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The Minimization Problem
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Specific Objectives

Finding global minimum
= The lowest possible value of the function

= Very hard problem to solve generally

Finding local minimum

= Smallest value within finite neighborhood

= Relatively easier problem
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A quick detour - The root finding problem

= Consider the problem of finding zeros for f(x)
= Assume that you know

= Point a where f(a) is positive
= Point b where f(b) is negative
= f(z) is continuous between a and b

= How would you proceed to find x such that f(z) = 07
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A C++ Example : defining a function object

#include <iostream>

class myFunc { // a typical way to define a function object
public:
double operator() (double x) const {
return (x*x-1);
}
s

int main(int argc, char** argv) {
myFunc foo;
std::cout << "foo(@) = " << foo(@) << std::endl;
std::cout << "foo(2) = " << foo(2) << std::endl;
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Root Finding with C++

// binary-search-like root finding algorithm
double binaryZero(myFunc foo, double lo, double hi, double e) {
for (int i=0;; ++i) {
double d = hi - lo;
double point = lo + d * 0.5; // find midpoint between lo and hi
double fpoint = foo(point); // evaluate the value of the function
if (fpoint < @.0) {
d = lo - point; 1lo = point;
}
else {
d = point - hi; hi = point;
}
// e is tolerance level (higher e makes it faster but less accurate)
if (fabs(d) < e || fpoint == 0.0) {
std::cout << "Iteration " << 1 << ", point = " << point
<< ", d =" << d << std::endl;
return point;
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Improvements to Root Finding

Approximation using linear interpolation

Root Finding Strategy
= Select a new trial point such that f*(z) =0
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Root Finding Using Linear Interpolation

double linearZero (myFunc foo, double lo, double hi, double e) {
double flo = foo(lo); // evaluate the function at the end points
double fhi = foo(hi);
for(int i=0;;++i) {
double d = hi - lo;
double point = lo + d * flo / (flo - fhi); // use linear interpolation
double fpoint = foo(point);
if (fpoint < 0.0) {
d = lo - point;
lo = point;
flo = fpoint;
}
else {
d = point - hi;
hi = point;
fhi = fpoint;
}
if (fabs(d) < e || fpoint == 0.0) {
std::cout << "Iteration "

<< i <« point = << point << ", d = " << d << std::endl;

return point;
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Performance Comparison

Finding sin(x)

#include <cmath>
class myFunc {
public:
double operator() (double x) const { return sin(x); }

s

int main(int argc, char** argv) {
myFunc foo;
binaryZero(foo,0-M_PI/4,M_PI/2,1e-5);
linearzZero(foo,0-M_PI/4,M_PI/2,1le-5);
return 0;

Experimental results

| HJ
A\

binaryZero() : Iteration 17, point = -2.99606e-06, d = -8.98817e-06

linearZero() : Iteration 5, point = 0, d = -4.47489e-18
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R example of root finding

# use uniroot() function for root finding

> uniroot( sin, c(@-pi/4,pi/2) ) ## function and interval as arguments

$root
[1] -3.531885e-09

$f.root
[1] -3.531885e-09

$iter
[1] 4

$estim.prec
[1] 8.719466e-05
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Summary on root finding

= |Implemented two methods for root finding

= Bisection Method : binaryzero()
= False Position Method : linearzero()

= In the bisection method, the bracketing interval is halved at each step

= For well-behaved function, the False Position Method will converge
faster, but there is no performance guarantee.
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Back to the Minimization Problem

= Consider a complex function f(z) (e.g. likelihood)

= Find z which f(z) is maximum or minimum value
= Maximization and minimization are equivalent
= Replace f(z) with —f(z)
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Notes from Root Finding

= Two approaches possibly applicable to minimization problems
= Bracketing

= Keep track of intervals containing solution
= Accuracy

= Recognize that solution has limited precision
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Notes on Accuracy - Consider the Machine Precision

= When estimating minima and bracketing intervals, floating point
accuracy must be considered

= In general, if the machine precision is ¢, the achievable accuracy is no
more than /e.

= /e comes from the second-order Taylor approximation

flz) = f(b) + f’( (2= b)?

= For functions where higher order terms are important, accuracy could
be even lower.

