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Graphical Models
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Graphical Model 101

= Graphical model is marriage between probability theory and graph
theory (Michiael I. Jordan)
= Each random variable is represented as vertex
= Dependency between random variables is modeled as edge
= Directed edge : conditional distribution
= Undirected edge : joint distribution

= Unconnected pair of vertices (without path from one to another) is
independent

= An effective tool to represent complex structure of dependence /
independence between random variables.
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An example graphical model

H S P
Atmospheric Today'’s Class
Pressure Weather Attendance

Present
/Absent

Pr(H) Pr(S|H) Pr(P|S)

= Are H and P independent?
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An example graphical model

H S P
Atmospheric Today'’s Class
Pressure Weather Attendance

Present
/Absent

Pr(H) Pr(S|H) Pr(P|S)

= Are H and P independent?
* Are H and P independent given S?
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Example probability distribution

Value (H) Description (H) Pr(H)
0 Low 0.3
1 High 0.7

N

Pr(S|H)
S Description (S) H Description (H) Pr(S|H)
0 Cloudy 0 Low 0.7
1 Sunny 0 Low 0.3
0 Cloudy 1 High 0.1
1 Sunny 1 High 0.9

\
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Probability distribution (cont'd)

P Description (P) S Description (S) Pr(P|S)
0 Absent 0 Cloudy 0.5
1 Present 0 Cloudy 0.5
0 Absent 1 Sunny 0.1
1 Present 1 Sunny 0.9
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000080000

Full joint distribution

Pr(H, S, P)

H S P Pr(HS P
0 0 0 0105
0 0 1  0.105
0 1 0  0.009
0 1 1 0081
1 0 0 0035
1 0 1 0035
1 1 0 0063
1 1 1 0567

= With a full join distribution, any type of inference is possible

= As the number of variables grows, the size of full distribution table
increases exponentially
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Pr(H, P|S) : Pr(H|S) Pr(

P8

Summar

H P S Pu(f PS)

0 0 O 0.3750

0 1 O 0.3750

1 0 O 0.1250

1 1 0 0.1250

0 0 1 0.0125

0o 1 1 0.1125

1 0 1 0.0875

1 1 1 0.7875

Pr(H|S), Pr(P|S)

H S Pr(H]9) P S Pr(F)
0 O 0.750 0 O 0.500
1 0 0.250 1 0 0.500
0 1 0.125 0 1 0.100
1 1 0.875 1 1 0.900
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H and P are conditionally independent given S

H S P
Atmospheric Today’s Class
Pressure Weather Attendance

Present

/Absent

Pr(H) Pr(S|H) Pr(P|S)

= H and P do not have direct path one from another
= All path from H to P is connected thru S.
= Conditioning on S separates H and P
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Conditional independence in graphical models

Pr(A)

Pr(B|A)

Pr(C|B) Pr(E|B)

- Pr(4, C, D, E|B) = Pr(A|B) Pr(C|B) Pr(D|B) Pr(E|B)
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Markov Blanket
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= |If conditioned on the variables in the gray area (variables with direct
dependency), A is independent of all the other nodes.
= AL (U—A—my)|ma
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Markov Process : An example
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Mathematical representation of a Markov Process

Pr(¢, = S1 = Sunny) 0.7
T o= Pr(¢, = S2 =Cloudy) | = | 0.2
Pr(¢, = S3 = Rainy) 0.1
Ay = Pr(g = Sila, = 5))
0.5 04 0.1
A = 0.3 0.3 05
0.2 0.3 04
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Example questions in Markov Process

What is the chance of rain in the day 27
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Example questions in Markov Process

What is the chance of rain in the day 27

Pr(g, = S3) = (Am)3 =0.24

Invited Lecturer : Goo Jun Biostatistics 615/815 - Lecture 11 October 11th, 2011 13 / 32



Markov Process
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Example questions in Markov Process

What is the chance of rain in the day 27

Pr(g, = S3) = (Am)3 =0.24

If it rains today, what is the chance of rain on the day after tomorrow?
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Example questions in Markov Process

What is the chance of rain in the day 27

Pr(g, = S3) = (Am)3 =0.24

If it rains today, what is the chance of rain on the day after tomorrow?

Pr(g; = Sslq; = S3) = | A% 0 —0.33

3

Invited Lecturer : Goo Jun Biostatistics 615/815 - Lecture 11 October 11th, 2011 13 / 32



Markov Process
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Example questions in Markov Process

What is the chance of rain in the day 27

Pl"(q2 = 83) = (A?T)g =0.24

If it rains today, what is the chance of rain on the day after tomorrow?

