Hyun Min Kang

February 7th, 2013

Likelihood Function

Definition

 $X_1, \cdots, X_n \stackrel{\text{i.i.d.}}{\sim} f_X(x|\theta)$. The join distribution of $\mathbf{X} = (X_1, \cdots, X_n)$ is

$$f_{\mathbf{X}}(\mathbf{x}|\theta) = \prod_{i=1}^{n} f_{X}(x_{i}|\theta)$$

Given that $\mathbf{X} = \mathbf{x}$ is observed, the function of θ defined by $L(\theta|\mathbf{x}) = f(\mathbf{x}|\theta)$ is called the likelihood function.

• $X_1, X_2, X_3, X_4 \stackrel{\text{i.i.d.}}{\sim} \text{Bernoulli}(p), \ 0$

3 / 24

- $X_1, X_2, X_3, X_4 \stackrel{\text{i.i.d.}}{\sim} \text{Bernoulli}(p), \ 0$
- $\mathbf{x} = (1, 1, 1, 1)^T$

0000

- $X_1, X_2, X_3, X_4 \stackrel{\text{i.i.d.}}{\sim} \text{Bernoulli}(p), \ 0$
- $\mathbf{x} = (1, 1, 1, 1)^T$
- Intuitively, it is more likely that p is larger than smaller.

- $X_1, X_2, X_3, X_4 \stackrel{\text{i.i.d.}}{\sim} \text{Bernoulli}(p), \ 0$
- $\mathbf{x} = (1, 1, 1, 1)^T$
- Intuitively, it is more likely that p is larger than smaller.
- $L(p|\mathbf{x}) = f(\mathbf{x}|p) = \prod_{i=1}^4 p^{x_i} (1-p)^{1-x_1} = p^4$.

- $X_1, X_2, X_3, X_4 \stackrel{\text{i.i.d.}}{\sim} \text{Bernoulli}(p), \ 0$
- $\mathbf{x} = (1, 1, 1, 1)^T$
- Intuitively, it is more likely that p is larger than smaller.
- $L(p|\mathbf{x}) = f(\mathbf{x}|p) = \prod_{i=1}^4 p^{x_i} (1-p)^{1-x_1} = p^4$.

• $X_1, X_2, X_3, X_4 \stackrel{\text{i.i.d.}}{\sim} \text{Bernoulli}(p), \ 0$

- $X_1, X_2, X_3, X_4 \stackrel{\text{i.i.d.}}{\sim} \text{Bernoulli}(p), \ 0$
- $\mathbf{x} = (0, 0, 0, 0)^T$

4 / 24

- zamples of Electrood Fulletion 2/5
- X_1, X_2, X_3, X_4 i.i.d. Bernoulli(p), 0 .
- $\mathbf{x} = (0, 0, 0, 0)^T$
- Intuitively, it is more likely that p is smaller than larger.

- $X_1, X_2, X_3, X_4 \stackrel{\text{i.i.d.}}{\sim} \text{Bernoulli}(p), \ 0$
- $\mathbf{x} = (0, 0, 0, 0)^T$
- Intuitively, it is more likely that p is smaller than larger.
- $L(p|\mathbf{x}) = f(\mathbf{x}|p) = \prod_{i=1}^4 p^{x_i} (1-p)^{1-x_1} = (1-p)^4.$

- $X_1, X_2, X_3, X_4 \stackrel{\text{i.i.d.}}{\sim} \text{Bernoulli}(p), \ 0$
- $\mathbf{x} = (0, 0, 0, 0)^T$
- Intuitively, it is more likely that p is smaller than larger.
- $L(p|\mathbf{x}) = f(\mathbf{x}|p) = \prod_{i=1}^4 p^{x_i} (1-p)^{1-x_1} = (1-p)^4$.

• $X_1, X_2, X_3, X_4 \stackrel{\text{i.i.d.}}{\sim} \text{Bernoulli}(p), \ 0$

5 / 24

- $X_1, X_2, X_3, X_4 \stackrel{\text{i.i.d.}}{\sim} \text{Bernoulli}(p), \ 0$
- $\mathbf{x} = (1, 1, 0, 0)^T$

5 / 24

- $X_1, X_2, X_3, X_4 \stackrel{\text{i.i.d.}}{\sim} \text{Bernoulli}(p), \ 0$
- $\mathbf{x} = (1, 1, 0, 0)^T$
- Intuitively, it is more likely that p is somewhere in the middle than in the extremes.

- $X_1, X_2, X_3, X_4 \stackrel{\text{i.i.d.}}{\sim} \text{Bernoulli}(p), \ 0$
- $\mathbf{x} = (1, 1, 0, 0)^T$
- Intuitively, it is more likely that p is somewhere in the middle than in the extremes.
- $L(p|\mathbf{x}) = f(\mathbf{x}|p) = \prod_{i=1}^4 p^{x_i} (1-p)^{1-x_1} = p^2 (1-p)^2$.

- $X_1, X_2, X_3, X_4 \stackrel{\text{i.i.d.}}{\sim} \text{Bernoulli}(p), \ 0$
- $\mathbf{x} = (1, 1, 0, 0)^T$
- Intuitively, it is more likely that p is somewhere in the middle than in the extremes.
- $L(p|\mathbf{x}) = f(\mathbf{x}|p) = \prod_{i=1}^4 p^{x_i} (1-p)^{1-x_1} = p^2 (1-p)^2$.

Hyun Min Kang

Data: $\mathbf{x} = (x_1, \dots, x_n)$ - realizations of random variables $(X_1,\cdots,X_n).$

Point Estimation : Ingredients

- Data: $\mathbf{x} = (x_1, \dots, x_n)$ realizations of random variables $(X_1,\cdots,X_n).$
- $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} f_X(x|\theta)$.

