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GENETIC ARCHITECTURE OF COMPLEX TRAITS 
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A SINGLE MARKER ASSOCIATION TEST 

•  Simplest strategy to detect genetic association  

•  Compare frequencies of particular alleles, or genotypes, in 
set of cases and controls 

•  Typically, use contingency table tests… 
–  Chi-squared Goodness-of-Fit Test 
–  Cochran-Armitage Trend Test 
–  Likelihood Ratio Test 
–  Fisher’s Exact Test 

•  … or regression based tests. 
–  More flexible modeling of covariates 
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MAPPING GENOTYPE-PHENOTYPE ASSOCIATIONS 

350	
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Genotype	

CC	

 AA	


(REF)	
   (ALT)	
  

CA	


(HET)	
  

Geno-­‐
type	
   Cases	
   Ctrls	
   Total	
  

CC	
  
(REF)	
   125	
   125	
   250	
  

CA	
  
(HET)	
   250	
   250	
   500	
  

AA	
  
(ALT)	
   125	
   125	
   250	
  

Total	
   500	
   500	
   1,000	
  

6/19/2014 SEQUENCE ANALYSIS WORKSHOP 2014 11 



MAPPING GENOTYPE-PHENOTYPE ASSOCIATIONS 

350	



100	



150	



200	



250	



300	



Genotype	

CC	

 AA	


(REF)	
   (ALT)	
  

CA	


(HET)	
  

Geno-­‐
type	
   Cases	
   Ctrls	
   Total	
  

CC	
  
(REF)	
   125	
   125	
   250	
  

CA	
  
(HET)	
   250	
   250	
   500	
  

AA	
  
(ALT)	
   125	
   125	
   250	
  

Total	
   500	
   500	
   1,000	
  

ASSOCIATION	
  
IS	
  NOT	
  

SIGNIFICANT	
  

6/19/2014 SEQUENCE ANALYSIS WORKSHOP 2014 12 



MAPPING GENOTYPE-PHENOTYPE ASSOCIATIONS 
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   Ctrls	
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GENOME-WIDE ASSOCIATION STUDIES 
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Saba4	
  et.	
  al	
  (2009)	
  



TEST STATISTIC 
(FOR BALANCED CASE-CONTROL STUDIES) 

•        is observed case allele frequency 

•        is observed control allele frequency 

•  N is the number of cases and controls  
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z =
p̂+ � p̂�p

[p̂+(1� p̂+) + p̂�(1� p̂�)]/(2N)
p̂+

p̂�
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DISTRIBUTION UNDER THE NULL 

•  Under the null hypothesis p+ = p- 

•  Z is distributed as Normal(0, 1) under the null 

•  Using Inverse Normal Cumulative Distribution Function 
  
•  Derive P-value thresholds for target significance level α 

–  α = 0.05 leads to cutoff = 
–  α = 5x10-8  leads to cutoff =    
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���1(0.05/2) = 1.96
���1(5⇥ 10�8/2) = 5.45
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DISTRIBUTION UNDER THE ALTERNATIVE 

•  For a specific set of expected case and control allele 
frequencies.. 

•  We can calculate the expected value of test statistic 

•  Under the alternative, statistic is Normal(µ,1) 
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µ =
p+ � p�p

[p+(1� p+) + p�(1� p�)]/(2N)
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POWER 

•  To calculate power, we first calculate: 
–  Significance threshold C 
–  Expected test statistic µ 

•  Use normal cumulative distribution function Φ 

•  �
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Pr(|Z| > C) = Pr(Z > C) + Pr(Z < �C)

= 1� �(C � µ) + �(�C � µ)

Power	
  calculaBon	
  is	
  important	
  for	
  designing	
  associaBon	
  studies	
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SOURCES OF ASSOCIATION 

•  Causal association 
–  Genetic marker alleles influence susceptibility 

•  Linkage disequilibrium 
–  Genetic marker alleles associated with other nearby 

alleles that influence susceptibility 

•  Population stratification  
–  Genetic marker is unrelated to disease alleles 

best	
  

useful	
  

misleading	
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EXAMPLE OF SPURIOUS ASSOCIATION 
DUE TO POPULATION STRATIFICATION 

