
e Even after controlling for its association with HDL-C and LDL-C
e Analysis continues to support causal role for LDL-C (but not for HDL-C)



Suggesting New Targets: GALNT2
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Questions that Might Be Answered With
Complete Sequence Data...

 What is the contribution of each identified locus to a trait?
e Likely that multiple variants, common and rare, will contribute

e What is the mechanism? What happens when we knockout a gene?
* Most often, the causal variant will not have been examined directly
e Rare coding variants will provide important insights into mechanisms

e What is the contribution of structural variation to disease?
* These are hard to interrogate using current genotyping arrays.

e Are there additional susceptibility loci to be found?
e Only subset of functional elements include common variants ...
e Rare variants are more numerous and thus will point to additional loci



What Is the Total
Contribution of Each Locus?

Evidence that

Multiple Variants Will be Important



Evidence for Multiple Variants Per Locus
Example from Lipid Biology

—logyp p-value —logyg p-value

—logig p-value

15 20

10

15 20

10

15 20

10

GALNT2
.S
1
APOB
SORTI/CELSR2/PSRCT
PCSK9
. ]
1
GCKR
ANGPTL3

1

GALNTZ | RBKS

B4GALT4

B3GALT4

HDL Cholesterol

LPL

ABCAT

LDL Cholesterol

Triglycerides

LPL

TRIB1
MLXIPL
[

APOAS5

MVKMMAB

LipC

LiPC

CETP

LIPG
.
]

LCAT

16 17 e 19 20

21 22

APOE cluster
LDLR
CILP2/CSPG3
] |

16 17 18 19 20

CILP2/CSPG3

21 22

21 22

Willer et al, Nat Genet, 2008
Kathiresan et al, Nat Genet, 2008, 2009



Evidence for Multiple Variants Per Locus
Example from Lipid Biology
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What is The Contribution of
Structural Variants?

Current Arrays Interrogate 1,000,000s of SNPs,
but 100s of Structural Variants



Evidence that Copy Number Variants Important
Example from Genetics of Obesity
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Evidence that Copy Number Variants Important
Example from Genetics of Obesity
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Evidence that Copy Number Variants Important
Example from Genetics of Obesity
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Associated Haplotype Carries Deletion
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What is the Mechanism?
What Can We Learn From Rare
Knockouts?

Early Example from Type 1 Diabetes



Can Rare Variants Replace Model Systems?
Example from Type 1 Diabetes

Nejentsev, Walker, Riches, Egholm, Todd (2009)
IFIH1, gene implicated in anti-viral responses, protects against T1D
Science 324:387-389

Common variants in IFIH1 previously associated with type 1 diabetes

Sequenced IFIH1 in ~480 cases and ~480 controls
Followed-up of identified variants in >30,000 individuals

|dentified 4 variants associated with type 1 diabetes including:
* 1 nonsense variant associated with reduced risk
e 2 variants in conserved splice donor sites associated with reduced risk
* Result suggests disabling the gene protects against type 1 diabetes



Next Generation Sequencing




Massive Throughput Sequencing

e Tools to generate sequence data evolving rapidly

e Commercial platforms produce gigabases of sequence rapidly and
inexpensively

e ABI SOLID, lllumina Solexa, Roche 454, Complete Genomics, lon Torrent, and
others...

» Sequence data consist of thousands or millions of short sequence
reads with moderate accuracy

e 0.5-1.0% error rates per base may be typical



Shotgun Sequence Reads

e Typical short read might be <25-100 bp long and not
very informative on its own

 Reads must be arranged (aligned) relative to each
other to reconstruct longer sequences



Base Qualities

Short Read Sequence

TAGCTGATAGCTAGCTAGCTGATGA A

Short Read Base Qualities
30.28.28.29.27.30.29.28.25.24.76.27.24.24.73.20.21.22.10.25.25.20.20.18.17.16.15.14.14.13.12.10

e Each base is typically associated with a quality value

e Measured on a “Phred” scale, which was introduced by Phil
Green for his Phred sequence analysis tool

BQ = —log,o(€),where € is the probability of an error



Read Alignment

TAGCTGATAGCTAGCTAGCTGATGA A
Short Read (30-100 bp)

5-ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGA ATCGCTGCTAGCTCGACG-3

Reference Genome (3,000,000,000 bp)

e The first step in analysis of human short read data is to align each

read to genome, typically using a hash table based indexing
procedure

e This process now takes no more than a few hours per million reads ...

* Analyzing these data without a reference human genome would
require much longer reads or result in very fragmented assemblies



Read Alignment — Food for Thought

* Typically, all the words present in the genome are indexed to facilitate
read mapping ...
 What are the benefits of using short words?
 What are the benefits of using long words?