Point Estimation : Ingredients

- Data: $\mathbf{x} = (x_1, \dots, x_n)$ realizations of random variables $(X_1,\cdots,X_n).$
- $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} f_X(x|\theta)$.
- Assume a model $\mathcal{P} = \{f_X(x|\theta) : \theta \in \Omega \subset \mathbb{R}^p\}$ where the functional form of $f_X(x|\theta)$ is known, but θ is unknown.

- Data: $\mathbf{x} = (x_1, \dots, x_n)$ realizations of random variables (X_1, \dots, X_n) .
- $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} f_X(x|\theta)$.
- Assume a model $\mathcal{P} = \{f_X(x|\theta) : \theta \in \Omega \subset \mathbb{R}^p\}$ where the functional form of $f_X(x|\theta)$ is known, but θ is unknown.
- Task is to use data \mathbf{x} to make inference on θ

Point Estimation

Definition

If we use a function of sample $w(X_1, \dots, X_n)$ as a "guess" of $\tau(\theta)$, where $\tau(\theta)$ is a function of true parameter θ .

Definition

If we use a function of sample $w(X_1,\cdots,X_n)$ as a "guess" of $\tau(\theta)$, where $\tau(\theta)$ is a function of true parameter θ . Then $w(\mathbf{X})=w(X_1,\cdots,X_n)$ is called a *point estimator* of $\tau(\theta)$.

7 / 24

Definition

If we use a function of sample $w(X_1,\cdots,X_n)$ as a "guess" of $\tau(\theta)$, where $\tau(\theta)$ is a function of true parameter θ . Then $w(\mathbf{X})=w(X_1,\cdots,X_n)$ is called a *point estimator* of $\tau(\theta)$. The realization of the estimation, $w(\mathbf{x})=w(x_1,\cdots,x_n)$ is called the *estimate* of $\tau(\theta)$.

Example

• $X_1, \cdots, X_n \overset{\text{i.i.d.}}{\sim} \mathcal{N}(\theta, 1)$, where $\theta \in \Omega \in \mathbb{R}$.

Definition

If we use a function of sample $w(X_1,\cdots,X_n)$ as a "guess" of $\tau(\theta)$, where $\tau(\theta)$ is a function of true parameter θ . Then $w(\mathbf{X})=w(X_1,\cdots,X_n)$ is called a *point estimator* of $\tau(\theta)$. The realization of the estimation, $w(\mathbf{x})=w(x_1,\cdots,x_n)$ is called the *estimate* of $\tau(\theta)$.

Example

- $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\theta, 1)$, where $\theta \in \Omega \in \mathbb{R}$.
- Suppose n = 6, and $(x_1, \dots, x_6) = (2.0, 2.1, 2.9, 2.6, 1.2, 1.8)$.

Point Estimation

Definition

If we use a function of sample $w(X_1, \dots, X_n)$ as a "guess" of $\tau(\theta)$, where $\tau(\theta)$ is a function of true parameter θ . Then $w(\mathbf{X}) = w(X_1, \cdots, X_n)$ is called a *point estimator* of $\tau(\theta)$. The realization of the estimation, $w(\mathbf{x}) = w(x_1, \dots, x_n)$ is called the *estimate* of $\tau(\theta)$.

Example

- $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\theta, 1)$, where $\theta \in \Omega \in \mathbb{R}$.
- Suppose n=6, and $(x_1, \dots, x_6)=(2.0, 2.1, 2.9, 2.6, 1.2, 1.8)$.
- Define $w_1(X_1, \dots, X_n) = \frac{1}{n} \sum_{i=1}^n X_i = \overline{X} = 2.1.$

4 D > 4 D > 4 D > 4 D >

Point Estimation

Definition

If we use a function of sample $w(X_1, \dots, X_n)$ as a "guess" of $\tau(\theta)$, where $\tau(\theta)$ is a function of true parameter θ . Then $w(\mathbf{X}) = w(X_1, \cdots, X_n)$ is called a *point estimator* of $\tau(\theta)$. The realization of the estimation, $w(\mathbf{x}) = w(x_1, \dots, x_n)$ is called the *estimate* of $\tau(\theta)$.

Example

- $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\theta, 1)$, where $\theta \in \Omega \in \mathbb{R}$.
- Suppose n=6, and $(x_1, \dots, x_6)=(2.0, 2.1, 2.9, 2.6, 1.2, 1.8)$.
- Define $w_1(X_1, \dots, X_n) = \frac{1}{n} \sum_{i=1}^n X_i = \overline{X} = 2.1.$
- Define $w_2(X_1, \dots, X_n) = X_{(1)} = 1.2$.

4 D > 4 D > 4 D > 4 D >

A method to equate sample moments to population moments and solve equations.

A method to equate sample moments to population moments and solve equations.

Sample moments	Population moments
$m_1 = \frac{1}{n} \sum_{i=1}^{n} X_i$	$\mu_1' = E[X \theta] = \mu_1'(\theta)$
$m_2 = \frac{1}{n} \sum_{i=1}^{n} X_i^2$	$\mu_2' = E[X \theta] = \mu_2'(\theta)$
$m_3 = \frac{1}{n} \sum_{i=1}^{n-1} X_i^3$	$\mu_3' = E[X \theta] = \mu_3'(\theta)$
:	:

A method to equate sample moments to population moments and solve equations.

Population moments
$\mu_1' = E[X \theta] = \mu_1'(\theta)$
$\mu_2' = E[X \theta] = \mu_2'(\theta)$
$\mu_3' = E[X \theta] = \mu_3'(\theta)$
:

Point estimator of $T(\theta)$ is obtained by solving equations like this.

A method to equate sample moments to population moments and solve equations.