PopulaBon	
  1	
   PopulaBon	
  2	
   Combined	
  

Allele	
  Frequencies	
  

	
  	
  p1	
   0.20	
   0.80	
   0.50	
  

	
  	
  p2	
   0.80	
   0.20	
   0.50	
  

Genotype	
  Frequencies	
  

	
  	
  p11	
   0.04	
   0.64	
   0.34	
  (0.25	
  Expected)	
  

	
  	
  p12	
   0.32	
   0.32	
   0.32	
  (0.50	
  Expected)	
  

	
  	
  p22	
   0.64	
   0.04	
   0.40	
  (0.25	
  Expected)	
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EXAMPLE OF SPURIOUS ASSOCIATION 
DUE TO POPULATION STRATIFICATION 
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Allele	
  1	
   Allele	
  2	
  

Affected	
   50	
   200	
  

Unaffected	
   25	
   100	
  

Allele	
  1	
   Allele	
  2	
  

Affected	
   100	
   25	
  

Unaffected	
   200	
   50	
  

Allele	
  1	
   Allele	
  2	
  

Affected	
   150	
   225	
  

Unaffected	
   225	
   150	
  

PopulaBon	
  1	
   PopulaBon	
  2	
  

Combined	
  

χ2	
  =	
  0.00	
  	
  	
  p-­‐value	
  =	
  1.0	
   χ2	
  =	
  0.00	
  	
  	
  p-­‐value	
  =	
  1.0	
  

χ2	
  =	
  29.2	
  	
  	
  p-­‐value	
  =	
  6.5×10-­‐8	
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THE STRATIFICATION PROBLEM HAPPENS.. 

•  If.. 
–  Phenotypes differ between populations 
–  and allele frequencies have drifted apart 

•  Then.. 
–  Unlinked markers exhibit association 
–  Not very useful for gene mapping! 

•  For example, Glaucoma has prevalence of ~2% in 
elderly Caucasians, but ~8% in African-Americans 
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POSSIBLE SOLUTIONS  
FOR POPULATION STRATIFICATION 

•  Avoid stratification by design 
–  Collect a better matched sample by ancestry 
–  Use family-based controls 

•  and apply Transmission Disequilibrium Test (TDT) 

•  Analyze association by population groups 
–  Using self reported ethnicity or genetic markers 
–  Carry out association analysis within each group 

 
•  Account for inflated false-positive rate 

–  Many different ways exist 
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GENOMIC CONTROL 

SEQUENCE ANALYSIS WORKSHOP 2014 

(Figure courtesy Shaun Purcell, Harvard, and Pak Sham, HKU) 
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DEFINE INFLATION FACTOR 

•  Compute chi-squared for each marker 

•  Inflation factor λ 
–  Average observed chi-squared 
–  Median observed chi-squared / 0.456 
–  Should be >= 1 

•  Adjust statistic at candidate markers 
–  Replace χ²biased with χ²fair = χ²biased/λ 
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QUESTIONS 

•  When defining the inflation factor λ … 

•  Why do we use a lower bound of 1? 

•  What might be the advantages of using the median 
rather than the mean? 
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APPLYING GENOMIC CONTROL 

•  Simple and convenient approach… 
–  Easily adapted to other test statistics, such as those 

for quantitative trait and haplotype tests 

•  Under the null, stratification always inflates evidence 
for association… 
–  Is this also true under the alternative? 
–  What might be the consequences? 
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Q-Q PLOTS: A USEFUL DIAGNOSTIC 

SEQUENCE ANALYSIS WORKSHOP 2014 29 
Willer et al, Nature Genetics, 2008 

-­‐log10	
  PercenKle	
  

The genomic control value examines markers with little evidence for 
association. If these large p-values were to deviate from expected,  
there is a problem! In this case, λ=1.02. 

6/19/2014 



PRINCIPAL COMPONENTS MIRROR 
EUROPEAN GEOGRAPHY 
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Novembre	
  et.	
  al.	
  Nature	
  2008	
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CORRECTING FOR POPULATION STRUCTURE 
USING PRINCIPAL COMPONENTS 
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Kang	
  et.	
  al.	
  Nat	
  Genet	
  (2010)	
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VARIANCE COMPONENT MODEL FOR 
FAMILY-BASED ASSOCIATION TEST 

•  Population-based analysis assumes uncorrelated 
phenotypes between individuals under the null 
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y ⇠ N (X�,�2I)
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VARIANCE COMPONENT MODEL FOR 
FAMILY-BASED ASSOCIATION TEST 

