Biostatistics 602 - Statistical Inference Lecture 24 E-M Algorithm & Practice Examples

Hyun Min Kang

April 16th, 2013

Last Lecture

- What is an interval estimator?
- What is the coverage probability, confidence coefficient, and confidence interval?
- How can a 1α confidence interval typically be constructed?
- To obtain a lower-bounded (upper-tail) CI, whose acceptance region of a test should be inverted?
 - (a) $H_0: \theta = \theta_0 \text{ vs } H_0: \theta > \theta_0$
 - (b) $H_0: \theta = \theta_0 \text{ vs } H_0: \theta < \theta_0$

	11) 411 11111 114116	2.03141.31.03 002	20000.0 2 .	7 (p) () ±	2 7 0
Recap	E-M	P1	P2	P3	Summary
00000	0000000000000	000 000			

Interval Estimation

 $\hat{\theta}(\mathbf{X})$ is usually represented as a point estimator

Interval Estimator

Let $[L(\mathbf{X}),\,U(\mathbf{X})]$, where $L(\mathbf{X})$ and $U(\mathbf{X})$ are functions of sample \mathbf{X} and $L(\mathbf{X}) \leq U(\mathbf{X})$. Based on the observed sample \mathbf{x} , we can make an inference that

$$\theta \in [L(\mathbf{X}), U(\mathbf{X})]$$

Then we call $[L(\mathbf{X}), U(\mathbf{X})]$ an interval estimator of θ .

Three types of intervals

- Two-sided interval $[L(\mathbf{X}), U(\mathbf{X})]$
- One-sided (with lower-bound) interval $[L(\mathbf{X}), \infty)$
- One-sided (with upper-bound) interval $(-\infty, U(\mathbf{X})]$

,				<u> </u>	, ,
Recap 00●00	E-M 000000000000000	P1 000	P2 0000	P3 000	Summary O

Definitions

Definition: Coverage Probability

Given an interval estimator $[L(\mathbf{X}),\,U(\mathbf{X})]$ of θ , its coverage probability is defined as

$$\Pr(\theta \in [L(\mathbf{X}), U(\mathbf{X})])$$

In other words, the probability of a random variable in interval $[L(\mathbf{X}),\,U(\mathbf{X})]$ covers the parameter $\theta.$

Definition: Confidence Coefficient

Confidence coefficient is defined as

$$\inf_{\theta \in \Omega} \Pr(\theta \in [L(\mathbf{X}), \mathit{U}(\mathbf{X})])$$

Hyun Min Kang Biostatistics 602 - Lecture 24

April 16th, 2013 3 / 33 Hy

Hyun Min Kang

Biostatistics 602 - Lecture 24

April 16th, 2013

Definitions

Definition: Confidence Interval

Given an interval estimator $[L(\mathbf{X}), U(\mathbf{X})]$ of θ , if its confidence coefficient is $1 - \alpha$, we call it a $(1 - \alpha)$ confidence interval

Definition: Expected Length

Given an interval estimator $[L(\mathbf{X}),\,U(\mathbf{X})]$ of θ , its *expected length* is defined as

$$E[U(\mathbf{X}) - L(\mathbf{X})]$$

where **X** are random samples from $f_{\mathbf{X}}(\mathbf{x}|\theta)$. In other words, it is the average length of the interval estimator.

There is no guarantee that the confidence set obtained from Theorem 9.2.2 is an interval, but quite often

Confidence set and confidence interval

- **1** To obtain (1α) two-sided CI $[L(\mathbf{X}), U(\mathbf{X})]$, we invert the acceptance region of a level α test for $H_0: \theta = \theta_0$ vs. $H_1: \theta \neq \theta_0$
- ② To obtain a lower-bounded CI $[L(\mathbf{X}), \infty)$, then we invert the acceptance region of a test for $H_0: \theta = \theta_0$ vs. $H_1: \theta > \theta_0$, where $\Omega = \{\theta: \theta \geq \theta_0\}$.
- 3 To obtain a upper-bounded CI $(-\infty, U(\mathbf{X})]$, then we invert the acceptance region of a test for $H_0: \theta = \theta_0$ vs. $H_1: \theta < \theta_0$, where $\Omega = \{\theta: \theta \leq \theta_0\}$.

