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Last Lecture

Biostatistics 602 - Statistical Inference
Lecture 24 = What is an interval estimator?

E-M Algorithm & Practice Examples = What is the coverage probability, confidence coefficient, and
confidence interval?

* How can a 1 — « confidence interval typically be constructed?

Hyun Min Kang = To obtain a lower-bounded (upper-tail) Cl, whose acceptance region
of a test should be inverted?

(a) Hy:0=10yvs Hy: 60> 0
April 16th, 2013 (b) Ho:60 =0y vs Hy:0 <6y
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Interval Estimation Definitions

é(X) is usually represented as a point estimator
Definition : Coverage Probability

Interval Estimator

Let [L(X), U(X)], where L(X) and U(X) are functions of sample X and
L(X) < U(X). Based on the observed sample x, we can make an inference
that

Given an interval estimator [L(X), U(X)] of 6, its coverage probability is
defined as
Pr(0 € [L(X), UX)])

0 € [L(X), UX)] In other words, the probability of a random variable in interval
[L(X), U(X)] covers the parameter 6.

Then we call [L(X), U(X)] an interval estimator of 6.

| A

Three types of intervals Definition: Confidence Coefficient
= Two-sided interval [L(X), U(X)] Confidence coefficient is defined as
= One-sided (with lower-bound) interval [L(X), 00) (}25% Pr(6 € [L(X), UX)])

= One-sided (with upper-bound) interval (—oo, U(X)]

Hyun Min Kang Biostatistics 602 - Lecture 24 April 16th, 2013 Hyun Min Kang Biostatistics 602 - Lecture 24 April 16th, 2013 4 /33



Recap

Recap
o000

00080

Confidence set and confidence interval

Definitions

Definition : Confidence Interval There is no guarantee that the confidence set obtained from Theorem
Given an interval estimator [L(X), U(X)] of 0, if its confidence coefficient 9.2.2 is an interval, but quite often
is 1 —a, we call it a (1 — ) confidence interval @ To obtain (1 — «) two-sided Cl [L(X), U(X)], we invert the

acceptance region of a level « test for Hy : 0 = 6y vs. Hy : 0 # 6

Definition: Expected Length @® To obtain a lower-bounded Cl [L(X), o), then we invert the

Given an interval estimator [L(X), U(X)] of 0, its expected length is acceptance region of a test for Hy : = 0y vs. Hy : 6 > 6y, where
defined as Q={6:0> 060}
E[U(X) — L(X)] © To obtain a upper-bounded Cl (—oo, U(X)], then we invert the
. acceptance region of a test for Hy : 0 = 0y vs. Hy : 0 < 0y, where

where X are random samples from fx(x|#). In other words, it is the Q—1{0:-0<0

. : ={60:6<6p}.
average length of the interval estimator.
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Typical strategies for finding MLEs Example: A mixture distribution

@ Write the joint (log-)likelihood function, L(6|x) = fx(x|0).
® Find candidates that makes first order derivative to be zero

© Check second-order derivative to check local maximum. - ]
(a) For one-dimensional parameter, negative second order derivative implies

0.08
|

local maximum.

Density
0.04
|
“--._.q_‘_‘_‘q_
—

O Check boundary points to see whether boundary gives global

maximum. ! SN v I
I r > . 9

|

Hyun Min Kang Biostatistics 602 - Lecture 24 April 16th, 2013

Hyun Min Kang Biostatistics 602 - Lecture 24 April 16th, 2013 7 /33



E-M

E-M
A general mixture distribution MLE Problem for mixture of normals
]3|7T o, 77 Zﬂ'zfx ¢Z7 k
f($|9 = (7'(', 1y 02)) = Z pzfl(x|:uw J'LQ)
i=1
z observed data 1 (2 — pg)?
, | Halpood) = ——exp |-
7 mixture proportion of each component 27“7@2 20;
f the probability density function
¢ parameters specific to each component Zﬂi =1
7 parameters shared among components :
k number of mixture components Find MLEs for § = (7, i1, 0%).
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Solution when k=1 Incomplete data problem when £ > 1

k
fal0) = pifi(epi, 0F) n
1 f(X’@ = H szfz $l|/“1']7 )

=1

I
2

I

—_

The MLE solution is not analytically tractable, because it involves multiple
2 2 n =2 . .
=01 =2 i(—2)/n sums of exponential functions.

n
9. = 3
I
=
I
8l
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Converting to a complete data problem

Let z; € {1,---
sampled from.