Sample moments	Population moments
$m_1 = \frac{1}{n} \sum_{i=1}^{n} X_i$	$\mu_1' = E[X \theta] = \mu_1'(\theta)$
$m_2 = \frac{1}{n} \sum_{i=1}^{n-1} X_i^2$	$\mu_2' = E[X \theta] = \mu_2'(\theta)$
$m_3 = \frac{1}{n} \sum_{i=1}^{n-1} X_i^3$	$\mu_3' = E[X \theta] = \mu_3'(\theta)$
:	:
•	•

Point estimator of $T(\theta)$ is obtained by solving equations like this.

$$m_1 = \mu'_1(\theta)$$

$$m_2 = \mu'_2(\theta)$$

$$\vdots \qquad \vdots$$

$$m_k = \mu'_k(\theta)$$

Problem

 $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mu, \sigma^2)$. Find estimator for μ, σ^2 .

Problem

$$X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mu, \sigma^2)$$
. Find estimator for μ, σ^2 .

$$\mu_1' = E\mathbf{X} = \mu = \overline{X}$$

Problem

 $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mu, \sigma^2)$. Find estimator for μ, σ^2 .

$$\mu_1' = E\mathbf{X} = \mu = \overline{X}$$

$$\mu_2' = E\mathbf{X}^2 = [E\mathbf{X}]^2 + \operatorname{Var}(\mathbf{X}) = \mu^2 + \sigma^2 = \frac{1}{n} \sum_{i=1}^n X_i^2$$

Problem

 $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mu, \sigma^2)$. Find estimator for μ, σ^2 .

$$\mu_1' = E\mathbf{X} = \mu = \overline{X}$$

$$\mu_2' = E\mathbf{X}^2 = [E\mathbf{X}]^2 + \operatorname{Var}(\mathbf{X}) = \mu^2 + \sigma^2 = \frac{1}{n} \sum_{i=1}^n X_i^2$$

$$\left\{ \hat{\mu} = \overline{X} \right.$$

Problem

 $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mu, \sigma^2)$. Find estimator for μ, σ^2 .

$$\mu_1' = E\mathbf{X} = \mu = \overline{X}$$

$$\mu_2' = E\mathbf{X}^2 = [E\mathbf{X}]^2 + \operatorname{Var}(\mathbf{X}) = \mu^2 + \sigma^2 = \frac{1}{n} \sum_{i=1}^n X_i^2$$

$$\begin{cases} \hat{\mu} = \overline{X} \\ \hat{\mu}^2 + \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n X_i^2 \end{cases}$$

Problem

 $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mu, \sigma^2)$. Find estimator for μ, σ^2 .

Solution

$$\mu_1' = E\mathbf{X} = \mu = \overline{X}$$

$$\mu_2' = E\mathbf{X}^2 = [E\mathbf{X}]^2 + \operatorname{Var}(\mathbf{X}) = \mu^2 + \sigma^2 = \frac{1}{n} \sum_{i=1}^{n} X_i^2$$

$$\begin{cases} \hat{\mu} = \overline{X} \\ \hat{\mu}^2 + \hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n X_i^2 \end{cases}$$

Solving the two equations above, $\hat{\mu} = \overline{X}$, $\hat{\sigma^2} = \sum_{i=1}^n (X_i - \overline{X})^2 / n$.

Problem

 $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \text{Binomial}(k, p)$. Find an estimator for k, p.

Problem

 $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \text{Binomial}(k, p)$. Find an estimator for k, p.

$$f_X(x|k,p) = {k \choose x} p^x (1-p)^{k-x} \qquad x \in \{0,1,\cdots,k\}$$

Problem

 $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \text{Binomial}(k, p)$. Find an estimator for k, p.

Solution

$$f_X(x|k,p) = {k \choose x} p^x (1-p)^{k-x} \qquad x \in \{0,1,\cdots,k\}$$

Equating first two sample moments,

$$\frac{1}{n}\sum_{i=1}^{n}X_{i} = \overline{x} = \mu'_{1} = E\mathbf{X} = kp$$

Problem

 $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \text{Binomial}(k, p)$. Find an estimator for k, p.

Solution

$$f_X(x|k,p) = {k \choose x} p^x (1-p)^{k-x} \qquad x \in \{0,1,\cdots,k\}$$

Equating first two sample moments,

$$\frac{1}{n} \sum_{i=1}^{n} X_i = \overline{x} = \mu_1' = E\mathbf{X} = kp$$

$$\frac{1}{n} \sum_{i=1}^{n} X_i^2 = \mu_2' = E[\mathbf{X}^2] = (E\mathbf{X})^2 + \text{Var}(\mathbf{X}) = k^2 p^2 + kp(1-p)$$

Method of moments estimator - Binomial (cont'd)

The method of moments estimators are

$$\hat{k} = \frac{\overline{X}^2}{\overline{X} - \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2}$$

Method of moments estimator - Binomial (cont'd)

The method of moments estimators are

$$\hat{k} = \frac{\overline{X}^2}{\overline{X} - \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2}$$

$$\hat{p} = \frac{\overline{X}}{\hat{k}}$$

Method of moments estimator - Binomial (cont'd)

The method of moments estimators are

$$\hat{k} = \frac{\overline{X}^2}{\overline{X} - \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2}$$

$$\hat{p} = \frac{\overline{X}}{\hat{k}}$$

These are not the best estimators. It is possible to get negative estimates of k and p.

Examples of MoM estimator - Negative Binomial

Problem

 $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \text{Negative Binomial}(r, p)$. Find estimator for (r, p).

