Variant Calling and Filtering for SNPs

Sequence Analysis Workshop June 17, 2014

> Mary Kate Wing Hyun Min Kang Goo Jun

Goals of This Session

- Learn basics of Variant Call Format (VCF)
- Aligned sequences -> filtered snp calls
- Examine variants at particular genomic positions
- Evaluate quality of SNP calls

Variant Call Format (VCF)

- Describes variant positions
 - http://www.1000genomes.org/wiki/Analysis/Variant%20Call%
 20Format/vcf-variant-call-format-version-41

- Header
 - Each line starts with #
- Records
 - One for each variant position
 - Describes variant
 - Optional per sample genotype information

Variant Call Format: Header

```
##fileformat=VCFv4.1
##filedate=20140615
##source=qlfMultiples
                               Description of INFO, FILTER, &
##minDepth=1
##maxDepth=10000000
                                         FORMAT fields
##minMapQuality=0
##minPosterior=0.5000
##INFO=<ID=DP,Number=1,Type=Integer,Description="Total Depth at Site">
##INFO=<ID=MQ,Number=1,Type=Integer,Description="Root Mean Squared Mapping Quality">
##INFO=<ID=NS,Number=1,Type=Integer,Description="Number of Samples With Coverage">
##INFO=<ID=AN,Number=1,Type=Integer,Description="Number of Alleles in Samples with Coverage">
##INFO=<ID=AC,Number=.,Type=Integer,Description="Alternate Allele Counts in Samples with Coverage">
##INFO=<ID=AF, Number=., Type=Float, Description="Alternate Allele Frequencies">
##INFO=<ID=MQ30,Number=1,Type=Float,Description="Fraction of bases with mapQ<=30">
##FILTER=<ID=mg0,Description="Mapping Quality Below 0">
##FILTER=<ID=dp1,Description="Total Read Depth Below 1">
##FILTER=<ID=DP10000000, Description="Total Read Depth Above 10000000">
##FORMAT=<ID=GT, Number=1, Type=String, Description="Most Likely Genotype">
##FORMAT=<ID=GQ,Number=1,Type=Integer,Description="Genotype Call Quality">
##FORMAT=<ID=DP, Number=1, Type=Integer, Description="Read Depth">
##FORMAT=<ID=PL,Number=.,Type=Integer,Description="Genotype Likelihoods for Genotypes in Phred Scale, [fd
#CHROM POS
                ID
                        REF
                                        QUAL
                                                FILTER INFO
                                                                FORMAT
                                                                        HG00551 HG00553 HG00554 HG00637
                                ALT
```

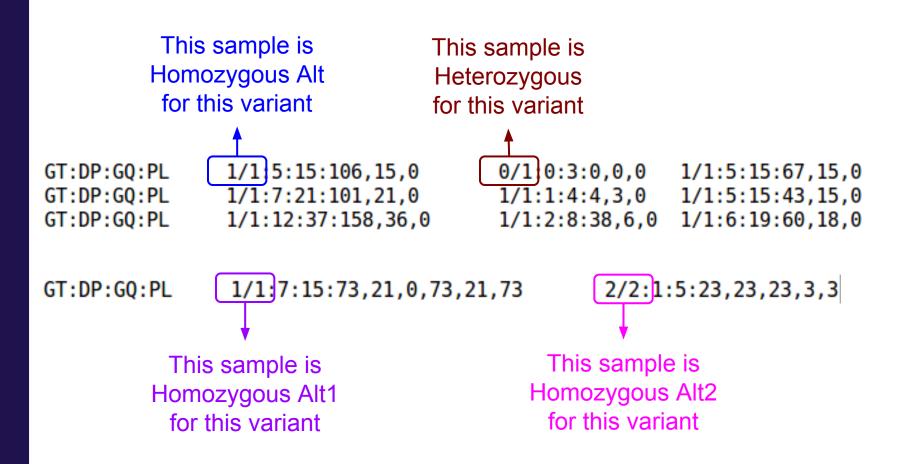
Description of the records fields

Order of per samples genotypes

Variant Call Format: Records

#CHROM	P0S	ID	REF	ALT	QUAL	FILTER	INFO	FORMAT HG00551 HG00553
22	3599993	88		1) A	G	100	PASS	DP=127;MQ=59;NS=53;AN=10
22	3600054	.7		2) A	G	100	PASS	DP=485;MQ=59;NS=62;AN=12
22	3600071	1		3) G	Т	24	PASS	DP=376;MQ=59;NS=61;AN=12
22	3670778	86		4) A	G,C	100	PASS	DP=373;MQ=59;NS=59;AN=11
				٨	ь			

