Coalescent Modeling for Distributions of Alleles

Biostatistics 666

Last Lecture: Introduction to the Coalescent

- Coalescent approach
 - Proceed backwards through time.
 - Model the genealogy of sample of sequences.

Infinite sites model

- All mutations distinguishable.
- No reverse mutation.

Some key ideas ...

- Probability of coalescence events
- Length of genealogy and its branches
- Expected number of mutations
- Parameter θ which combines population size and mutation rate

Building Blocks...

 Probability of sampling distinct ancestors for *n* sequences

$$P(n) = \prod_{i=1}^{n-1} \left(1 - \frac{i}{N} \right) \approx 1 - \frac{\binom{n}{2}}{N}$$

 Coalescence time t is approximately exponentially distributed

Some Key Results...

• Coalescence Time (population size units) $E(T_j) = 1/\binom{j}{2}$

Total Tree Length (population size units)

$$E(T_{tot}) = \sum_{i=1}^{n-1} \frac{2}{i}$$

Some More Key Results ...

Expected Number of Polymorphisms

For a diploid sample

$$E(S) = 4N\mu \sum_{i=1}^{n-1} 1/i = \theta \sum_{i=1}^{n-1} 1/i$$

For an haploid sample

$$E(S) = 2N\mu \sum_{i=1}^{n-1} 1/i = \theta \sum_{i=1}^{n-1} 1/i$$

Estimating θ

- Number of variants S can be used to estimate θ
 - Expected S is simply $\theta E(T_{tot})$
 - To estimate θ, divide by S expected length of genealogy

$$\hat{\theta} = \frac{S}{\sum_{i=1}^{n-1} 1/i}$$

- Could then be used to:
 - Estimate N, if mutation rate μ is known
 - Estimate μ, if population size N is known

Alternative Estimator for θ ...

 Count pairwise differences between sequences

Compute average number of differences

$$\widetilde{\theta} = \binom{n}{2}^{-1} \sum_{i=1}^{n} \sum_{j=i+1}^{n} S_{ij}$$

Var($\hat{\boldsymbol{\theta}}$) as a function of *n*

Var($\hat{\boldsymbol{\theta}}$) as a function of *n*

Today ...

More applications of the coalescent

Predicting allele frequency distributions Using simulations

Using simulations

Modeling the distribution of S

Using analytical calculations

A Coalescent Simulation ...

Let's consider tracing the ancestry of 4 sequences

When n = 4

Probability of Coalescent Event

$$P(4) \approx \binom{4}{2} / 2N$$

Time to Next Coalescent Event

$$T(4) \approx 2N / \binom{4}{2}$$

Sample time from exponential distribution

Pick two sequences at random to coalesce

Next n = 3 ...

Let's assume that sequences 3 and 4 are selected ...

Then, we repeat the process for a sample of 3 sequences

Next n = 2 ...

Let's assume that sequences 1 and 2 are selected to coalesce

Then, we repeat the process for a sample of 2 sequences

The Simulated Coalescent

A Coalescent Simulation ...

A Coalescent Simulation ...

Frequency Spectrum

 Repeating the simulation multiple times, would give us a predicted mutation spectrum.

Frequency Spectrum (n = 10)

Frequency Spectrum (n = 100)

Frequency Spectrum

- Constant size population
- Exponentially growing population

Most variants are rare

- For n = 100, ~44% of variants occur < 5/100.</p>
- For n = 10, ~35% of variants observed once.

Mutation Spectrum

Depends on genealogy

- Population Size
- Population Growth
- Population Subdivision
- Does not depend on
 - Mutation rate!

Deviations from Neutral Spectrum

- When would you expect deviations from the spectra we described?
- What would you expect for ...
 - A rapidly growing population?
 - A population whose size is decreasing?
- Why?

Effect of Polymorphism Type

Frequency Spectrum of Protein Altering Variants

Exome Chip Consortium (2011)

Number of Mutations

- Can be derived from coalescent tree
 - What are the key features?
- Analytical results possible
 - Trace back in time until MRCA, tracking mutation events

Sample of Two Sequences

- Track coalescences and mutations
 - Probability of a coalescent event?
 - Depends on population size …
 - Probability of a mutation?
 - Depends on mutation rate ...
- Proceed backwards until either occurs...
 - Conditional probability for each outcome?

Two Identical Sequences

$$P_2(S \text{ is } 0) \approx \frac{P_{CA}}{P_{CA} + P_{mut}}$$
$$= \frac{1/2N}{1/2N + 2\mu}$$
$$= \frac{1}{1+\theta}$$

Full distribution of S...

Probability that first *j* events are mutations...

$P_2(j) = \left(\frac{\theta}{1+\theta}\right)^j \left(\frac{1}{1+\theta}\right)^j$

Example...

- 2 sequences
- Population size N = 25,000
- Mutation rate $\mu = 10^{-5}$

Probability of 0, 1, 2, 3... mutations

And for multiple sequences...

 Describe number of mutations until the next coalescence event

- Proceed back in time, until:
 - One of *n* sequences mutates...
 - A coalescent event occurs...
 - Then track mutations in (n-1) sequences

Formulae ...

Example...

- 3 sequences
- Population size N = 25,000
- Mutation rate $\mu = 10^{-5}$

Probability of 0, 1, 2, 3... mutations

Number of Mutations

So far ...

One homogeneous population

- Coalescence times
- Number of mutations
 - Expectation
 - Distribution
- Spectrum of mutations
- Several assumptions, including ...
 - No recombination

Next: Models w/ Recombination

- No recombination
 - Single genealogy
- Free recombination
 - Two independent genealogies
 - Same population history
- Intermediate case
 - Correlated genealogies

Recommended Reading

Richard R. Hudson (1990)

Gene genealogies and the coalescent process

Oxford Surveys in Evolutionary Biology, Vol. 7. D. Futuyma and J. Antonovics (Eds). Oxford University Press, New York.