Examples of MoM estimator - Negative Binomial

Problem

 $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \text{Negative Binomial}(r, p)$. Find estimator for (r, p).

$$m_1 = \frac{1}{n} \sum_{i=1}^{n} X_i = E\mathbf{X} = \frac{r(1-p)}{p}$$

Examples of MoM estimator - Negative Binomial

Problem

 $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \text{Negative Binomial}(r, p)$. Find estimator for (r, p).

$$m_1 = \frac{1}{n} \sum_{i=1}^n X_i = E\mathbf{X} = \frac{r(1-p)}{p}$$

$$m_2 = \frac{1}{n} \sum_{i=1}^n X_i^2 = E\mathbf{X}^2 = \left(\frac{r(1-p)}{p}\right)^2 + \frac{r(1-p)}{p^2}$$

Problem

 $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \text{Negative Binomial}(r, p)$. Find estimator for (r, p).

$$m_1 = \frac{1}{n} \sum_{i=1}^n X_i = E \mathbf{X} = \frac{r(1-p)}{p}$$

$$m_2 = \frac{1}{n} \sum_{i=1}^n X_i^2 = E \mathbf{X}^2 = \left(\frac{r(1-p)}{p}\right)^2 + \frac{r(1-p)}{p^2}$$

$$\hat{p} = \frac{m_1}{m_2 - m_1^2} = \frac{\overline{X}}{\frac{1}{n} \sum_{i=1}^n X_i^2 - \overline{X}^2}$$

Problem

 $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \text{Negative Binomial}(r, p)$. Find estimator for (r, p).

Solution

$$m_{1} = \frac{1}{n} \sum_{i=1}^{n} X_{i} = E\mathbf{X} = \frac{r(1-p)}{p}$$

$$m_{2} = \frac{1}{n} \sum_{i=1}^{n} X_{i}^{2} = E\mathbf{X}^{2} = \left(\frac{r(1-p)}{p}\right)^{2} + \frac{r(1-p)}{p^{2}}$$

$$\hat{p} = \frac{m_{1}}{m_{2} - m_{1}^{2}} = \frac{\overline{X}}{\frac{1}{n} \sum_{i=1}^{n} X_{i}^{2} - \overline{X}^{2}}$$

$$\hat{r} = \frac{m_{1}\hat{p}}{\frac{1}{n}} = \frac{\overline{X}\hat{p}}{\frac{1}{n}}$$

Hyun Min Kang

Satterthwaite Approximation

Problem

Let Y_1,\cdots,Y_k are independently (but not identically) distributed random variables from $\chi^2_{r_1},\cdots,\chi^2_{r_k}$, respectively. We know that the distribution $\sum_{i=1}^n Y_i$ is also chi-squared with degrees of freedom equal to $\sum_{i=1}^k r_i$.

Satterthwaite Approximation

Problem

Let Y_1, \dots, Y_k are independently (but not identically) distributed random variables from $\chi^2_{r_1}, \cdots, \chi^2_{r_k}$, respectively. We know that the distribution $\sum_{i=1}^{n} Y_i$ is also chi-squared with degrees of freedom equal to $\sum_{i=1}^{k} r_i$.

However, the distribution of $\sum_{i=1}^{k} a_i Y_i$, where a_i s are known constants with $\sum_{i=1}^{n} a_i r_i = 1$, in general, the distribution is hard to obtain.

Satterthwaite Approximation

Problem

Let Y_1, \dots, Y_k are independently (but not identically) distributed random variables from $\chi^2_{r_1}, \cdots, \chi^2_{r_k}$, respectively. We know that the distribution $\sum_{i=1}^{n} Y_i$ is also chi-squared with degrees of freedom equal to $\sum_{i=1}^{k} r_i$.

However, the distribution of $\sum_{i=1}^{k} a_i Y_i$, where a_i s are known constants with $\sum_{i=1}^{n} a_i r_i = 1$, in general, the distribution is hard to obtain.

It is often reasonable to assume that the distribution of $\sum_{i=1}^k a_i Y_i$ follows $\frac{1}{2}\chi^2_{\nu}$ approximately. Find a moment-based estimator of ν .

A Naive Solution

To match the first moment, let $X \sim \chi_{\nu}^2/\nu$. Then E(X) = 1, and $Var(X) = 2/\nu$.

To match the first moment, let $X \sim \chi_{\nu}^2/\nu$. Then E(X) = 1, and ${\rm Var}(X) = 2/\nu$.

$$E\left(\sum_{i=1}^{k} a_i Y_i\right) = \sum_{i=1}^{k} a_i E Y_i = \sum_{i=1}^{k} a_i r_i = 1 = E(X)$$

A Naive Solution

To match the first moment, let $X \sim \chi_{\nu}^2/\nu$. Then E(X) = 1, and $Var(X) = 2/\nu$.

$$E\left(\sum_{i=1}^{k} a_i Y_i\right) = \sum_{i=1}^{k} a_i E Y_i = \sum_{i=1}^{k} a_i r_i = 1 = E(X)$$

$$E\left(\sum_{i=1}^{k} a_i Y_i\right)^2 = E(X^2) = \frac{2}{\nu} + 1$$

14 / 24

A Naive Solution

To match the first moment, let $X \sim \chi^2_{\nu}/\nu$. Then E(X) = 1, and $Var(X) = 2/\nu$.

$$E\left(\sum_{i=1}^{k} a_i Y_i\right) = \sum_{i=1}^{k} a_i E Y_i = \sum_{i=1}^{k} a_i r_i = 1 = E(X)$$

To match the second moments,

$$E\left(\sum_{i=1}^{k} a_i Y_i\right)^2 = E(X^2) = \frac{2}{\nu} + 1$$

Therefore, the method of moment estimator of ν is

$$\hat{\nu} = \frac{2}{(\sum_{i=1}^{k} a_i Y_i)^2 - 1}$$

Note that ν can be negative, which is not desirable.

