Biostatistics 615/815 Lecture 10: Hidden Markov Models

Invited Lecturer: Goo Jun

October 11th, 2011

Graphical Model 101

Graphical Models

- Graphical model is marriage between probability theory and graph theory (Michiael I. Jordan)
- Each random variable is represented as vertex
- Dependency between random variables is modeled as edge
 - Directed edge : conditional distribution
 - Undirected edge : joint distribution
- Unconnected pair of vertices (without path from one to another) is independent
- An effective tool to represent complex structure of dependence / independence between random variables.

An example graphical model

Graphical Models

00000000

Are H and P independent?

An example graphical model

Graphical Models

00000000

- Are H and P independent?
- Are H and P independent given S?

Example probability distribution

Pr(H)

Graphical Models

00000000

Value (H)	Description (H)	Pr(H)
0	Low	0.3
1	High	0.7

$\Pr(\overline{S|H)}$

S	Description (S)	Н	Description (H)	Pr(S H)
0	Cloudy	0	Low	0.7
1	Sunny	0	Low	0.3
0	Cloudy	1	High	0.1
1	Sunny	1	High	0.9

Probability distribution (cont'd)

Pr(P|S)

Graphical Models

000000000

Р	Description (P)	S	Description (S)	$\Pr(P S)$
0	Absent	0	Cloudy	0.5
1	Present	0	Cloudy	0.5
0	Absent	1	Sunny	0.1
1	Present	1	Sunny	0.9

Markov Process HMM Forward-backward Viterbi Summary

Full joint distribution

Pr(H, S, P)

Graphical Models

000000000

Н	S	Р	$\Pr(H, S, P)$
0	0	0	0.105
0	0	1	0.105
0	1	0	0.009
0	1	1	0.081
1	0	0	0.035
1	0	1	0.035
1	1	0	0.063
1	1	1	0.567

- With a full join distribution, any type of inference is possible
- As the number of variables grows, the size of full distribution table increases exponentially

Pr(H, P|S) = Pr(H|S) Pr(P|S)

Pr(H, P|S)

Graphical Models

000000000

Н	Р	S	$\Pr(H, P S)$
0	0	0	0.3750
0	1	0	0.3750
1	0	0	0.1250
1	1	0	0.1250
0	0	1	0.0125
0	1	1	0.1125
1	0	1	0.0875
1	1	1	0.7875

Pr(H|S), Pr(P|S)

Н	S	Pr(H S)	Р	S	Pr(P S)
0	0	0.750	0	0	0.500
1	0	0.250	1	0	0.500
0	1	0.125	0	1	0.100
1	1	0.875	1	1	0.900

Invited Lecturer : Goo Jun

Graphical Models

000000000

H and P are conditionally independent given S

- H and P do not have direct path one from another
- All path from H to P is connected thru S.
- Conditioning on S separates H and P

Graphical Models

000000000

Conditional independence in graphical models

Pr(A, C, D, E|B) = Pr(A|B) Pr(C|B) Pr(D|B) Pr(E|B)

Invited Lecturer: Goo Jun Biostatistics 615/815 - Lecture 11 October 11th, 2011 9 / 32

 Graphical Models
 Markov Process
 HMM
 Forward-backward
 Viterbi
 Summary

 00000000 •
 0000
 000000
 000000
 0
 0
 0

Markov Blanket

- If conditioned on the variables in the gray area (variables with direct dependency), A is independent of all the other nodes.
- $A \perp (U-A-\pi_A)|\pi_A$

Invited Lecturer : Goo Jun

Markov Process : An example

Mathematical representation of a Markov Process

$$\pi = \begin{pmatrix} \Pr(q_1 = S_1 = \mathsf{Sunny}) \\ \Pr(q_1 = S_2 = \mathsf{Cloudy}) \\ \Pr(q_1 = S_3 = \mathsf{Rainy}) \end{pmatrix} = \begin{pmatrix} 0.7 \\ 0.2 \\ 0.1 \end{pmatrix}$$

$$A_{ij} = \Pr(q_{t+1} = S_i | q_t = S_j)$$

$$A = \begin{pmatrix} 0.5 & 0.4 & 0.1 \\ 0.3 & 0.3 & 0.5 \\ 0.2 & 0.3 & 0.4 \end{pmatrix}$$

What is the chance of rain in the day 2?

What is the chance of rain in the day 2?

Markov Process 0000

$$Pr(q_2 = S_3) = (A\pi)_3 = 0.24$$

What is the chance of rain in the day 2?