, k} denote the source distribution where each z; was

n k n
fxlz,0) = ] |D 1z = hilailps, 07) | = [ filwilpz, 02)

=1 | j=1 i=1
A > i1 Az =)
T o=

n

i = n ;

> icq A(zi = 1)
52 = ?_1 I(nzz = 4)(7; — m)?

Zz—l [(Z’L - Z)

The MLE solution is analytically tractable, if z is known.
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Overview of E-M Algorithm

Basic Structure

= y is observed (or incomplete) data
= z is missing (or augmented) data

= x = (y,z) is complete data

Complete and incomplete data likelihood

= Complete data likelihood : f(x|0) = f(y, z|0)
= Incomplete data likelihood : ¢(y|6) = /f(y,z|0)dz

We are interested in MLE for L(f|y) = g(y|6).
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E-M Algorithm

E-M (Expectation-Maximization) algorithm is
= A procedure for typically solving for the MLE.
= Guaranteed to converge the MLE (!)

= Particularly suited to the "missing data” problems where analytic
solution of MLE is not tractable

The algorithm was derived and used in various special cases by a number
of authors, but it was not identified as a general algorithm until the
seminal paper by Dempster, Laird, and Rubin in Journal of Royal
Statistical Society Series B (1977).
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Maximizing incomplete data likelihood

L(Oly,z) = fly,z|0)

L(Oly) = g(ylo)

Ay, z]9)

Hel0y) = “onie)
log L(Aly) = log L(fly,z) —logk(z|0,y)

Because z is missing data, we replace the right side with its expectation
under k(z|6',y), creating the new identity

log L(Aly) = E[logL(f]y,Z)|¢,y]

—E [1Og k(2’9> y)’9/7 YJ

Iteratively maximizing the first term in the right-hand side results in E-M
algorithm.

Hyun Min Kang
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Overview of E-M Algorithm (cont'd) Key Steps of E-M algorithm

Expectation Step

+ Compute Q(O]9).
= Maximize L(6]y) or (0]y). = This typically involves in estimating the conditional distribution Z|Y,
= Let f(y, z|0) denotes the pdf of complete data. In E-M algorithm, assuming 0 = o(r)
rather than working with [(f|y) directly, we work with the surrogate = After computing Q(0]0"), move to the M-step
function

QI0) = E|logfly,ZI0)ly. 0]
Maximization Step

| A\

where #(") is the estimation of 6 in r-th iteration. = Maximize Q(0|0(") with respect to 6.
= Q(0|0) is the expected log-likelihood of complete data, conditioning = The argmaxy Q(6|6") will be the (r+ 1)-th 6 to be fed into the
on the observed data and #("). E-step.

v

» Repeat E-step until convergence

y
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E-M algorithm for mixture of normals E-M algorithm for mixture of normals (cont'd)
n k
Ql0™) = E|logfly,Z|[0)ly,0" , i, 20
(0]6%") [ (y, Z10)] } Q)0 = Z Z % log f(v, 2i|0)
= ) k2|0, y)log fly, 2|6) =1 z=1 N
2 " 1 ¢ i amy _ LAz = 160
= Z Z k(zz-le“"), yi) log f(yi, 2i0) =1 '

o S Sy b=y 0) Sy ook = sy 07)

n k L 1p J /f(Zz — ]| Yi, 9(7")) (T—i—l)
— Z Z f—(y(“ lee‘(e'r‘))) 10gf<yZ7 Z’Lle) n (r+1)\2 q ) nﬂ—J
=1 z=1 NYi o2+ > iy (T — g )2k(zi = jlyi, 017))
Yi, zl|9 ~ N(:uzia Ji) ! /{I(Zz = ]| Yis 9(7‘))
¢ S (i — )2 k(z = gl 0)
g =1 1 () 79
9(y0) = Z mef(yi, 2 = 119) = gy
J= J

v
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Does E-M iteration converge to MLE? A working example (from BIOSTAT615/815 Fall 2012)

Example Data (n=1,500)

Theorem 7.2.20 - Monotonic EM sequence
The sequence {A("} defined by the E-M procedure satisfies
L(eY) > 1(00)) |

with equality holding if and only if successive iterations yield the same
value of the maximized expected complete-data log likelihood, that is

E[logL(é<T+U|y,z) |é<’“>,y} = E[IogL(é(T)ly, Z) Ié“),y]