To match the second moments,

$$E\left(\sum_{i=1}^{k} a_i Y_i\right)^2 = \operatorname{Var}\left(\sum_{i=1}^{k} a_i Y_i\right) + \left[E(\sum_{i=1}^{k} a_i Y_i)\right]^2$$

15 / 24

An alternative Solution

$$E\left(\sum_{i=1}^{k} a_{i} Y_{i}\right)^{2} = \operatorname{Var}\left(\sum_{i=1}^{k} a_{i} Y_{i}\right) + \left[E\left(\sum_{i=1}^{k} a_{i} Y_{i}\right)\right]^{2}$$

$$= \left[E\left(\sum_{i=1}^{k} a_{i} Y_{i}\right)\right]^{2} \left[\frac{\operatorname{Var}\left(\sum_{i=1}^{k} a_{i} Y_{i}\right)}{\left[E\left(\sum_{i=1}^{k} a_{i} Y_{i}\right)\right]^{2}} + 1\right]$$

An alternative Solution

$$E\left(\sum_{i=1}^{k} a_{i} Y_{i}\right)^{2} = \operatorname{Var}\left(\sum_{i=1}^{k} a_{i} Y_{i}\right) + \left[E\left(\sum_{i=1}^{k} a_{i} Y_{i}\right)\right]^{2}$$

$$= \left[E\left(\sum_{i=1}^{k} a_{i} Y_{i}\right)\right]^{2} \left[\frac{\operatorname{Var}\left(\sum_{i=1}^{k} a_{i} Y_{i}\right)}{\left[E\left(\sum_{i=1}^{k} a_{i} Y_{i}\right)\right]^{2}} + 1\right]$$

$$= \left[\frac{\operatorname{Var}\left(\sum_{i=1}^{k} a_{i} Y_{i}\right)}{\left[E\left(\sum_{i=1}^{k} a_{i} Y_{i}\right)\right]^{2}} + 1\right] = \frac{2}{\nu} + 1$$

An alternative Solution

$$E\left(\sum_{i=1}^{k} a_{i} Y_{i}\right)^{2} = \operatorname{Var}\left(\sum_{i=1}^{k} a_{i} Y_{i}\right) + \left[E\left(\sum_{i=1}^{k} a_{i} Y_{i}\right)\right]^{2}$$

$$= \left[E\left(\sum_{i=1}^{k} a_{i} Y_{i}\right)\right]^{2} \left[\frac{\operatorname{Var}\left(\sum_{i=1}^{k} a_{i} Y_{i}\right)}{\left[E\left(\sum_{i=1}^{k} a_{i} Y_{i}\right)\right]^{2}} + 1\right]$$

$$= \left[\frac{\operatorname{Var}\left(\sum_{i=1}^{k} a_{i} Y_{i}\right)}{\left[E\left(\sum_{i=1}^{k} a_{i} Y_{i}\right)\right]^{2}} + 1\right] = \frac{2}{\nu} + 1$$

$$\nu = \frac{2\left[E\left(\sum_{i=1}^{k} a_{i} Y_{i}\right)\right]^{2}}{\operatorname{Var}\left(\sum_{i=1}^{k} a_{i} Y_{i}\right)}$$

To match the second moments, Finally, use the fact that Y_1, \dots, Y_k are independent chi-squared random variables.

To match the second moments, Finally, use the fact that Y_1, \dots, Y_k are independent chi-squared random variables.

$$\operatorname{Var}(\sum_{i=1}^{n} a_{i} Y_{i}) = \sum_{i=1}^{k} a_{i} \operatorname{Var}(Y_{i})$$

To match the second moments, Finally, use the fact that Y_1, \dots, Y_k are independent chi-squared random variables.

$$\operatorname{Var}(\sum_{i=1}^{n} a_{i} Y_{i}) = \sum_{i=1}^{k} a_{i} \operatorname{Var}(Y_{i})$$
$$= 2 \sum_{i=1}^{n} \frac{a_{i}^{2} (E Y_{i})^{2}}{r_{i}}$$

To match the second moments, Finally, use the fact that Y_1, \dots, Y_k are independent chi-squared random variables.

$$\operatorname{Var}(\sum_{i=1}^{n} a_{i} Y_{i}) = \sum_{i=1}^{k} a_{i} \operatorname{Var}(Y_{i})$$
$$= 2 \sum_{i=1}^{n} \frac{a_{i}^{2} (EY_{i})^{2}}{r_{i}}$$

Substituting this expression for the variance and removing expectations, we obtain Satterthwaite's estimator

To match the second moments, Finally, use the fact that Y_1, \dots, Y_k are independent chi-squared random variables.

$$\operatorname{Var}(\sum_{i=1}^{n} a_{i} Y_{i}) = \sum_{i=1}^{k} a_{i} \operatorname{Var}(Y_{i})$$
$$= 2 \sum_{i=1}^{n} \frac{a_{i}^{2} (EY_{i})^{2}}{r_{i}}$$

Substituting this expression for the variance and removing expectations, we obtain Satterthwaite's estimator

$$\hat{\nu} = \frac{\sum_{i=1}^{n} a_i Y_i}{\sum_{i=1}^{n} \frac{a_i^2}{r_i} Y_i^2}$$

Maximum Likelihood Estimator

Definition

• For a given sample point $\mathbf{x} = (x_1, \dots, x_n)$,

Maximum Likelihood Estimator

- For a given sample point $\mathbf{x} = (x_1, \dots, x_n)$,
- let $\hat{\theta}(\mathbf{x})$ be the value such that

Maximum Likelihood Estimator

- For a given sample point $\mathbf{x} = (x_1, \dots, x_n)$,
- let $\hat{\theta}(\mathbf{x})$ be the value such that
- $L(\theta|\mathbf{x})$ attains its maximum.

Maximum Likelihood Estimator

- For a given sample point $\mathbf{x} = (x_1, \dots, x_n)$,
- let $\hat{\theta}(\mathbf{x})$ be the value such that
- $L(\theta|\mathbf{x})$ attains its maximum.
- More formally, $L(\hat{\theta}(\mathbf{x})|\mathbf{x}) \geq L(\theta|\mathbf{x}) \ \forall \theta \in \Omega$ where $\hat{\theta}(\mathbf{x}) \in \Omega$.