•  Population-based analysis assumes uncorrelated 
phenotypes between individuals under the null 

•  Family-based analysis assumes phenotypes are correlated 
with relatives’ phenotypes 
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y ⇠ N (X�,�2I)

y ⇠ N (X�,�2
gK + �2

eI) Kij	
  :	
  kinship	
  coefficient	
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VARIANCE COMPONENT MODEL FOR 
FAMILY-BASED ASSOCIATION TEST 

•  Population-based analysis assumes uncorrelated 
phenotypes between individuals under the null 

•  Family-based analysis assumes phenotypes are correlated 
with relatives’ phenotypes 

•  Similar model for population-based analysis to account 
for distant relationship inferred from dense SNP arrays 
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y ⇠ N (X�,�2I)

y ⇠ N (X�,�2
gK + �2

eI) Kij	
  :	
  kinship	
  coefficient	
  

y ⇠ N (X�,�2
gK̂ + �2

eI) 	
  	
  	
  	
  :	
  marker-­‐based	
  	
  
	
  	
  	
  	
  	
  	
  kinship	
  coefficient	
  

K̂ij
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GENOME-WIDE ASSOCIATION OF HUMAN HEIGHT 

¤  NFBC	
  1966	
  birth	
  cohort	
  

¤  Saba;	
  et	
  al,	
  Nat	
  Genet	
  (2008)	
  
41:35-­‐46	
  

¤  Illumina	
  370,000	
  SNPs	
  

¤  5,326	
  unrelated	
  individuals	
  

uncorrected	
  λGC	
  =	
  1.187	
  	
  	
  
95%	
  CI	
  :	
  0.992	
  ~	
  1.008	
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UNCORRECTED ANALYSIS 
- OVERDISPERSION OF TEST STATISTICS - 

uncorrected	
  λGC	
  =	
  1.187	
  	
  	
  

Devlin	
  &	
  Roeder	
  Biometrics	
  (1999)	
  55:997-­‐1004	
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CONDITIONING ON PRINCIPAL COMPONENTS 
- OVERDISPERSION STILL EXISTS - 

¤  G	
  is	
  top	
  k(=100)	
  eigenvectors	
  of	
  
kinship	
  matrix	
  K	
  

¤  λGC	
  from	
  1.187	
  to	
  1.074	
  	
  

¤  λGC	
  is	
  sKll	
  substanKally	
  higher	
  than	
  
expected	
  

¤  Corrects	
  for	
  populaKon	
  structure,	
  
but	
  not	
  hidden	
  relatedness	
  

100 PCs λGC = 1.074	


uncorrected	
  λGC	
  =	
  1.187	
  	
  	
  

Price	
  AL	
  et	
  al,	
  Nat	
  Genet	
  (2006)	
  38:904-­‐909	
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VARIANCE COMPONENT MODEL 
- OVERDISPERSION RESOLVED - 

100 PCs λGC = 1.074	


uncorrected	
  λGC	
  =	
  1.187	
  	
  	
  

EMMAX λGC = 1.003	


95%	
  CI	
  :	
  0.992	
  ~	
  1.008	
  

¤  Using	
  EMMAX	
  reduced	
  λGC	
  
from	
  1.187	
  to	
  1.003	
  	
  

¤  λGC	
  falls	
  into	
  95%	
  confidence	
  
intervals	
  

Kang	
  HM	
  et	
  al,	
  Nat	
  Genet	
  (2010)	
  42:348-­‐54	
  
SEQUENCE ANALYSIS WORKSHOP 2014 38 6/19/2014 



SUMMARY 

•  Genome-wide single variant test can identify regions of 
genome associated with disease traits 

•  Understanding power of your study design based on the 
genetic architecture of traits are important. 

•  Accounting for population structure and cryptic 
relatedness is important to avoid misleading results 
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RARE VARIANT BURDEN TESTS 

BIOSTATISTICS 666 
STATISTICAL METHODS IN HUMAN GENETICS 



POWER TO DETECT VARIANTS 
FROM SEQUENCE DATA  
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WHY STUDY RARE VARIANTS? 

COMPLETE GENETIC ARCHITECTURE OF EACH TRAIT 

•  Are there additional susceptibility loci to be found? 
•  What is the contribution of each identified locus to a trait? 