Markov Process

0000

$$Pr(q_2 = S_3) = (A\pi)_3 = 0.24$$

If it rains today, what is the chance of rain on the day after tomorrow?

What is the chance of rain in the day 2?

$$Pr(q_2 = S_3) = (A\pi)_3 = 0.24$$

If it rains today, what is the chance of rain on the day after tomorrow?

$$\Pr(q_3 = S_3 | q_1 = S_3) = \begin{vmatrix} A^2 & 0 \\ 0 \\ 1 \end{vmatrix} = 0.33$$

What is the chance of rain in the day 2?

$$Pr(q_2 = S_3) = (A\pi)_3 = 0.24$$

If it rains today, what is the chance of rain on the day after tomorrow?

$$\Pr(q_3 = S_3 | q_1 = S_3) = \begin{bmatrix} A^2 & 0 \\ 0 \\ 1 \end{bmatrix} \end{bmatrix}_3 = 0.33$$

Stationary distribution

$$\mathbf{p} = A\mathbf{p} p = (0.346, 0.359, 0.295)^T$$

Markov process is only dependent on the previous state

If it rains today, what is the chance of rain on the day after tomorrow?

$$\Pr(q_3 = S_3 | q_1 = S_3) = \begin{vmatrix} A^2 \begin{pmatrix} 0 \\ 0 \\ 1 \end{vmatrix} \end{vmatrix}_2 = 0.33$$

Markov process is only dependent on the previous state

If it rains today, what is the chance of rain on the day after tomorrow?

$$\Pr(q_3 = S_3 | q_1 = S_3) = \begin{bmatrix} A^2 & 0 \\ 0 \\ 1 \end{bmatrix} = 0.33$$

If it has rained for the past three days, what is the chance of rain on the day after tomorrow?

$$Pr(q_5 = S_3 | q_1 = q_2 = q_3 = S_3) = Pr(q_5 = S_3 | q_3 = S_3) = 0.33$$

HMM

Hidden Markov Models (HMMs)

- A Markov model where actual state is unobserved.
 - Transition between states are probablistically modeled just like the Markov process
- Typically there are observable outputs associated with hidden states
 - The probability distribution of observable outputs given an hidden states can be obtained.

Markov ProcessHMMForward-backwardViterbiSummary0000000000000000

An example of HMM

- Direct Observation : (SUNNY, CLOUDY, RAINY)
- Hidden States : (HIGH, LOW)

States
$$S = \{S_1, S_2\} = (\mathsf{HIGH}, \mathsf{LOW})$$

States
$$S = \{S_1, S_2\} = (\mathsf{HIGH, LOW})$$

Outcomes $O = \{O_1, O_2, O_3\} = (\mathsf{SUNNY, CLOUDY, RAINY})$

States
$$S = \{S_1, S_2\} = (\mathsf{HIGH, LOW})$$

Outcomes $O = \{O_1, O_2, O_3\} = (\mathsf{SUNNY, CLOUDY, RAINY})$
Initial States $\pi_i = \Pr(q_1 = S_i), \ \pi = \{0.7, 0.3\}$

States
$$S = \{S_1, S_2\} = (\mathsf{HIGH, LOW})$$

Outcomes $O = \{O_1, O_2, O_3\} = (\mathsf{SUNNY, CLOUDY, RAINY})$
Initial States $\pi_i = \Pr(q_1 = S_i), \ \pi = \{0.7, 0.3\}$
Transition $A_{ii} = \Pr(q_{t+1} = S_i | q_t = S_i)$

$$A = \left(\begin{array}{cc} 0.8 & 0.4\\ 0.2 & 0.6 \end{array}\right)$$

Emission
$$B_{ij} = b_{q_t}(o_t) = b_{S_j}(O_i) = \Pr(o_t = O_i | q_t = S_j)$$

$$B = \left(\begin{array}{cc} 0.88 & 0.10\\ 0.10 & 0.60\\ 0.02 & 0.30 \end{array}\right)$$

Marginal probability: What is the chance of rain in the day 4?

- Marginal probability: What is the chance of rain in the day 4?
- Conditioned to previous observations: What is the chance of rain in the day 2, if it rained in the day 1?

- Marginal probability: What is the chance of rain in the day 4?
- Conditioned to previous observations: What is the chance of rain in the day 2, if it rained in the day 1?
- Forward-backward algorithms: If the observation was (SUNNY,SUNNY,CLOUDY,RAINY,RAINY) from day 1 through day 5, what is the distribution of hidden states for each day?