Ну	ın Min Kang	Biostatistics 602 - Lectu	ire 24	April 16th	, 2013 5 / 3
Recap	E-M	P1	P2	P3	Summary
	•00000000000000				

Typical strategies for finding MLEs

- ① Write the joint (log-)likelihood function, $L(\theta|\mathbf{x}) = f_{\mathbf{X}}(\mathbf{x}|\theta)$.
- 2 Find candidates that makes first order derivative to be zero
- 3 Check second-order derivative to check local maximum.
 - (a) For one-dimensional parameter, negative second order derivative implies local maximum.
- 4 Check boundary points to see whether boundary gives global maximum.

Example: A mixture distribution

Hyun Min Kang

Hyun Min Kang Biostatistics 602 - Lecture 24 April 16th, 2013 7 / 3.

A general mixture distribution

$$f(x|\pi,\phi,\eta) = \sum_{i=1}^{k} \pi_i f(x;\phi_i,\eta)$$

- x observed data
- π mixture proportion of each component
- f the probability density function
- ϕ parameters specific to each component
- $\boldsymbol{\eta}$ parameters shared among components
- k number of mixture components

MLE Problem for mixture of normals

Problem

$$f(x|\theta = (\pi, \mu, \sigma^2)) = \sum_{i=1}^k p_i f_i(x|\mu_i, \sigma_i^2)$$

$$f_i(x|\mu_i, \sigma_i^2) = \frac{1}{\sqrt{2\pi\sigma_i^2}} \exp\left[-\frac{(x-\mu_i)^2}{2\sigma_i^2}\right]$$

$$\sum_{i=1}^n \pi_i = 1$$

Find MLEs for $\theta = (\pi, \mu, \sigma^2)$.

	nyun iviin Kang	DIOSTATISTICS 002 - Le	ecture 24	April 16th	, 2013 9/3
Recap 00000	E-M 0000●00000000	P1 000 000	P2 0000	P3 000	Summary O

Solution when k=1

$$f(x|\theta) = \sum_{i=1}^{k} p_i f_i(x|\mu_i, \sigma_i^2)$$

- $\pi = \pi_1 = 1$
- $\mu = \mu_1 = \overline{x}$
- $\sigma^2 = \sigma_1^2 = \sum_{i=1}^n (x_i \overline{x})^2 / n$

Hyun Min Kang Biostatistics 602 - Lecture 24 April 16th, 2013 10 / 3 Recap 00000 E-M 00000 P1 00000 P2 0000 P3 0000 Summary 000

Incomplete data problem when k > 1

$$f(\mathbf{x}|\theta) = \prod_{i=1}^{n} \left[\sum_{j=1}^{k} p_i f_i(x_i|\mu_j, \sigma_j^2) \right]$$

The MLE solution is not analytically tractable, because it involves multiple sums of exponential functions.

 Hyun Min Kang
 Biostatistics 602 - Lecture 24
 April 16th, 2013
 11 / 33
 Hyun Min Kang
 Biostatistics 602 - Lecture 24
 April 16th, 2013
 12 / 33

Converting to a complete data problem

Let $z_i \in \{1, \dots, k\}$ denote the source distribution where each x_i was sampled from.

$$f(\mathbf{x}|\mathbf{z},\theta) = \prod_{i=1}^{n} \left[\sum_{j=1}^{k} I(z_{i} = j) f_{i}(x_{i}|\mu_{j}, \sigma_{j}^{2}) \right] = \prod_{i=1}^{n} f_{i}(x_{i}|\mu_{z_{i}}, \sigma_{z_{i}}^{2})$$

$$\hat{\pi}_{i} = \frac{\sum_{i=1}^{n} I(z_{i} = i)}{n}$$

$$\hat{\mu}_{i} = \frac{\sum_{i=1}^{n} I(z_{i} = i) x_{i}}{\sum_{i=1}^{n} I(z_{i} = i)}$$

$$\hat{\sigma}_{i}^{2} = \frac{\sum_{i=1}^{n} I(z_{i} = i) (x_{i} - \hat{\mu}_{i})^{2}}{\sum_{i=1}^{n} I(z_{i} = i)}$$

The MLE solution is analytically tractable, if **z** is known.