–  Sequencing, imputation and new arrays describe variation more fully 
–  Rare variants are plentiful and should identify new susceptibility loci 

 
UNDERSTAND FUNCTION LINKING EACH LOCUS TO A TRAIT 

•  Do we have new targets for therapy?  
What happens in gene knockouts? 
–  Use sequencing to find rare human “knockout” alleles 
–  Good: Results may be more clear than for animal studies 
–  Bad: Naturally occurring knockout alleles are extremely rare 
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WHY STUDY RARE VARIANTS? 

COMPLETE GENETIC ARCHITECTURE OF EACH TRAIT 

•  Are there additional susceptibility loci to be found? 
•  What is the contribution of each identified locus to a trait? 

–  Sequencing, imputation and new arrays  describe variation more 
fully 

–  Rare variants are plentiful and should identify new susceptibility 
loci 

 
UNDERSTAND FUNCTION LINKING EACH LOCUS TO A TRAIT 

•  Do we have new targets for therapy?  
What happens in gene knockouts? 
–  Use sequencing to find rare human “knockout” alleles 
–  Good: Results may be more clear than for animal studies 
–  Bad: Naturally occurring knockout alleles are extremely rare 

Coding	
  Variants	
  Especially	
  Useful!	
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LOTS OF RARE FUNCTIONAL VARIANTS TO DISCOVER 

SET	
   #	
  SNPs	
   Singletons	
   Doubletons	
   Tripletons	
   >3	
  Occurrences	
  

Synonymous	
   270,263	
   128,319	
  
(47%)	
  

29,340	
  
(11%)	
  

13,129	
  
(5%)	
  

99,475	
  
(37%)	
  

Nonsynonymous	
   410,956	
   234,633	
  
(57%)	
  

46,740	
  
(11%)	
  

19,274	
  
(5%)	
  

110,309	
  
(27%)	
  

Nonsense	
   8,913	
   6,196	
  
(70%)	
  

926	
  
(10%)	
  

326	
  
(4%)	
  

1,465	
  
(16%)	
  

Non-­‐Syn	
  /	
  Syn	
  
RaKo	
   1.8	
  to	
  1	
   1.6	
  to	
  1	
   1.4	
  to	
  1	
   1.1	
  to	
  1	
  

There	
  is	
  	
  a	
  very	
  large	
  reservoir	
  of	
  extremely	
  rare,	
  likely	
  funcKonal,	
  coding	
  variants.	
  

NHLBI	
  Exome	
  Sequencing	
  Project	
  
SEQUENCE ANALYSIS WORKSHOP 2014 44 6/19/2014 



GENOME SCALE APPROACHES  
TO STUDY RARE VARIATION 

•  Deep whole genome sequencing 
–  Can only be applied to limited numbers of samples 
–  Most complete ascertainment of variation 

•  Exome capture and targeted sequencing 
–  Can be applied to moderate numbers of samples 
–  SNPs and indels in the most interesting 1% of the genome 

•  Low coverage whole genome sequencing 
–  Can be applied to moderate numbers of samples 
–  Very complete ascertainment of shared variation 

•  New Genotyping Arrays and/or Genotype Imputation 
–  Examine low frequency coding variants in 100,000s of samples 
–  Current catalogs include 97-98% of sites detectable by sequencing an 

individual 
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GENOME SCALE APPROACHES  
TO STUDY RARE VARIATION 

•  Deep whole genome sequencing 
–  Can only be applied to limited numbers of samples 
–  Most complete ascertainment of variation 

•  Exome capture and targeted sequencing 
–  Can be applied to moderate numbers of samples 
–  SNPs and indels in the most interesting 1% of the genome 

•  Low coverage whole genome sequencing 
–  Can be applied to moderate numbers of samples 
–  Very complete ascertainment of shared variation 

•  New Genotyping Arrays and/or Genotype Imputation 
–  Examine low frequency coding variants in 100,000s of samples 
–  Current catalogs include 97-98% of sites detectable by sequencing an 

individual 

Our	
  Focus	
  For	
  Today	
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SNPS PER INDIVIDUAL 