= For example, the minimum for f(z) = 1 + 2# is only estimated to about
1/4
et/
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Outline of Minimization Strategy

® Find 3 points such that

= a<b<ec

= f(b) < fla) and f(b) < flc)
® Then search for minimum by

= Selecting trial point in the interval
= Keep minimum and flanking points
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Part | : Finding a Bracketing Interval

= Consider two points
= x-values a, b

= y-values f(a) > f(b)
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Bracketing in C++

#define SCALE

void bracket(
double fa =
double fb =
double fc =
while( fb >

a = b; fa

b =c; fb

1.618

myFunc foo, double& a, double& b, double& c) {
foo(a);

foo(b);

foo(c = b + SCALE*(b-a) );

fc ) {

= fb;

= fc;

c = b + SCALE * (b-a);
fc = foo(c);

}

// after the loop, fb < fa and fb < fc will hold.
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Part Il : Finding Minimum After Bracketing

= Given 3 points such that
s a<b<c

* f(b) < f(a) and f(b) < flc)

= How do we select new trial point?
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What is the best location for a new point X7
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What we want

660 @

We want to minimize the size of next search interval, which will be either
from A to X or from Bto C

= If f(X) < f(B), the next search interval will be (B, C)
= If (X) > f(B), the next search interval will be (4, X)
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Minimizing worst case possibility

= Formulae
b—a
w =
c—a
z—0b
VA =
c—a

Segments will have length either 1 — w or w+ 2.

= Optimal case

= Solve It

3-+5
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The Golden Search
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The Golden Ratio

Bracketing Triplet
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The Golden Ratio

New Point
) © ® ©
O N
0.38196 0.38196

The number 0.38196 is related to the golden mean studied by Pythagoras
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The Golden Ratio

New Bracketing Triplet

-

0.38196
Alternative New Bracketing Triplet

@
| T @

O 38196
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Golden Search

= Reduces bracketing by ~ 40% after function evaluation
= Performance is independent of the function that is being minimized

= In many cases, better schemes are available
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Golden Step

#define GOLD ©.38196

#define ZEPS 1le-10 // precision tolerance
double goldenStep (double a, double b, double c) {
double mid = ( a + ¢ ) * .5;
if (b > mid )
return GOLD * (a-b);
else
return GOLD * (c-b);
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Golden Search

double goldenSearch(myFunc foo, double a, double b, double c, double e) {
int i = o;
double fb = foo(b);
while ( fabs(c-a) > fabs(b*e) ) {
double x = b + goldenStep(a, b, c);
double fx = foo(x);
if ( fx < fb ) {
(x >b) ? (a=Db): (c=Db);
b = x; fb = fx;
}
else {
(x <b)y ? (a=x):(c=x);
}
++1;
}
std::cout << "i = " << i << ", b="<x<b<< ", f(b) =" << foo(b) << std::endl;
return b;
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A running example

Finding minimum of

class myFunc {
public:
double operator() (double x) const {
return @-cos(x);
}
}s

int main(int argc, char** argv) {
myFunc foo;
goldenSearch(foo,0-M_PI/4,M_PI/4,M_PI/2,1e-5);
return 0;

i =66, b = -4.42163e-09, f(b) = -1
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R example of minimization

> optimize(cos,interval=c(@-pi/4,pi/2),maximum=TRUE)
$maximum
[1] -8.648147e-07

$objective
[1] 1
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Further improvements

= As with root finding, performance can improve substantially when
local approximation is used

= However, a linear approximation won't do in this case.
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Approximation Using Parabola

_______ parabola through @ @ ®
..es. parabola through @ ® @
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Better optimization using local approximation

= Root finding example
= Binary search reduces the search space by constant factor 1/2
= Linear approximation may reduce the search space more rapidly for
most well-defined functions

= Minimization problem

= Golden search reduces the search space by 38%
= Using a quadratic approximation of the function may achieve better
optimization results
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Approximation using parabola

_______ parabola through @ @ ®
..es. parabola through @ ® @

Hyun Min Kang Biostatistics 615/815 - Lecture 17 November 13th, 2012 34 /49



Parabola
[e]e] le]elelelelelelele]e]

Parabolic Approximation

f(z) = A + Bz + C
The value minimizes f*(z) is

- B
Tmin = 9A

This strategy is called "inverse parabolic interpolation”

Hyun Min Kang Biostatistics 615/815 - Lecture 17 November 13th, 2012



Parabola
000@000000000

Fitting a parabola

= Can be fitted with three points
= Points must not be co-linear

* (1) = fln), f(22) = fl2), f(23) = flzs).