Hyun Min Kang Biostatistics 602 - Lecture 24 April 16th, 2013 13 / 3 Recap 00000 E-M 00000 P1 00000 P2 0000 P3 0000 Summary 0000

Overview of E-M Algorithm

Basic Structure

- y is observed (or incomplete) data
- z is missing (or augmented) data
- $\mathbf{x} = (\mathbf{y}, \mathbf{z})$ is complete data

Complete and incomplete data likelihood

- Complete data likelihood : $f(\mathbf{x}|\theta) = f(\mathbf{y}, \mathbf{z}|\theta)$
- Incomplete data likelihood : $g(\mathbf{y}|\theta) = \int f(\mathbf{y},\mathbf{z}|\theta)\,d\mathbf{z}$

We are interested in MLE for $L(\theta|\mathbf{y}) = g(\mathbf{y}|\theta)$.

E-M Algorithm

E-M (Expectation-Maximization) algorithm is

- A procedure for typically solving for the MLE.
- Guaranteed to converge the MLE (!)
- Particularly suited to the "missing data" problems where analytic solution of MLE is not tractable

The algorithm was derived and used in various special cases by a number of authors, but it was not identified as a general algorithm until the seminal paper by Dempster, Laird, and Rubin in Journal of Royal Statistical Society Series B (1977).

Hyun Min Kang	Biostatistics 602 - Lecture 24	April 16th, 2013 14 / 33
Recap E-M 00000 00000000000000000000000000000	P1 P2	P3 Summary 00 00 0

Maximizing incomplete data likelihood

$$\begin{array}{rcl} L(\theta|\mathbf{y},\mathbf{z}) & = & f(\mathbf{y},\mathbf{z}|\theta) \\ L(\theta|\mathbf{y}) & = & g(\mathbf{y}|\theta) \\ k(\mathbf{z}|\theta,\mathbf{y}) & = & \frac{f(\mathbf{y},\mathbf{z}|\theta)}{g(\mathbf{y}|\theta)} \\ \log L(\theta|\mathbf{y}) & = & \log L(\theta|\mathbf{y},\mathbf{z}) - \log k(\mathbf{z}|\theta,\mathbf{y}) \end{array}$$

Because \mathbf{z} is missing data, we replace the right side with its expectation under $k(\mathbf{z}|\theta',\mathbf{y})$, creating the new identity

$$\log L(\theta|\mathbf{y}) = \mathrm{E} \left[\log L(\theta|\mathbf{y}, \mathbf{Z}) | \theta', \mathbf{y} \right] - \mathrm{E} \left[\log k(\mathbf{Z}|\theta, \mathbf{y}) | \theta', \mathbf{y} \right]$$

Iteratively maximizing the first term in the right-hand side results in E-M algorithm.

Hyun Min Kang Biostatistics 602 - Lecture 24 April 16th, 2013 15 / 33 Hy

Hyun Min Kang Biostatistics 602 - Lecture 24

April 16th, 2013 16 / 33

Overview of E-M Algorithm (cont'd)

Objective

- Maximize $L(\theta|\mathbf{y})$ or $l(\theta|\mathbf{y})$.
- Let $f(\mathbf{y}, \mathbf{z}|\theta)$ denotes the pdf of complete data. In E-M algorithm, rather than working with $l(\theta|\mathbf{y})$ directly, we work with the surrogate function

$$Q(\theta|\theta^{(r)}) = \mathbb{E}\left[\log f(\mathbf{y}, \mathbf{Z}|\theta)|\mathbf{y}, \theta^{(r)}\right]$$

where $\theta^{(r)}$ is the estimation of θ in r-th iteration.

• $Q(\theta|\theta^{(r)})$ is the expected log-likelihood of complete data, conditioning on the observed data and $\theta^{(r)}$.

Hyun Min Kang Biostatistics 602 - Lecture 24 April 16th, 2013 17 / 33 E-M P1 P2 P3 Summary

E-M algorithm for mixture of normals

E-step

Hyun Min Kang

$$Q(\theta|\theta^{(r)}) = \operatorname{E}\left[\log f(\mathbf{y}, \mathbf{Z}|\theta)|\mathbf{y}, \theta^{(r)}\right]$$

$$= \sum_{\mathbf{z}} k(\mathbf{z}|\theta^{(r)}, \mathbf{y}) \log f(\mathbf{y}, \mathbf{z}|\theta)$$

$$= \sum_{i=1}^{n} \sum_{z_{i}=1}^{k} k(z_{i}|\theta^{(r)}, y_{i}) \log f(y_{i}, z_{i}|\theta)$$