- Marginal probability: What is the chance of rain in the day 4?
- Conditioned to previous observations: What is the chance of rain in the day 2, if it rained in the day 1?
- Forward-backward algorithms: If the observation was (SUNNY,SUNNY,CLOUDY,RAINY,RAINY) from day 1 through day
 5, what is the distribution of hidden states for each day?
- Viterbi algorithm: If the observation was (SUNNY,SUNNY,CLOUDY,RAINY,RAINY) from day 1 through day 5, what would be the mostly likely sequence of states?

Unconditional marginal probabilities

What is the chance of rain in the day 4?

$$\mathbf{f}(\mathbf{q}_3) = \begin{pmatrix} \Pr(q_4 = S_1) \\ \Pr(q_4 = S_2) \end{pmatrix} = A^3 \pi = \begin{pmatrix} 0.669 \\ 0.331 \end{pmatrix}$$

$$\mathbf{g}(o_4) = \begin{pmatrix} \Pr(o_4 = O_1) \\ \Pr(o_4 = O_2) \\ \Pr(o_4 = O_3) \end{pmatrix} = B\mathbf{f}(\mathbf{q}_4) = \begin{pmatrix} 0.621 \\ 0.266 \\ 0.233 \end{pmatrix}$$

The chance of rain in day 3 is 23.3%

Marginal likelihood of data in HMM

• Let $\lambda = (A, B, \pi)$

Graphical Models

• For a sequence of observation $\mathbf{o} = \{o_1, \cdots, o_t\}$,

$$\begin{split} & \Pr(\mathbf{o}|\lambda) &= \sum_{\mathbf{q}} \Pr(\mathbf{o}|\mathbf{q},\lambda) \Pr(\mathbf{q}|\lambda) \\ & \Pr(\mathbf{o}|\mathbf{q},\lambda) &= \prod_{i=1}^t \Pr(o_i|q_i,\lambda) = \prod_{i=1}^t b_{q_i}(o_i) \\ & \Pr(\mathbf{q}|\lambda) &= \pi_{q_1} \sum_{i=2}^t a_{q_iq_{i-1}} \\ & \Pr(\mathbf{o}|\lambda) &= \sum_{\mathbf{q}} \pi_{q_1} b_{q_1}(o_{q_1}) \prod_{i=2}^t a_{q_iq_{i-1}} b_{q_i}(o_{q_i}) \end{split}$$

Naive computation of the likelihood

$$\Pr(\mathbf{o}|\lambda) = \sum_{\mathbf{q}} \pi_{q_1} b_{q_1}(o_{q_1}) \prod_{i=2}^t a_{q_i q_{i-1}} b_{q_i}(o_{q_i})$$

- Number of possible $q=2^t$ are exponentially growing with the number of observations
- Computational would be infeasible for large number of observations
- Algorithmic solution required for efficient computation.

- If the observation was (SUNNY,SUNNY,CLOUDY,RAINY)RAINY) from day 1 through day 5, what is the distribution of hidden states for each day?
- Need to know $Pr(q_t|\mathbf{o},\lambda)$

$$\mathbf{q}_{t}^{-} = (q_{1}, \cdots, q_{t-1}), \quad \mathbf{q}_{t}^{+} = (q_{t+1}, \cdots, q_{T})$$

$$\mathbf{o}_{t}^{-} = (o_{1}, \cdots, o_{t-1}), \quad \mathbf{o}_{t}^{+} = (o_{t+1}, \cdots, o_{T})$$

$$\Pr(q_{t} = i | \mathbf{o}, \lambda) = \frac{\Pr(q_{t} = i, \mathbf{o} | \lambda)}{\Pr(\mathbf{o} | \lambda)} = \frac{\Pr(q_{t} = i, \mathbf{o} | \lambda)}{\sum_{j=1}^{n} \Pr(q_{t} = j, \mathbf{o} | \lambda)}$$

$$\Pr(q_{t}, \mathbf{o} | \lambda) = \Pr(q_{t}, \mathbf{o}_{t}^{-}, o_{t}, \mathbf{o}_{t}^{+} | \lambda)$$

$$= \Pr(\mathbf{o}_{t}^{+} | q_{t}, \lambda) \Pr(\mathbf{o}_{t}^{-} | q_{t}, \lambda) \Pr(o_{t} | q_{t}, \lambda) \Pr(q_{t} | \lambda)$$

$$= \Pr(\mathbf{o}_{t}^{+} | q_{t}, \lambda) \Pr(\mathbf{o}_{t}^{-}, o_{t}, q_{t} | \lambda)$$

$$= \beta_{t}(q_{t}) \alpha_{t}(q_{t})$$

If $\alpha_t(q_t)$ and $\beta_t(q_t)$ is known, $\Pr(q_t|\mathbf{o},\lambda)$ can be computed in a linear time.