0
Pr(gy = S3)qy = S3) = | A% | © =0.33
1 3
Stationary distribution

p = Ap
= (0.346,0.359,0.295) T
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Markov process is only dependent on the previous state

If it rains today, what is the chance of rain on the day after tomorrow?

Pr(g; = Salq; = S3) = | A% O —0.33

3
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Markov Process
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Markov process is only dependent on the previous state

If it rains today, what is the chance of rain on the day after tomorrow?

Pr(g; = Salq; = S3) = | A% O —0.33

3

If it has rained for the past three days, what is the chance of rain on

the day after tomorrow?

Pr(q5 = SS‘Q1 =042 = (43 = 53) Pr(q5 S3|‘13 53) =0.33
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Hidden Markov Models (HMMs)

= A Markov model where actual state is unobserved
= Transition between states are probablistically modeled just like the
Markov process
= Typically there are observable outputs associated with hidden states

= The probability distribution of observable outputs given an hidden
states can be obtained.
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An example of HMM

0.2
0.8 0.6
HIGH LOW
0.4
0.88 0.10
> Sunny [¢
0.10 0.60
> Cloudy [¢
0.02 i 0.30
> Rainy [¢

= Direct Observation : (SUNNY, CLOUDY, RAINY)
= Hidden States : (HIGH, LOW)
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Mathematical representation of the HMM example

States S= {81, S} = (HIGH, LOW)
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Mathematical representation of the HMM example

States S= {81, S} = (HIGH, LOW)
Outcomes O = {0y, Oz, O3} = (SUNNY, CLOUDY, RAINY)
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Mathematical representation of the HMM example

States S= {1, 5} = (HIGH, LOW)
Outcomes O = {0y, 05, O3} = (SUNNY, CLOUDY, RAINY)
Initial States m; = Pr(q; = S;), # = {0.7,0.3}
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Mathematical representation of the HMM example

States §= {51, S} = (HIGH, LOW)
Outcomes O = {0y, 05, O3} = (SUNNY, CLOUDY, RAINY)
Initial States m; = Pr(q; = S;), # = {0.7,0.3}
Transition Ay = Pr(q, 1 = Sil¢; = S))

0.8 04
A= < 0.2 0.6 >
Emission Bj; = bg,(01) = bs;(0;) = Pr(o; = O4|q, = S})

0.88 0.10
B=1 010 0.60
0.02 0.30

Invited Lecturer : Goo Jun Biostatistics 615/815 - Lecture 11 October 11th, 2011 17 / 32




HMM
0008000

More Markov Chain Questions

= Marginal probability : What is the chance of rain in the day 47
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HMM
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More Markov Chain Questions

= Marginal probability : What is the chance of rain in the day 47

= Conditioned to previous observations : What is the chance of rain in
the day 2, if it rained in the day 17
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More Markov Chain Questions

= Marginal probability : What is the chance of rain in the day 47
= Conditioned to previous observations : What is the chance of rain in
the day 2, if it rained in the day 17

= Forward-backward algorithms : If the observation was
(SUNNY,SUNNY,CLOUDY,RAINY,RAINY) from day 1 through day
5, what is the distribution of hidden states for each day?
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More Markov Chain Questions

= Marginal probability : What is the chance of rain in the day 47

= Conditioned to previous observations : What is the chance of rain in
the day 2, if it rained in the day 17

= Forward-backward algorithms : If the observation was
(SUNNY,SUNNY,CLOUDY,RAINY,RAINY) from day 1 through day
5, what is the distribution of hidden states for each day?

= Viterbi algorithm : If the observation was
(SUNNY,SUNNY,CLOUDY,RAINY,RAINY) from day 1 through day
5, what would be the mostly likely sequence of states?