$$= \sum_{i=1}^{n} \sum_{z_{i}=1}^{k} \frac{f(y_{i}, z_{i}|\theta^{(r)})}{g(y_{i}|\theta^{(r)})} \log f(y_{i}, z_{i}|\theta)$$

$$y_{i}, z_{i}|\theta \sim \mathcal{N}(\mu_{z_{i}}, \sigma_{z_{i}}^{2})$$

$$g(y_{i}|\theta) = \sum_{j=1}^{k} \pi_{i} f(y_{i}, z_{i} = j|\theta)$$

Biostatistics 602 - Lecture 24

Key Steps of E-M algorithm

Expectation Step

- Compute $Q(\theta|\theta^{(r)})$.
- This typically involves in estimating the conditional distribution $\mathbf{Z}|\mathbf{Y}$, assuming $\theta = \theta^{(r)}$.
- After computing $Q(\theta|\theta^{(r)})$, move to the M-step

Maximization Step

- Maximize $Q(\theta|\theta^{(r)})$ with respect to θ .
- The $\arg\max_{\theta} Q(\theta|\theta^{(r)})$ will be the (r+1)-th θ to be fed into the E-step.
- Repeat E-step until convergence

Recap E-M P1 P2 P3 Summary	пу	un iviin Kang	Biostatistics 602 - Lectu	re 24	April 10th, 2013	16 / 33
		E-M 0000000000000000	P1 000	P2 0000		Summary O

E-M algorithm for mixture of normals (cont'd)

M-step

19 / 33

April 16th, 2013

$$\begin{split} Q(\theta|\theta^{(r)}) &= \sum_{i=1}^{n} \sum_{z_{i}=1}^{k} \frac{f(y_{i}, z_{i}|\theta^{(r)})}{g(y_{i}|\theta^{(r)})} \log f(y_{i}, z_{i}|\theta) \\ \pi_{j}^{(r+1)} &= \frac{1}{n} \sum_{i=1}^{n} k(z_{i} = j|y_{i}, \theta^{(r)}) = \frac{1}{n} \frac{f(y_{i}, z_{i} = j|\theta^{(r)})}{g(y_{i}|\theta^{(r)})} \\ \mu_{j}^{(r+1)} &= \frac{\sum_{i=1}^{n} x_{i}k(z_{i} = j|y_{i}, \theta^{(r)})}{k(z_{i} = j|y_{i}, \theta^{(r)})} = \frac{\sum_{i=1}^{n} x_{i}k(z_{i} = j|y_{i}, \theta^{(r)})}{n\pi_{j}^{(r+1)}} \\ \sigma_{j}^{2,(r+1)} &= \frac{\sum_{i=1}^{n} (x_{i} - \mu_{j}^{(r+1)})^{2}k(z_{i} = j|y_{i}, \theta^{(r)})}{k(z_{i} = j|y_{i}, \theta^{(r)})} \\ &= \frac{\sum_{i=1}^{n} (x_{i} - \mu_{j}^{(r+1)})^{2}k(z_{i} = j|y_{i}, \theta^{(r)})}{n\pi_{j}^{(r+1)}} \end{split}$$

Does E-M iteration converge to MLE?

Theorem 7.2.20 - Monotonic EM sequence

The sequence $\{\hat{\theta}^{(r)}\}$ defined by the E-M procedure satisfies

$$L\left(\hat{ heta}^{(r+1)}|\mathbf{y}
ight) \geq L\left(\hat{ heta}^{(r)}|\mathbf{y}
ight)$$

with equality holding if and only if successive iterations yield the same value of the maximized expected complete-data log likelihood, that is

$$E\left[\log L\left(\hat{\theta}^{(r+1)}|\mathbf{y},\mathbf{Z}\right)|\hat{\theta}^{(r)},\mathbf{y}\right] = E\left[\log L\left(\hat{\theta}^{(r)}|\mathbf{y},\mathbf{Z}\right)|\hat{\theta}^{(r)},\mathbf{y}\right]$$

Theorem 7.5.2 further guarantees that $L(\hat{\theta}^{(r)}|\mathbf{y})$ converges monotonically to $L(\hat{\theta}|\mathbf{y})$ for some stationary point $\hat{\theta}$.