Maximum Likelihood Estimator

- For a given sample point $\mathbf{x} = (x_1, \dots, x_n)$,
- let $\hat{\theta}(\mathbf{x})$ be the value such that
- $L(\theta|\mathbf{x})$ attains its maximum.
- More formally, $L(\hat{\theta}(\mathbf{x})|\mathbf{x}) \geq L(\theta|\mathbf{x}) \ \forall \theta \in \Omega \ \text{where } \hat{\theta}(\mathbf{x}) \in \Omega.$
- $\hat{\theta}(\mathbf{x})$ is called the maximum likelihood estimate of θ based on data \mathbf{x} ,

Maximum Likelihood Estimator

- For a given sample point $\mathbf{x} = (x_1, \dots, x_n)$,
- let $\hat{\theta}(\mathbf{x})$ be the value such that
- $L(\theta|\mathbf{x})$ attains its maximum.
- More formally, $L(\hat{\theta}(\mathbf{x})|\mathbf{x}) \geq L(\theta|\mathbf{x}) \ \forall \theta \in \Omega$ where $\hat{\theta}(\mathbf{x}) \in \Omega$.
- $\hat{\theta}(\mathbf{x})$ is called the maximum likelihood estimate of θ based on data \mathbf{x} ,
- and $\hat{\theta}(\mathbf{X})$ is the maximum likelihood estimator (MLE) of θ .

MLE 0000000

Example of MLE - Exponential Distribution

Problem

Let $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \text{Exponential}(\beta)$. Find MLE of β .

18 / 24

Example of MLE - Exponential Distribution

Problem

Let $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \text{Exponential}(\beta)$. Find MLE of β .

Solution

$$L(\beta|\mathbf{x}) = f_{\mathbf{X}}(\mathbf{x}|\theta) = \prod_{i=1}^{n} f_{X}(x_{i}|\theta)$$

Problem

Let $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \text{Exponential}(\beta)$. Find MLE of β .

Solution

$$L(\beta|\mathbf{x}) = f_{\mathbf{X}}(\mathbf{x}|\theta) = \prod_{i=1}^{n} f_{X}(x_{i}|\theta)$$
$$= \prod_{i=1}^{n} \left[\frac{1}{\beta} e^{-x_{i}/\beta}\right] = \frac{1}{\beta^{n}} \exp\left(-\sum_{i=1}^{n} \frac{x_{i}}{\beta}\right)$$

where $\beta > 0$.

Use the derivative to find potential MLE

Use the derivative to find potential MLE

$$l(\beta|\mathbf{x}) = \log L(\beta|\mathbf{x}) = \log \left[\frac{1}{\beta^n} \exp\left(-\sum_{i=1}^n \frac{x_i}{\beta}\right)\right]$$

Use the derivative to find potential MLE

$$l(\beta|\mathbf{x}) = \log L(\beta|\mathbf{x}) = \log \left[\frac{1}{\beta^n} \exp\left(-\sum_{i=1}^n \frac{x_i}{\beta}\right) \right]$$
$$= -\frac{\sum_{i=1}^n x_i}{\beta} - n \log \beta$$

Use the derivative to find potential MLE

$$l(\beta|\mathbf{x}) = \log L(\beta|\mathbf{x}) = \log \left[\frac{1}{\beta^n} \exp\left(-\sum_{i=1}^n \frac{x_i}{\beta}\right) \right]$$
$$= -\frac{\sum_{i=1}^n x_i}{\beta} - n \log \beta$$
$$\frac{\partial l}{\partial \beta} = \frac{\sum_{i=1}^n x_i}{\beta^2} - \frac{n}{\beta} = 0$$

$$\begin{split} l(\beta|\mathbf{x}) &= \log L(\beta|\mathbf{x}) = \log \left[\frac{1}{\beta^n} \exp\left(-\sum_{i=1}^n \frac{x_i}{\beta}\right)\right] \\ &= -\frac{\sum_{i=1}^n x_i}{\beta} - n \log \beta \\ \frac{\partial l}{\partial \beta} &= \frac{\sum_{i=1}^n x_i}{\beta^2} - \frac{n}{\beta} = 0 \\ \sum_{i=1}^n x_i &= n\beta \end{split}$$

Use the derivative to find potential MLE

$$\begin{split} l(\beta|\mathbf{x}) &= \log L(\beta|\mathbf{x}) = \log \left[\frac{1}{\beta^n} \exp\left(-\sum_{i=1}^n \frac{x_i}{\beta}\right)\right] \\ &= -\frac{\sum_{i=1}^n x_i}{\beta} - n \log \beta \\ \frac{\partial l}{\partial \beta} &= \frac{\sum_{i=1}^n x_i}{\beta^2} - \frac{n}{\beta} = 0 \\ \sum_{i=1}^n x_i &= n\beta \\ \hat{\beta} &= \frac{\sum_{i=1}^n x_i}{\beta^2} = \overline{x} \end{split}$$

$$\left. \frac{\partial^2 l}{\partial \beta^2} \right|_{\beta = \overline{x}} = -2 \frac{\sum_{i=1}^n x_i}{\beta^3} + \frac{n}{\beta^2} \right|_{\beta = \overline{x}}$$

$$\frac{\partial^2 l}{\partial \beta^2} \Big|_{\beta = \overline{x}} = -2 \frac{\sum_{i=1}^n x_i}{\beta^3} + \frac{n}{\beta^2} \Big|_{\beta = \overline{x}}$$

$$= \frac{1}{\beta^2} \left(-\frac{2 \sum_{i=1}^n x_i}{\beta} + n \right) \Big|_{\beta = \overline{x}}$$