C = flz1) — Az} — B
A(23 — 1) + flw1) — flan)

Iy — 22

A = f(x?)) _f(l'Q) _ f(zl) —f(ﬂig)

(23 —22) (23 — 1) (21 — 22) (23 — m1)
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Minimum for a Parabola

= General expression for finding minimum of a parabola fitted through
three points

b 1y 1 (2 — 21)*(flwz) — (1)) — (w2 — 23)*(fa2) — flan))
" 2 (22— 21)(flz2) — f23)) — (22 — 23)(A(22) — f23))
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Fitting a Parabola

// Returns the distance between b and the abscissa for the

// fitted minimum using parabolic interpolation
double parabolaStep (double a, double fa, double b, double fb, double c,

double fc) {

// Quantities for placing minimum of fitted parabola

double
double
double
double

p
q
X

y

(b - a) * (fb - fc);

(b - c) * (fb - fa);

(b -¢c)*q-(b-a)*p;
2.0 * (p - a);

// Check that y is not too close to zero
if (fabs(y) < ZEPS)
return goldenStep (a, b, c);

else

return x / y;
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Avoiding degenerate case

= Fitted minimum could overlap with one of original points

= Ensure that each new point is distinct from previously examined
points
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Avoiding degenerate steps

double adjustStep(double a, double b, double c, double step, double e) {
double minStep = fabs(e * b) + ZEPS;
if (fabs(step) < minStep)
return step > © ? minStep : ©-minStep;
// If the step ends up to close to previous points,
// return zero to force a golden ratio step
if (fabs(b + step - a) <= e || fabs(b + step - c¢) <= e)
return 0.0;
return step;
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Generating New Points

= Use parabolic interpolation by default

= Check whether improvement is slow

= |f step sizes are not decreasing rapidly enough, switch to golden
section
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Adaptive calculation of step size

double calculateStep(double a, double fa, double b, double fb,
double c, double fc, double lastStep, double e) {
double step = parabolaStep(a, fa, b, fb, c, fc);
step = adjustStep(a, b, c, step, e);
if (fabs(step) > fabs(@.5 * lastStep) || step == 0.0)
step = goldenStep(a, b, c);
return step;
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Overall

The main function simply has to
= Generate new points using building blocks
= Update the triplet bracketing the minimum

= Check for convergence
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Overall Minimization Routine

template<class F>

double adaptiveMinimum(F foo, double a, double b, double c, double e) {

double fa = foo(a), fb = foo(b), fc = foo(c);
double stepl = (c - a) * ©.5, step2 = (c - a) * 0.5;
while ( fabs(c - a) > fabs(b * e) + ZEPS) {
double step = calculateStep (a, fa, b, fb, c, fc, step2, e);
double x = b + step;
double fx = foo(x);
if (fx < fb) {
if (x > b) { a =b; fa = fb; }
else { ¢ = b; fc = fb; }
b = x; fb = fx;
}
else {
if (x < b) { a=x; fa=Ffx; }
else { ¢ = x; fc = fx;
step2 = stepl; stepl = step;
}
}
return b;
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Important Characteristics

= Parabolic interpolation often converges faster
= The preferred algorithm

= Golden search provides worst-cast performance guarantee
= A fall-back for uncooperative functions
= Switch algorithms when convergence is slow

= Avoid testing points that are too close
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More advanced strategy : Brent's algorithm

= Track 6 points (not all distinct)

= The bracket boundaries (a, b)

= The current minimum z

= The second and third smallest value (w, v)

= The new points to be examined u
= Parabolic interpolation

= Using (z, w, v) to propose new value for w.

= Additional care is required to ensure u falls between a and b.
= Recommended Reading

= Numerical Recipes in C++ : Chapter 10.0 - 10.3
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Using boost library for root finding / minimization

#include <cmath>
#include <iostream>
#include <boost/math/tools/roots.hpp>

#define EPS le-6
bool tol(double a, double b) { return ( fabs(b-a) <= EPS ); }

int main(int argc, char** argv) {
double lo = ©-M_PI/4;
double hi = M_PI/2;
boost::uintmax_t niter;
std::pair<double,double> rBi = boost::math::tools::bisect(sin, lo, hi, tol, niter);
std::cout << "bisect : (" << rBi.first << ", " << rBi.second
<< ") at " << niter << "
std::pair<double,double> r748 =
boost::math::tools::toms748_solve(sin, lo, hi, tol, niter);
std::cout << "toms748 : (" << r748.first << ", " << r748.second
<< ") at " << niter << " iterations" << std::endl;

iterations" << std::endl;

return 0;
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Other Algorithms for Root Finding

TOMS Algorithm 748
= Uses a mixture of cubic, quadratic, and linear interpolation to locate
the root of f(z).
Newton-Raphson algorithm
= Uses first derivative of f(z) to better approximate the root
Halley's method
= Uses first and second derivatives of f{z) to approximate the root
Householder's method

= Uses up to d-th derivative of f(z) to approximate the root for faster
convergence
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Summary

Root Finding Algorithms
= Bisection Method : Simple but likely less efficient

= False Position Method : More efficient for most well-behaved function

Single-dimensional minimization

| \

= Golden Search : 38% reduction of interval per iteration

= Parabola Method : Likely more efficient reduction, but not always
guaranteed.

= Brent's Method : Combination of above two methods. More efficient
than both.

.
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