Invited Lecturer : Goo Jun Biostatistics 615/815 - Lecture 11 October 11th, 2011 18 / 32



HMM
[ele]ele] Yole}

Unconditional marginal probabilities

What is the chance of rain in the day 47

f(ay) = < Eﬁﬁjj _ 23 > = A'm = ( ggg? )

Pr(oy = O1) 0.621
g(os) = | Pr(os= 02) | = Bf(qy) = | 0.266
PI‘(04 = 03) 0.233

The chance of rain in day 3 is 23.3%
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Marginal likelihood of data in HMM

= Let A= (A4, B,n)

= For a sequence of observation o = {01, -+ , 04},

Pr(o]A) = Y Pr(ofq,\) Pr(ql))

q
t t
Pr(oja,A) = J[Pr(oda: ) =[] b (00
=1 =1
t
Pr(qp‘) = Tg Z aqiqi_l
=2
t

PI‘(0|)\) = Z Ty bql (Oql) H a’qiqi_1 bqi(oqi)

q =2
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Naive computation of the likelihood

0‘)\ § :ﬂ—fh 1 th Haqz(h 174 OqL)

= Number of possible ¢ = 2! are exponentially growing with the number
of observations

= Computational would be infeasible for large number of observations

= Algorithmic solution required for efficient computation.
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Forward-backward
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More Markov Chain Question

= If the observation was (SUNNY,SUNNY,CLOUDY,RAINY,RAINY)
from day 1 through day 5, what is the distribution of hidden states for

each day?
= Need to know Pr(¢o, \)

October 11th, 2011 22 /32
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Forward-backward
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Forward and backward probabilities

9, = (q. @), q4f = (G147
o, = (o1,7--,01-1),  0f = (0441, " ,07)
; Pr(Qt - Z,O‘)\) Pr(Qt - ia 0’)‘)
Pr(¢, =io,\) = = =5 -
(6 = ilo, ) Pr(o|\) SF Pr(g, = j.o|))
Pr(gq,o|\) = Pr(g.o0;, ot,oﬂ)\)

Pr(oﬂqt, A) Pr(o; gy, A) Pr(oglq;, A) Pr(glA)
Pr(oﬂqt, A) Pr(o; , o4, q;|\)
= /Bt(Qt)at(Qt)

If ¢(gq;) and Byi(gq;) is known, Pr(g,]o, A) can be computed in a linear time.
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Forward-backward
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DP algorithm for calculating forward probability

= Key idea is to use (¢, 0r) L 0} |q;_;.

= Each of ¢, 4, ¢;, and ¢, is a Markov blanket.

Oét(i) =

051(’[) =

Invited Lecturer :

PI’(Ol, 04 G = Z|)\)

n
Z PI‘(Ot_, 0ty Qr—1 = j7 qr = Z|)\)
j=1

> Pr(o;, ¢y = N Pr(g, = ilg,1 = j,\) Pr(os g, = i, A)
=1

> a1 (jagbio)
=1

mibi(01)
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[e]e]e] le]e]

Conditional dependency in forward-backward algorithms

= Forward : (g, 01) L 0o, |q;_.
= Backward : 0441 L o) 4]q. ;.

see t-1 t t+1 cee
cee ot'l ot 0t+1 see
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Forward-backward
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DP algorithm for calculating backward probability

= Key idea is to use 0441 L °;1|qt+1-

ﬁt(z) = Pr(0t+17 ) 0T|qt =1, )‘)

n
= ZPT(OH-lv 0t++17 i1 = ]| gy = i, )‘)
=1

n
= ZPT(0t+1|Qt+1a A) Pr(°;-1|‘]t+1 =4 A Pr(g =jlas =142
j=1

= Z Brr1(j) ajibi(or41)

j=1

Br(i) = 1
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Forward-backward
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Putting forward and backward probabilities together

= Conditional probability of states given data

Pr(o, ¢, = Si|\)
Z?=1 Pr(o, ¢, = SjA)
ay(1) Be(4)
21 () Be(9)

Pr(qt - i‘07 )‘)

= Time complexity is ©(n?T).
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Finding the most likely trajectory of hidden states

= Given a series of observations, we want to compute

arg max Pr(qlo, \)
q

= Define 6,(7) as
04(7) = max Pr(q,0|\)
q

= Use dynamic programming algorithm to find the 'most likely’ path
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The Viterbi algorithm

Initialization 01(7) = wbi(o01) for 1 < i< n.
Maintenance §4(7) = max;d¢—1(j)as;bi( 0r)
¢¢(4) = arg max; 0;—1(7)

Termination Max likelihood is max; § (%)
Optimal path can be backtracked using ¢¢(%)
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An HMM example
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An example Viterbi path

= When observations were (walk, shop, clean)

= Similar to Manhattan tourist problem.

Rainy
’\ 0.01344

-
»/ Sunny
0.00259

s

Day 1 Day 2 Day 3
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Summary

Today - Hidden Markov Models

= Graphical models and conditional independence
= Forward-backward algorithm

= Viterbi algorithm

V.

Next lectures

= |mplementations of hidden Markov Models

A,
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