DP algorithm for calculating forward probability

- Key idea is to use $(q_t, o_t) \perp \mathbf{o}_t^- | \mathbf{q}_{t-1}$.
- Each of q_{t-1} , q_t , and q_{t+1} is a Markov blanket.

$$\alpha_{t}(i) = \Pr(o_{1}, \dots, o_{t}, q_{t} = i | \lambda)$$

$$= \sum_{j=1}^{n} \Pr(\mathbf{o}_{t}^{-}, o_{t}, q_{t-1} = j, q_{t} = i | \lambda)$$

$$= \sum_{j=1}^{n} \Pr(\mathbf{o}_{t}^{-}, q_{t-1} = j | \lambda) \Pr(q_{t} = i | q_{t-1} = j, \lambda) \Pr(o_{t} | q_{t} = i, \lambda)$$

$$= \sum_{j=1}^{n} \alpha_{t-1}(j) a_{ij} b_{i}(o_{t})$$

$$\alpha_{1}(i) = \pi_{i} b_{i}(o_{1})$$

24 / 32

Conditional dependency in forward-backward algorithms

- Forward : $(q_t, o_t) \perp \mathbf{o}_t^- | \mathbf{q}_{t-1}$.
- Backward : $o_{t+1} \perp \mathbf{o}_{t+1}^+ | \mathbf{q}_{t+1}$.

DP algorithm for calculating backward probability

• Key idea is to use $o_{t+1} \perp \mathbf{o}_{t+1}^+ | \mathbf{q}_{t+1}.$

$$\beta_{t}(i) = \Pr(o_{t+1}, \dots, o_{T} | q_{t} = i, \lambda)$$

$$= \sum_{j=1}^{n} \Pr(o_{t+1}, \mathbf{o}_{t+1}^{+}, q_{t+1} = j | q_{t} = i, \lambda)$$

$$= \sum_{j=1}^{n} \Pr(o_{t+1} | q_{t+1}, \lambda) \Pr(\mathbf{o}_{t+1}^{+} | q_{t+1} = j, \lambda) \Pr(q_{t+1} = j | q_{t} = i, \lambda)$$

$$= \sum_{j=1}^{n} \beta_{t+1}(j) a_{ji} b_{j}(o_{t+1})$$

$$\beta_{T}(i) = 1$$

Putting forward and backward probabilities together

Conditional probability of states given data

$$\Pr(q_t = i | \mathbf{o}, \lambda) = \frac{\Pr(\mathbf{o}, q_t = S_i | \lambda)}{\sum_{j=1}^n \Pr(\mathbf{o}, q_t = S_j | \lambda)}$$
$$= \frac{\alpha_t(i)\beta_t(i)}{\sum_{j=1}^n \alpha_t(j)\beta_t(j)}$$

• Time complexity is $\Theta(n^2T)$.

Finding the most likely trajectory of hidden states

• Given a series of observations, we want to compute

$$\arg\max_{\mathbf{q}}\Pr(\mathbf{q}|\mathbf{o},\lambda)$$

• Define $\delta_t(i)$ as

$$\delta_t(i) = \max_{\mathbf{q}} \Pr(\mathbf{q}, \mathbf{o} | \lambda)$$

Use dynamic programming algorithm to find the 'most likely' path

The Viterbi algorithm

Initialization
$$\delta_1(i) = \pi b_i(o_1)$$
 for $1 \leq i \leq n$.

Maintenance
$$\delta_t(i) = \max_j \delta_{t-1}(j) a_{ij} b_i(o_t)$$

 $\phi_t(i) = \arg \max_j \delta_{t-1}(j) a_{ij}$

Termination Max likelihood is $\max_i \delta_T(i)$

Optimal path can be backtracked using $\phi_t(i)$

Markov Process HMM Forward-backward **Viterbi Summary** 0000 000000 000000 00000 0

An HMM example

An example Viterbi path

- When observations were (walk, shop, clean)
- Similar to Manhattan tourist problem.

Summary

Today - Hidden Markov Models

- Graphical models and conditional independence
- Forward-backward algorithm
- Viterbi algorithm

Next lectures

Implementations of hidden Markov Models