20 / 24

$$\frac{\partial^2 l}{\partial \beta^2} \Big|_{\beta = \overline{x}} = -2 \frac{\sum_{i=1}^n x_i}{\beta^3} + \frac{n}{\beta^2} \Big|_{\beta = \overline{x}}$$

$$= \frac{1}{\beta^2} \left(-\frac{2 \sum_{i=1}^n x_i}{\beta} + n \right) \Big|_{\beta = \overline{x}}$$

$$= \frac{1}{\overline{x}^2} \left(-\frac{2n\overline{x}}{\overline{x}} + n \right)$$

$$\frac{\partial^2 l}{\partial \beta^2} \Big|_{\beta = \overline{x}} = -2 \frac{\sum_{i=1}^n x_i}{\beta^3} + \frac{n}{\beta^2} \Big|_{\beta = \overline{x}}$$

$$= \frac{1}{\beta^2} \left(-\frac{2\sum_{i=1}^n x_i}{\beta} + n \right) \Big|_{\beta = \overline{x}}$$

$$= \frac{1}{\overline{x}^2} \left(-\frac{2n\overline{x}}{\overline{x}} + n \right)$$

$$= \frac{1}{\overline{x}^2} (-n) < 0$$

$$\frac{\partial^2 l}{\partial \beta^2} \Big|_{\beta = \overline{x}} = -2 \frac{\sum_{i=1}^n x_i}{\beta^3} + \frac{n}{\beta^2} \Big|_{\beta = \overline{x}}$$

$$= \frac{1}{\beta^2} \left(-\frac{2\sum_{i=1}^n x_i}{\beta} + n \right) \Big|_{\beta = \overline{x}}$$

$$= \frac{1}{\overline{x}^2} \left(-\frac{2n\overline{x}}{\overline{x}} + n \right)$$

$$= \frac{1}{\overline{x}^2} (-n) < 0$$

Therefore, we can conclude that $\hat{\beta}(\mathbf{X}) = \overline{X}$ is unique local maximum on the interval

$$\beta \in (0, \infty)$$
. If $\beta \to \infty$

$$\beta \in (0, \infty)$$
. If $\beta \to \infty$

$$l(\beta|\mathbf{x}) = -\frac{\sum_{i=1}^{n} x_i}{\beta} - n\log\beta \to -\infty$$

$$\beta \in (0, \infty)$$
. If $\beta \to \infty$

$$\begin{array}{lcl} l(\beta|\mathbf{x}) & = & -\frac{\sum_{i=1}^{n} x_i}{\beta} - n\log\beta \to -\infty \\ L(\beta|\mathbf{x}) & \to & 0 \end{array}$$

$$\beta \in (0, \infty)$$
. If $\beta \to \infty$
$$l(\beta | \mathbf{x}) = -\sum_{i=1}^{n} x_i$$

$$l(\beta|\mathbf{x}) = -\frac{\sum_{i=1}^{n} x_i}{\beta} - n\log\beta \to -\infty$$

If
$$\beta \to 0$$
, use $\log(x) = \lim_{\beta \to 0} \frac{1}{\beta} (x^{\beta} - 1)$

MLE oooo⊕oo

$$\beta \in (0, \infty)$$
. If $\beta \to \infty$

$$\begin{array}{lcl} l(\beta|\mathbf{x}) & = & -\frac{\sum_{i=1}^n x_i}{\beta} - n\log\beta \to -\infty \\ L(\beta|\mathbf{x}) & \to & 0 \end{array}$$

If
$$\beta \to 0$$
, use $\log(x) = \lim_{\beta \to 0} \frac{1}{\beta} (x^{\beta} - 1)$

$$l(\beta|\mathbf{x}) = -\frac{\sum_{i=1}^{n} x_i}{\beta} - n\log\beta$$

$$eta \in (0,\infty)$$
. If $eta o \infty$
$$l(eta | \mathbf{x}) = -\frac{\sum_{i=1}^n x_i}{eta} - n \log eta o -\infty$$

$$L(eta | \mathbf{x}) o 0$$

If
$$\beta \to 0$$
, use $\log(x) = \lim_{\beta \to 0} \frac{1}{\beta} (x^{\beta} - 1)$

$$l(\beta|\mathbf{x}) = -\frac{\sum_{i=1}^{n} x_i}{\beta} - n\log\beta$$
$$= -\frac{\sum_{i=1}^{n} x_i}{\beta} - n\left(\frac{1}{\beta}\beta^{\beta} - 1\right)$$

$$\beta \in (0,\infty). \text{ If } \beta \to \infty$$

$$l(\beta|\mathbf{x}) = -\frac{\sum_{i=1}^n x_i}{\beta} - n\log\beta \to -\infty$$

$$L(\beta|\mathbf{x}) \to 0$$

$$\text{If } \beta \to 0, \text{ use } \log(x) = \lim_{\beta \to 0} \frac{1}{\beta}(x^\beta - 1)$$

$$l(\beta|\mathbf{x}) = -\frac{\sum_{i=1}^{n} x_i}{\beta} - n\log\beta$$
$$= -\frac{\sum_{i=1}^{n} x_i}{\beta} - n\left(\frac{1}{\beta}\beta^{\beta} - 1\right)$$
$$= -\frac{\sum_{i=1}^{n} x_i - n(\beta^{\beta} - 1)}{\beta} \to -\infty$$

$$eta \in (0,\infty)$$
. If $eta o \infty$
$$l(eta | \mathbf{x}) = -\frac{\sum_{i=1}^n x_i}{eta} - n \log eta o -\infty$$

$$L(eta | \mathbf{x}) o 0$$

If
$$\beta \to 0$$
, use $\log(x) = \lim_{\beta \to 0} \frac{1}{\beta} (x^{\beta} - 1)$

$$\begin{split} l(\beta|\mathbf{x}) &= -\frac{\sum_{i=1}^{n} x_i}{\beta} - n\log\beta \\ &= -\frac{\sum_{i=1}^{n} x_i}{\beta} - n\left(\frac{1}{\beta}\beta^{\beta} - 1\right) \\ &= -\frac{\sum_{i=1}^{n} x_i - n(\beta^{\beta} - 1)}{\beta} \to -\infty \\ L(\beta|\mathbf{x}) &\to 0 \end{split}$$