H	yun Min Kang	Biostatistics 602 - Lect	ure 24	April 16th, 2013	21 / 33
Recap	E-M	P1	P2	P3	Summary
00000	000000000000000	•00	0000	000	0

Practice Problem 1

Problem

Let X_1, \dots, X_n be a random sample from a population with pdf

$$f(x|\theta) = \frac{1}{2\theta}$$
 $-\theta < x < \theta, \ \theta > 0$

Find, if one exists, a best unbiased estimator of θ .

Strategy to solve the problem

- Can we use the Cramer-Rao bound? No, because the interchangeability condition does not hold
- Then, can we use complete sufficient statistics?
 - $oldsymbol{1}$ Find a complete sufficient statistic T.
 - **2** For a trivial unbiased estimator of θ , and compute $\phi(T) = \mathbb{E}[W|T]$ or
 - **3** Make a function $\phi(T)$ such that $E[\phi(T)] = \theta$.

A working example (from BIOSTAT615/815 Fall 2012)

Example Data (n=1,500)

Running example of implemented software

user@host~/> ./mixEM ./mix.dat

Maximum log-likelihood = 3043.46, at pi = (0.667842, 0.332158)

between N(-0.0299457,1.00791) and N(5.0128,0.913825)

	Tiyuli Willi Kalig	Diostatistics 002 - 1	Lecture 24	April 10th, 2013	22 / 33
сар	E-M	P1	P2	P3	Summary
0000		000 000			0

Solution

First, we need to find a complete sufficient statistic.

$$f_X(x|\theta) = \frac{1}{2\theta}I(|x| < \theta)$$

$$f_X(\mathbf{x}|\theta) = \frac{1}{(2\theta)^n}I(\max_i |x_i| < \theta)$$

Let $T(\mathbf{X}) = \max_i |X_i|$, then $f_T(t|\theta) = \frac{nt^{n-1}}{\theta^n} I(0 < t < \theta)$

$$E[g(T)] = \int_0^\theta \frac{nt^{n-1}g(t)}{\theta^n} dt = 0$$

$$\int_0^\theta t^{n-1}g(t) dt = 0$$

$$\theta^{n-1}g(\theta) = 0$$

Therefore the family of T is complete.

24 / 33

Solution

We need to make a $\phi(T)$ such that $E[\phi(T)] = \theta$. First, let's see what the expectation of T is

$$E[g(T)] = \int_0^\theta t \frac{nt^{n-1}}{\theta^n} dt$$
$$= \int_0^\theta \frac{nt^n}{\theta^n} dt$$
$$= \frac{n}{n+1} \theta$$

 $\phi(T) = \frac{n+1}{n}T$ is an unbiased estimator and a function of a complete sufficient statistic.

Therefore, $\phi(T)$ is the best unbiased estimator by Theorem 7.3.23.

Hyun Min Kang

Solution for (a)

$$E[W] = \sum_{\mathbf{X}} W(\mathbf{X}) \operatorname{Pr}(\mathbf{X})$$

$$= \sum_{\mathbf{X}} I\left(\sum_{i=1}^{n} X_{i} > X_{n+1}\right) \operatorname{Pr}(\mathbf{x})$$

$$= \sum_{\sum_{i=1}^{n} X_{i} > X_{n+1}} \operatorname{Pr}(\mathbf{x})$$

$$= \operatorname{Pr}\left(\sum_{i=1}^{n} X_{i} > X_{n+1}\right) = h(p)$$

Therefore T is an unbiased estimator of h(p).

Practice Problem 2

Problem

Let X_1, \dots, X_{n+1} be the iid Bernoulli(p), and define the function h(p) by

$$h(p) = \Pr\left(\sum_{i=1}^{n} X_i > X_{n+1} \middle| p\right)$$

the probability that the first n observations exceed the (n+1)st.

Show that

$$W(X_1, \dots, X_{n+1}) = I\left(\sum_{i=1}^{n} X_i > X_{n+1}\right)$$

is an unbiased estimator of h(p).