SNPs <u>A</u>: Reference <u>B</u>: Alternate


- 3) Alternate T
- 1) Alternate G 2) Alternate G
 - 4) 2 Alternates bases: G & C

ı		<u>A</u> .	<u>B</u>			
22	16123409	1) G	GA	21	PASS	AC=1; AF=0.0
22	16136754	2) TG	Т	26	PASS	AC=2; AF=0.0
22	16139950	3) G	GA	19	PASS	AC=88; AF=0.
22	16140022	4) AAAGG	Α /	100	PASS	AC=40; AF=0.

INDELs A: Reference B: Alternate

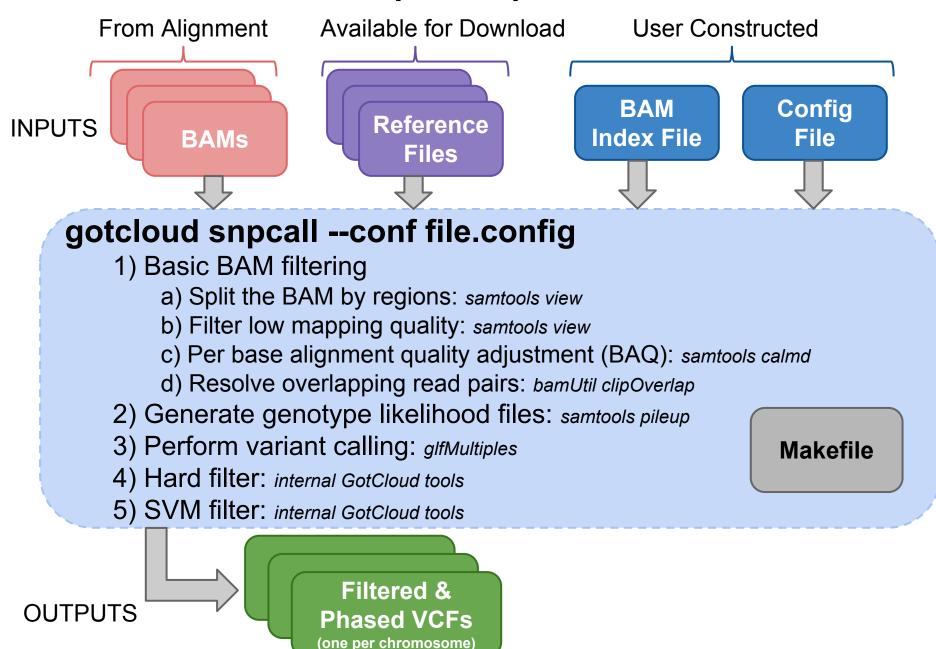
- 1) Insertion of A 2) Deletion of G
- 3) Insertion of A 4) Deletion of AAGG

Variant Call Format: Records

Variant Call Format (VCF)

- It's a large file, how do I look at certain variants?
 - tabix
 - http://samtools.sourceforge.net/tabix.shtml
 - Generate tabix index (.tbi) file:
 - tabix -p vcf file.vcf.gz
 - View region:
 - tabix file.vcf.gz CHR:START-END

Why GotCloud snpcall?


Same reasons as GotCloud align

- All-in-one package for snp calling pipeline
 - You don't have to know the details of individual steps
 - Automates steps for you
- Robust parallelization
 - Automatically partitions chromosomes by regions
 - Takes advantage of clusters
 - Supports MOSIX, slurm, SGE, pbs (flux)
 - Can setup a cluster on Amazon
 - via GNU make
 - Reliable and fault-tolerant
 - Restart where it stopped upon unexpected crash

Why GotCloud snpcall?

- Analyzes many samples together
- Easy to add new samples to your study

GotCloud SnpCall Pipeline Overview

Reference Files

- GotCloud snpcall uses:
 - Reference genome FASTA file
 - To identify differences (SNPs) between bases in sequence reads & the reference positions they mapped
- VCF files
 - indel contains known insertions & deletions to help with filtering
 - o mni used as likely true positives for SVM filtering
 - hapmap used as likely true positives for SVM filtering and for generating summary statistics
 - dbsnp used for generating summary statistics

User Constructed Input: BAM Index File

- Points GotCloud to the BAMs
 - Alignment pipeline generates for you
 - For our tutorial: update it to include more BAMs
- Tab delimited

1) Sample name one row per sample

```
HG00641 ALL
HG00640 ALL
HG00551 ALL
HG00553 ALL
```

3 .. N) BAM - typically only 1 BAM for sample, but if more than one, separate with tabs

```
/home/mktrost/out/bams/HG00641.recal.bam
/home/mktrost/out/bams/HG00640.recal.bam
/home/mktrost/out/bams/HG00551.recal.bam
/home/mktrost/out/bams/HG00553.recal.bam
```

2) Population: alignment pipeline puts "ALL", which is fine.