Putting Things Together

Putting Things Together

$$\mbox{\bf 1}\mbox{\bf }\frac{\partial l}{\partial \beta}=0$$
 at $\hat{\beta}=\overline{x}$

2
$$\frac{\partial^2 l}{\partial \beta^2} < 0$$
 at $\hat{\beta} = \overline{x}$

Putting Things Together

2
$$\frac{\partial^2 l}{\partial \beta^2} < 0$$
 at $\hat{\beta} = \overline{x}$

3 $L(\beta|\mathbf{x}) \rightarrow 0$ (lowest bound) when β approaches the boundary

Putting Things Together

- $oxed{3} \ L(eta|\mathbf{x})
 ightarrow 0$ (lowest bound) when eta approaches the boundary

Therefore $l(\beta|\mathbf{x})$ and $L(\beta|\mathbf{x})$ attains the global maximum when $\hat{\beta} = \overline{x}$ $\hat{\beta}(\mathbf{X}) = \overline{X}$ is the MLE of β .

How do we find MLE?

If the function is differentiable with respect to θ .

23 / 24

How do we find MLE?

If the function is differentiable with respect to θ .

Find candidates that makes first order derivative to be zero

- Find candidates that makes first order derivative to be zero.
- 2 Check second-order derivative to check local maximum.

How do we find ML F?

- Find candidates that makes first order derivative to be zero
- Check second-order derivative to check local maximum.
 - For one-dimensional parameter, negative second order derivative implies local maximum.

How do we find MLE?

- Find candidates that makes first order derivative to be zero.
- Check second-order derivative to check local maximum.
 - For one-dimensional parameter, negative second order derivative implies local maximum.
 - For two-dimensional parameter, suppose $L(\theta_1, \theta_2)$ is the likelihood function. Then we need to show

How do we find MLE?

- 1 Find candidates that makes first order derivative to be zero
- 2 Check second-order derivative to check local maximum.
 - For one-dimensional parameter, negative second order derivative implies local maximum.
 - For two-dimensional parameter, suppose $L(\theta_1,\theta_2)$ is the likelihood function. Then we need to show
 - (a) $\partial^2 L(\theta_1, \theta_2)^2 / \partial \theta_1^2 < 0$ or $\partial^2 L(\theta_1, \theta_2)^2 / \partial \theta_2^2 < 0$.

How do we find MI F?

- Find candidates that makes first order derivative to be zero
- Check second-order derivative to check local maximum.
 - For one-dimensional parameter, negative second order derivative implies local maximum.
 - For two-dimensional parameter, suppose $L(\theta_1, \theta_2)$ is the likelihood function. Then we need to show
 - (a) $\partial^2 L(\theta_1, \theta_2)^2 / \partial \theta_1^2 < 0$ or $\partial^2 L(\theta_1, \theta_2)^2 / \partial \theta_2^2 < 0$.
 - (b) Determinant of second-order derivative is positive

How do we find MI F?

- Find candidates that makes first order derivative to be zero
- Check second-order derivative to check local maximum.
 - For one-dimensional parameter, negative second order derivative implies local maximum.
 - For two-dimensional parameter, suppose $L(\theta_1, \theta_2)$ is the likelihood function. Then we need to show
 - (a) $\partial^2 L(\theta_1, \theta_2)^2 / \partial \theta_1^2 < 0$ or $\partial^2 L(\theta_1, \theta_2)^2 / \partial \theta_2^2 < 0$.
 - (b) Determinant of second-order derivative is positive
 - Check boundary points to see whether boundary gives global maximum.

How do we find MLE?

If the function is differentiable with respect to θ .

- 1 Find candidates that makes first order derivative to be zero
- 2 Check second-order derivative to check local maximum.
 - For one-dimensional parameter, negative second order derivative implies local maximum.
 - For two-dimensional parameter, suppose $L(\theta_1,\theta_2)$ is the likelihood function. Then we need to show
 - (a) $\partial^2 L(\theta_1, \theta_2)^2 / \partial \theta_1^2 < 0$ or $\partial^2 L(\theta_1, \theta_2)^2 / \partial \theta_2^2 < 0$.
 - (b) Determinant of second-order derivative is positive
 - Check boundary points to see whether boundary gives global maximum.

If the function is NOT differentiable with respect to θ .

Use numerical methods

How do we find MLE?

If the function is differentiable with respect to θ .

- 1 Find candidates that makes first order derivative to be zero
- 2 Check second-order derivative to check local maximum.
 - For one-dimensional parameter, negative second order derivative implies local maximum.
 - For two-dimensional parameter, suppose $L(\theta_1,\theta_2)$ is the likelihood function. Then we need to show
 - (a) $\partial^2 L(\theta_1, \theta_2)^2 / \partial \theta_1^2 < 0$ or $\partial^2 L(\theta_1, \theta_2)^2 / \partial \theta_2^2 < 0$.
 - (b) Determinant of second-order derivative is positive
 - Check boundary points to see whether boundary gives global maximum.

- Use numerical methods
- Or perform directly maximization, using inequalities, or properties of the function.

Today

- Likelihood Function
- Point Estimator
- Method of Moments Estimator
- Maximum Likelihood Estimator

Summary

Today

- Likelihood Function
- Point Estimator
- Method of Moments Estimator
- Maximum Likelihood Estimator

Next Lecture

Maximum Likelihood Estimator