2 Find the best unbiased estimator of h(p).

	Tiyun Wiin Kang	Diostatistics 002	Lecture 24	April 1	otii, 2013 20 / 33
Recap 20000	E-M 000000000000	P1 000	P2 00●0	P3 000	Summary O

Solution for (b)

 $T = \frac{1}{n+1} \sum_{i=1}^{n+1} X_i$ is complete sufficient statistic for p.

$$\phi(T) = E[W|T] = \Pr(W = 1|T)$$

$$= \Pr\left(\sum_{i=1}^{n} X_i > X_{n+1}|T\right)$$

- If T = 0, then $\sum_{i=1}^{n} X_i = X_{n+1}$
- If T=1, then
 - $\Pr(\sum_{i=1}^{n} X_i = 1 > X_{n+1} = 0) = n/(n+1)$ $\Pr(\sum_{i=1}^{n} X_i = 0 < X_{n+1} = 1) = 1/(n+1)$
- If T=2 then
 - $\Pr(\sum_{i=1}^{n} X_i = 2 > X_{n+1} = 0) = \binom{n}{2} / \binom{n+1}{2} = (n-1)/(n+1)$ $\Pr(\sum_{i=1}^{n} X_i = 1 = X_{n+1} = 1) = 2/(n+1)$
- If T > 2, then $\sum_{i=1}^{n} X_i \ge 2 > 1 \ge X_{n+1}$

28 / 33

 Recap
 E-M
 P1
 P2
 P3
 Summary

 0000
 0000
 000
 000
 0
 0

Solution for (b) (cont'd)

Therefore, the best unbiased estimator is

$$\phi(T) = \Pr\left(\sum_{i=1}^{n} X_i > X_{n+1} | T\right)$$

$$= \begin{cases} 0 & T = 0\\ n/(n+1) & T = 1\\ (n-1)/(n+1) & T = 2\\ 1 & T \ge 3 \end{cases}$$

Hyun Min Kang Biostatistics 602 - Lecture 24 April 16th, 2013 29 / 33

(a) Posterior distribution of θ

$$f(\mathbf{x}, \theta) = \pi(\theta) f(\mathbf{x}|\theta) \pi(\theta)$$

$$= \frac{1}{\Gamma(\alpha)\beta^{\alpha}} \theta^{\alpha-1} e^{-\theta/\beta} \prod_{i=1}^{n} \left[\theta \exp\left(-\theta x_{i}\right)\right]$$

$$= \frac{1}{\Gamma(\alpha)\beta^{\alpha}} \theta^{\alpha-1} e^{-\theta/\beta} \theta^{n} \exp\left(-\theta \sum_{i=1}^{n} x_{i}\right)$$

$$= \frac{1}{\Gamma(\alpha)\beta^{\alpha}} \theta^{\alpha+n-1} \exp\left[-\theta \left(1/\beta + \sum_{i=1}^{n} x_{i}\right)\right]$$

$$\propto \operatorname{Gamma}\left(\alpha + n - 1, \frac{1}{\beta^{-1} + \sum_{i=1}^{n} x_{i}}\right)$$

$$\pi(\theta|\mathbf{x}) = \operatorname{Gamma}\left(\alpha + n - 1, \frac{1}{\beta^{-1} + \sum_{i=1}^{n} x_{i}}\right)$$

ooooc

E-M 00000000000000000

1

2

P3 ●00 Sumn

Practice Problem 3

Problem

Suppose X_1, \dots, X_n are iid samples from $f(x|\theta) = \theta \exp(-\theta x)$. Suppose the prior distribution of θ is

$$\pi(\theta) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} \theta^{\alpha-1} e^{-\theta/\beta}$$

where α, β are known.

- (a) Derive the posterior distribution of θ .
- (b) If we use the loss function $L(\theta, a) = (a \theta)^2$, what is the Bayes rule estimator for θ ?

(b) Bayes' rule estimator with squared error loss

Bayes' rule estimator with squared error loss is posterior mean. Note that the mean of $\operatorname{Gamma}(\alpha, \beta)$ is $\alpha\beta$.

$$\pi(\theta|\mathbf{x}) = \operatorname{Gamma}\left(\alpha + n - 1, \frac{1}{\beta^{-1} + \sum_{i=1}^{n} x_i}\right)$$

$$E[\theta|\mathbf{x}] = E[\pi(\theta|\mathbf{x})]$$

$$= \frac{\alpha + n - 1}{\beta^{-1} + \sum_{i=1}^{n} x_i}$$

Hyun Min Kang Biostatistics 602 - Lecture 24

e 24

April 16th, 2013

Hyun Min Kang

Biostatistics 602 - Lecture 24

April 16th, 2013

More practice problems

Hyun Min Kang Biostatistics 602 - Lecture 24 April 16th, 2013 33 / 33