GotCloud Configuration

```
IN DIR = $(GOTCLOUD ROOT)/../inputs
                                                  Path to input files
INDEX FILE = $(IN DIR)/align.index
FASTQ PREFIX = \$(IN DIR)/fastq
BAM PREFIX = \$(IN DIR)/
                                    For snpcall & indel -> path to rest of BAMs
OUT DIR = out
                                                     Output Information
BAM INDEX = \$(OUT DIR)/bam.index
# References
                                                                     Path to chr22
REF DIR = $(GOTCLOUD ROOT)/../reference/chr22
                                                                     reference files
AS = NCBI37 # Genome assembly identifier
REF = \$(REF DIR)/human.g1k.v37.chr22.fa
DBSNP VCF = \$(REF DIR)/dbsnp 135.b37.chr22.vcf.gz
HM3 VCF = $(REF DIR)/hapmap 3.3.b37.sites.chr22.vcf.gz
INDEL PREFIX = $(REF DIR)/1kg.pilot release.merged.indels.sites.hg19
OMNI VCF = $(REF DIR)/1000G omni2.5.b37.sites.PASS.chr22.vcf.gz
MAP TYPE = BWA MEM
##################
                           chr22 only
CHRS = 22
######## THUNDER #######
                                                   Override default THUNDER command
# Update so it will run faster for the tutorial
                                                       to speed it up for this tutorial.
# * 10 rounds instead of 30 (-r 10)
# * without --compact option
# Runs faster, but uses more memory, but not a lot for the small example
THUNDER = $(BIN DIR)/thunderVCF -r 10 --phase --dosage --inputPhased $(THUNDER STATES)
```

What will I need to configure in GotCloud for my own research?

Exome/Targeted set in your configuration:

```
# Write loci file when performing pileup
WRITE TARGET LOCI = TRUE
# Directory to store target information
TARGET DIR = target
# When all individuals has the same target
UNIFORM TARGET BED = path/to/file.bed
# When each individual has different targets
# Each line of file.txt contains [SM ID] [TARGET BED]
MULTIPLE TARGET MAP = path/to/file.txt
# Extend target by given # of bases
# Set this to what you want or to 0
OFFSET_OFF_TARGET = 50
# If a single chromosome is too small for SVM,
# set this to run SVM on all chromosomes combined
# Only for very small targetted projects
# Exome does not require this
#WGS SVM = TRUE
```

What will I need to configure in GotCloud for my own research?

- Cluster support
 - Via configuration
 - BATCH_TYPE =
 - mosix, pbs, slurm, pbs, sge, slurmi, sgei
 - BATCH_OPTS =
 - Set to any options you would normally pass to your cluster
 - Via command line
 - --batchtype & --batchopts

How good are the results?

\${OUT}/vcfs/chr*/chr*.filtered.sites.vcf.summary

FIL	TER #	SNPs	#dbSNP			%CpG Novel			%nCpG-K Ts/Tv			%HM3 /SNP
	SVM 9 ASS 3	870	9 3741	100.0 96.7	0.0 21.9	NA 17.1	2.36	2.23	0.80 1.94	NA 1.82	2.325	1.786 0.000 12.403 0.000
FIL	TER #	SNPs	#dbSNP			%CpG Novel			%nCpG-K Ts/Tv		%HM3 sens	%HM3 /SNP
	ASS 3	870	3741	96.7	21.9	17.1		2.23	1.94	1.82	2.325	1.538 12.403 0.000
F/	AIL 1	94	171	88.1	21.9 13.5 21.5	13.0	2.49		2.15		2.325 0.005 2.330	12.403 0.515 11.836

MultiAllele Ref/Alt Repeated Positions

Genotype Refinement

- After snpcall, we run genotype refinement
 - improves the genotypes higher quality
 - Beagle & thunder
- Outputs are VCFs
 - thunder breaks up by population

Try it yourself

http://genome.sph.umich.edu/wiki/SeqShop:
_Variant_Calling_and_Filtering_for_SNPs_Practical