European	
  
Ancestry	
   #	
  SNP	
   #	
  HET	
   #	
  ALT	
   #	
  Singletons	
   Ts/Tv	
  

SILENT	
   10127	
   6174	
   3953	
   38.2	
   5.10	
  
MISSENSE	
   8541	
   5184	
   3357	
   72.2	
   2.16	
  
NONSENSE	
   86	
   57	
   29	
   2.1	
   1.70	
  

African	
  
Ancestry	
   #	
  SNP	
   #	
  HET	
   #	
  ALT	
   #	
  Singletons	
   Ts/Tv	
  

SILENT	
   12028	
   8038	
   3990	
   53.2	
   5.19	
  
MISSENSE	
   9870	
   6502	
   3367	
   94.2	
   2.16	
  
NONSENSE	
   92	
   57	
   35	
   2.4	
   1.57	
  

Primarily	
  European	
  Ancestry	
  

Primarily	
  African	
  Ancestry	
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ASSOCIATION TEST OF SINGLE RARE VARIANT 

•  Consider variant with frequency of ~0.001 

•  Significance level of 5x10-6 
–  Corresponds to ~100,000 independent tests 

•  Disease prevalence of ~10% 

•  Detecting a two-fold increase in risk, requires  
~33,000 cases and ~33,000 controls! 

•  Detecting a three-fold increase in risk requires 
~11,000 cases and ~11,000 controls! 
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RARE VARIANT ASSOCIATION TESTING 

•  Consider variant with frequency of ~0.001 

•  Significance level of 5x10-6 
–  Corresponds to ~100,000 independent tests 

•  Disease prevalence of ~10% 

•  Detecting a two-fold increase in risk, requires  
~33,000 cases and ~33,000 controls! 

•  Detecting a three-fold increase in risk requires 
~11,000 cases and ~11,000 controls! 

	
  
Power	
  Depends	
  Both	
  On:	
  

	
  
Frequency	
  
Effect	
  Size	
  

	
  
Even	
  with	
  large	
  effects,	
  rare	
  variants	
  
can	
  only	
  be	
  detected	
  in	
  large	
  samples	
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COLLAPSING RARE VARIANTS 

•  Instead of testing rare variants individually, group variants 
likely to have similar function 

•  Score presence or absence of rare variants per individual 
–  Use rare variant score to predict trait values 

•  If all variants are causal, leads to large increase in power 

•  In practice, success depends on: 
–  Number of associated variants, 
–  Number of neutral variants diluting signals 
–  Whether direction of effect is consistent within gene 

Li	
  and	
  Leal	
  (2008)	
  Am	
  J	
  Hum	
  Genet	
  83:311-­‐321	
  SEQUENCE ANALYSIS WORKSHOP 2014 50 6/19/2014 



BURDEN VS. SINGLE VARIANT TESTS 

Single	
  	
  
Variant	
  Test	
  

Combined	
  
Test	
  

10	
  variants	
  /	
  all	
  have	
  risk	
  2	
  /	
  All	
  have	
  frequency	
  .005	
   .05	
   .86	
  

10	
  variants	
  /	
  all	
  have	
  risk	
  2	
  /	
  Unequal	
  Frequencies	
   .20	
   .85	
  

10	
  variants	
  /	
  average	
  risk	
  is	
  2,	
  but	
  varies	
  /	
  frequency	
  .005	
   .11	
   .97	
  

•  Power tabulated in collections of simulated data, for 250 cases and 
250 controls 

•  Combining variants can greatly increase power 

•  Currently, appropriately combining variants is expected to be key 
feature of rare variant studies. 

Li	
  and	
  Leal	
  (2008)	
  Am	
  J	
  Hum	
  Genet	
  83:311-­‐321	
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IMPACT OF NULL ALLELES 

Single	
  	
  
Variant	
  Test	
  

Combined	
  
Test	
  

10	
  disease	
  associated	
  variants	
   .05	
   .86	
  

10	
  disease	
  associated	
  variants	
  +	
  5	
  null	
  variants	
   .04	
   .70	
  

10	
  disease	
  associated	
  variants	
  	
  +	
  10	
  null	
  variants	
   .03	
   .55	
  

10	
  disease	
  associated	
  variants	
  	
  +	
  20	
  null	
  variants	
   .03	
   .33	
  

•  Power tabulated in collections of simulated data 

•  Including non-disease variants reduces power 

•  Power loss is manageable, combined test remains preferable to 
single marker tests 

Li	
  and	
  Leal	
  (2008)	
  Am	
  J	
  Hum	
  Genet	
  83:311-­‐321	
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IMPACT OF MISSING DISEASE ALLELES 