* How matches do you expect, on average, for a 10-base word?
* Do you expect large deviations from this average?



Mapping Quality

* Measures the confidence in an alignment, which depends on:
e Size and repeat structure of the genome
e Sequence content and quality of the read
 Number of alternate alignments with few mismatches

 The mapping quality is usually also measured on a “Phred” scale

 |dea introduced by Li, Ruan and Durbin (2008) Genome Research
18:1851-1858



Per Base Alignment Qualities

Short Read

ATAGCTAGCTAGCTG ATGA
5’-AGCTGATAGCTAGCTAGCTGATGA ATC-3

Reference Genome

Heng Li



Per Base Alignment Qualities

Should we insert a gap?

Short Read

ATAGCTAGCTAGCTGATGA -
5’-AGCTGATAGCTAGCTAGCTGATGA ATC-3

Reference Genome

Heng Li



Per Base Alignment Qualities

Compensate for Alignment Uncertainty

With Lower Base Quality
Short Read

ATAGCTAGCTAGCTGATGA
5-AGCTGATAGCTAGCTAGCTGATGA ATC-3

Reference Genome

Heng Li



Paired End Sequencing

Population of DNA fragments of known size (mean + stdev)

EEED @ phired end sequences



Paired End Sequencing

Paired Reads
g

Initial alignment to the reference genome

Paired end resolution




How much variation
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Optimal Model for Analyzing 1000 Genomes?

Homozygous
1000 Genomes Call Set Reference Homozygous Non-
(CEU) Error Heterozygote Error Reference Error

Broad 0.66 4.29 3.80
Michigan 0.68 3.26 3.06
Sanger 1.27 3.43 2.60

 Michigan caller combines ...
— Markov models to identify shared haplotypes,
— Classifiers to distinguish true variants from error,
— Strategies to distribute computation across cluster



Optimal Model for Analyzing 1000 Genomes?

Homozygous
1000 Genomes Call Set Reference Homozygous Non-
(CEU) Error Heterozygote Error Reference Error

Broad 0.66 4.29 3.80
Michigan 0.68 3.26 3.06
Sanger 1.27 3.43 2.60
Majority Consensus 0.45 2.05 2.21

e Common to see “ensemble” methods
outperform the best single method



Allele Frequency Spectrum
(After Sequencing 12,000+ Individuals)
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http://genome.sph.umich.edu/wiki/Exome_Chip_Design

Design A Whole Genome
Sequencing Study in Sardinia

Goncalo Abecasis
David Schlessinger

Francesco Cucca



SardiNIA Whole Genome Sequencing

e 6,148 Sardinians from 4 towns in the Lanusei Valley,
Sardinia

e Recruited among population of ~9,841 individuals
e Sample includes >34,000 relative pairs

 Measured ~100 aging related quantitative traits

e Original plan:
e Sequence >1,000 individuals at 2x to obtain draft sequences
e Genotype all individuals, impute sequences into relatives



How Is Sequencing Progressing?

e NHGRI estimates of sequencing capacity and cost ...

— Since 2006, for fixed cost ...
— ... V4x increase in sequencing output per year

 |n our own hands...
— Mapped high quality bases
— March 2010: ~5.0 Gb/lane
— May 2010: ~7.5 Gb/lane
— September 2010: ~8.6 Gb/lane
— January 2011: ~16 Gb/lane
— Summer 2011: ~45 Gb/lane

e Other small improvements
— No PCR libraries increase genome coverage, reduce duplicate rates

Fabio Busonero, Andrea Maschio



As more samples are sequenced,

Accuracy increases

Heterozygous Mismatch Rate (in %)
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Design




What Do We See Genomewide?
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LDL Genetics In Lanusei Valley, Sardinia,
Current Sequenced Based View

Q39X 8.0%7?7
APOE R176C, C130R .04, .07 0.56, 0.26 3.3%
PCSK9 R46L, rs2479415 .04, .41 0.38, 0.08 1.2%
LDLR rs73015013, V578R .14, .005 0.16, 0.62 1.2%
SORT1 rs583104 .18 0.15 0.6%
APOB rs547235 .19 0.19 0.5%

e Most of these variants are important across Europe, extensively studied.
e Q39X variant in HBB is especially enriched in Sardinia.
e V578Rin LDLR is a Sardinia specific variant, particularly common in Lanusei.



Summary

e Challenges and opportunities in genetic association studies.
e Great need for statistical and computational method development.

* In a specific examples, we ...
e Designed method to combine sequence information across samples.
* Applied the method to sequence an interesting population in Sardinia.

e Designed method to infer ancestry from small amounts of sequence.
e Applied the method to identify additional controls for sequencing study.
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