30

20

10

Theorem 7.5.2 further guarantees that L(é(r)|y) converges monotonically »

to L(A]y) for some stationary point 6. Running example of implemented software

user@host~/> ./mixEM ./mix.dat
Maximum log-likelihood = 3043.46, at pi = (0.667842,0.332158)
between N(-0.0299457,1.00791) and N(5.0128,0.913825)
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Practice Problem 1 Solution
First, we need to find a complete sufficient statistic.
|
Let Xj,---, X, be a random sample from a population with pdf fx(20) = 2—0](\z| < 0)
1
flz|f) = — —-0<z<0,0>0 1
Find, if one exists, a best unbiased estimator of 6. .
‘ Let T(X) = max; | X;|, then fr(0) = ”ten I0<t<0)
Strategy to solve the problem Ho(T)] — O ntn=lg(?) G0
= Can we use the Cramer-Rao bound? No, because the g —Jo on a
interchangeability condition does not hold 0 .
n—
= Then, can we use complete sufficient statistics? /0 t"g(tydt = 0
@ Find a complete sufficient statistic 7. gr—1 @) =
@ For a trivial unbiased estimator of 6, and compute ¢(7) = E[W|T] or g N
© Make a function ¢(7) such that E[¢(T)] = 6. g(0) =

A\

Therefore the family of T is complete.
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Solution

We need to make a ¢(T) such that E[p(T)] = 6.

First, let's see what the expectation of T is

nt"_l

[%
on) = [

0
-
n
= 0
n+1

nt"
—dt
gn

dt

o(T) = han is an unbiased estimator and a function of a complete

sufficient statistic.

Therefore, ¢(T) is the best unbiased estimator by Theorem 7.3.23.
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Practice Problem 2

Let Xi,- -, Xut1 be the iid Bernoulli(p), and define the function h(p) by
hp) = Pr (Z Xi > Xpy1

=1

p

the probability that the first n observations exceed the (n+ 1)st.
@ Show that

W(Xy, - Xpp1) = I(ZXi

=1

is an unbiased estimator of A(p).

@® Find the best unbiased estimator of A(p).

> Xn—i—l)
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Solution for (a)

= Z I (i X; > Xn+1> Pr(x)
X

=1

= Z Pr(x)

Z?:l Xi>Xnt1

n
= Pr (Z X;> Xnp1

=1

Therefore T'is an unbiased estimator of A(p).
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Solution for (b)

T= ﬁ Z?:J“ll X; is complete sufficient statistic for p.

(1) = E[WIT=Pr(W=1[T)

n
= Pr (Z X; > Xn_|_1|

=1

If T=0, then Z?:l Xi=Xnn1
If T=1, then
= Pr(>  Xi=1> X1 =0)=n/(n+1)
= Pr(3 X =0< X,y =1)=1/(n+1)
If T=2 then

)

s Pr(Y X =2> X1 =0)=(2)/("T) =(n—1)/(n+1)

f Pr(Y Xi= 1= Xy = 1) =2/(n+ 1)
If T>2, then Y0 X;>2> 1> X,y
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Solution for (b) (cont’d)

Therefore, the best unbiased estimator is

(1) = <ZX > Xn|T

=1

n/(n+1)
(n—1)/(n+1)

0 T=
T
T
1 T

Hyun Min Kang

(a) Posterior distribution of ¢

April 16th, 2013

fix,0) = m(0)f(x|0)m(0)

- gt T e (o)

_ Waa—le—men exp (—ez:;x>

— Waa%—l exp [—9 (1/5 + é %)]
m(0]x) = Gamma (a +n-1, m)

Hyun Min Kang
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Practice Problem 3

Problem

Suppose X1, -, X, are iid samples from f(z|0) = 0 exp(—6z). Suppose
the prior distribution of 6 is
1
9) = go—1,-0/8
"0 = Tt

where «, 5 are known.
(a) Derive the posterior distribution of 6.

(b) If we use the loss function L(6, a) =
estimator for 67

(a — 0)%, what is the Bayes rule
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(b) Bayes' rule estimator with squared error loss

Bayes' rule estimator with squared error loss is posterior mean. Note that
the mean of Gamma(a, ) is af.

W(e’X) = Gamma (Oz+n— 1,@)
Elf]x] = E[r(0]x)]

B a+n—1

BT Y m
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Summary

= E-M Algorithm

= Practice Problems for the Final Exam

Next Lectures

= Bayesian Tests
= Bayesian Intervals

= More practice problems

A\
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