Single	
  	
  
Variant	
  Test	
  

Combined	
  
Test	
  

10	
  disease	
  associated	
  variants	
   .05	
   .86	
  

10	
  disease	
  associated	
  variants,	
  2	
  missed	
   .05	
   .72	
  

10	
  disease	
  associated	
  variants	
  ,	
  4	
  missed	
   .05	
   .52	
  

10	
  disease	
  associated	
  variants	
  ,	
  6	
  missed	
   .04	
   .28	
  

10	
  disease	
  associated	
  variants,	
  8	
  missed	
   .03	
   .08	
  

•  Power tabulated in collections of simulated data 

•  Missing disease associated variants loses power 

Li	
  and	
  Leal	
  (2008)	
  Am	
  J	
  Hum	
  Genet	
  83:311-­‐321	
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EXOME SEQUENCING PROJECT 

•  The NHLBI Exome Sequencing Project is studying heart, 
lung and blood related traits 

•  One of the traits of interest is LDL, a major risk factor 
for cardiovascular disease 

•  Let’s review their preliminary findings, in analysis of  … 
–  400 selected from top and bottom 2% of population 
–  1,600 individuals selected without consideration of 

LDL 
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LDL RESULTS – BURDEN TEST, MAF < 5% 
(LOGISTIC REGRESSION ADJUSTED BY PC1, PC2, AGE, 

GENDER, CENTER) 

UNFILTERED	
   PASS-­‐FILTER	
  

PCSK9	
  
PCSK9	
  

PCSK9	
  (2nd)	
  p	
  =	
  5x10-­‐7	
  
LDLR	
  (162nd)	
  p	
  =	
  0.009	
  

PCSK9	
  (1st)	
  p	
  =	
  5x10-­‐7	
  
LDLR	
  (75th)	
  p	
  =	
  0.006	
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LDL RESULTS – BURDEN TEST, MAF < 0.1% 
(LOGISTIC REGRESSION ADJUSTED BY PC1, PC2, AGE, 

GENDER, CENTER) 

UNFILTERED	
   PASS-­‐FILTER	
  

LDLR	
  (1st)	
  p	
  =	
  3x10-­‐6	
  
PCSK9	
  (30th)	
  p	
  =	
  0.004	
  

LDLR	
  (1st)	
  p	
  =	
  3x10-­‐6	
  
PCSK9	
  (31st)	
  p	
  =	
  0.004	
  

LDLR	
   LDLR	
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LDL RESULTS – BURDEN TEST, MAF < 0.5% 
(LOGISTIC REGRESSION ADJUSTED BY PC1, PC2, AGE, 

GENDER, CENTER) 

UNFILTERED	
   PASS-­‐FILTER	
  

NPC1L1(2nd)	
  p	
  =	
  7x10-­‐5	
  NPC1L1(2nd)	
  p	
  =	
  7x10-­‐5	
  

NPC1L1	
   NPC1L1	
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VARIABLE THRESHOLD TESTS 

•  Different definitions of “rare” lead to different signals 

•  Conducting multiple analyses quickly becomes hard to 
manage 

•  What to do? 

•  Variable threshold tests consider all possible thresholds 
for each gene and search for maximum test statistic 
–  Evaluate significance by permutation 

Price	
  et	
  al	
  (2010)	
  AJHG	
  86:832-­‐838	
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VARIABLE THRESHOLD TESTS 

•  Price et al (2010) originally suggested using 
permutations for evaluating significance of variable 
threshold association tests 

•  Lin and Tang (2011) showed that statistics using 
different thresholds could be described using a 
multivariate normal distribution… 

•  … allowing for p-value calculation without 
permutations. 

Lin	
  and	
  Tang	
  (2011)	
  AJHG	
  89:354-­‐367	
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ADDITIONAL COMPLICATIONS! 

•  What to do if a gene includes some rare alleles that 
increase risk, others that decrease it? 

•  What sort of signal do you expect? 

•  What sort of strategies might identify these signals? 

SEQUENCE ANALYSIS WORKSHOP 2014 60 6/19/2014 



SEQUENCE ANALYSIS WORKSHOP 2014 61 6/19/2014 



SUMMARY 

•  Analysis of individual rare variants requires very large 
samples. 

•  Power may be increased substantially by combining 
information across variants. 
–  Strategy for combining information across variants 

allows for many tweaks. 
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