Mary Kate Trost

Debugger
. Advantages/Disadvantages
. * Advantages

- Single step through the code

— Stop execution at a given point to
Investigate where it goes and what the
values are

— Attach to already running program
* Disadvantages

- Not running real-time, so may not expose
all problems

Deugging tools:
- Run: start the program
Interreupt: stop the program
from running
: Step: Go into the function call
(or go to next line of code)
~ Next: Go over a function call

' (execute it, but do not step into
B it)

Finish: Continue execution until
the end of the current method
Cont: Continue execution until
the next breakpoint or the end
of the program is reached.
Kill: stop the program from
running.

(adb)
g\ 30- 0l

S
i

DDD: /home/mktrost/pipeline/bam/SamBecord.cpp

K

File Edit View FProgram Commands Status Source Data

Help
(i ength() ¢ B @° ©° @° 2T 2 An B o7

Lookup Find== EBreak Watch Print Display* Plot Shott - Botate Set U jeff=e]

-

Run| Interrupt| Step| Stepi| Next| Nexdi| Until| Finish| Cont| Kill| Up| Down| |

1. myStatus b

gnum=tatusstring = OxG6dedal
my Type = Samstatus: SUCCESS) . . . 0 . .
myMessage ={...rx ..

827 {

823 myStatus = Samstatus: (SUCCESS;

D2 4 if(myCigar.Length() == 0)

825 {

826 /4 0 Length, means that 1t 1s 1n the
buffer, but has not yet

827 /4 been synced to the string, so do
the sync.

828 parseCigarBinary();

—maxReportedErrors [100]
SortOrder : ——so_flag, ——so_coord, —so_query

Ereakpoint 1, SamRecord::getCigar
(this=0x7 T ffda®0) at SamRecord.cpp:824
(gdb) print myCigar. Lengthi)

$1 = 4

(gdb) p/x myCigar.Length()

2 = Oxd

Basic How To Use
e Bring up a file in the viewer:

- | <filename>:<line#>
« | SamRecord.cpp:1
- | <class>::<method>
« | SamRecord::getCigar
e Set a breakpoint

- Use mouse right-click on the line number

» Set Breakpoint (can set properties — break after
hit X number of times, etc)

- b <class>::<method>

« Attach to already running process

- File->Attach to Process

Basic How To Use (cont)

e Run with options

- On the command line (type run in place of your
executable name):

* run <options>

* Backtrace (see where you are in execution, look up/down the
call stack):

- Status->Backtrace
See a variable's value:

- Right click the variable in the source code window and
click “Print” (or to keep it tracked, click “Display”)

- On command line: p <variable>

 In hex: p/x <variable>

Other Testing Advice
—= « Reduce test size from one that takes hours
= to one that is much quicker.

— Reduce file sizes

- Turn off unnecessary sections

- '« Write a set of automated tests that test the
g different cases so they can be re-run each
— time the library changes

———

E » When you find a bug, write a test that
exposes the bug (falls), fix the bug, rerun
the test (succeeds)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6

