Biostatistics 602 - Statistical Inference Lecture 06 Basu's Theorem

Hyun Min Kang

January 29th, 2013

Last Lecture

• What is a complete statistic?

Last Lecture

- 1 What is a complete statistic?
- 2 Why it is called as "complete statistic"?

Last Lecture

- What is a complete statistic?
- Why it is called as "complete statistic"?
- 3 Can the same statistic be both complete and incomplete statistics, depending on the parameter space?

- What is a complete statistic?
- 2 Why it is called as "complete statistic"?
- 3 Can the same statistic be both complete and incomplete statistics, depending on the parameter space?
- What is the relationship between complete and sufficient statistics?

- What is a complete statistic?
- 2 Why it is called as "complete statistic"?
- 3 Can the same statistic be both complete and incomplete statistics, depending on the parameter space?
- 4 What is the relationship between complete and sufficient statistics?
- 5 Is a minimal sufficient statistic always complete?

Definition

Complete Statistics 000000000

> • Let $\mathcal{T} = \{f_T(t|\theta), \theta \in \Omega\}$ be a family of pdfs or pmfs for a statistic T(X).

Definition

- Let $\mathcal{T} = \{f_T(t|\theta), \theta \in \Omega\}$ be a family of pdfs or pmfs for a statistic $T(\mathbf{X})$.
- The family of probability distributions is called complete if

Definition

- Let $\mathcal{T} = \{f_T(t|\theta), \theta \in \Omega\}$ be a family of pdfs or pmfs for a statistic $T(\mathbf{X})$.
- The family of probability distributions is called complete if
- $E[g(T)|\theta] = 0$ for all θ implies $Pr[g(T) = 0|\theta] = 1$ for all θ .

Definition

Complete Statistics 000000000

- Let $\mathcal{T} = \{f_T(t|\theta), \theta \in \Omega\}$ be a family of pdfs or pmfs for a statistic $T(\mathbf{X})$.
- The family of probability distributions is called complete if
- $E[g(T)|\theta] = 0$ for all θ implies $Pr[g(T) = 0|\theta] = 1$ for all θ .
 - In other words, q(T) = 0 almost surely.

Definition

- Let $\mathcal{T} = \{f_T(t|\theta), \theta \in \Omega\}$ be a family of pdfs or pmfs for a statistic $T(\mathbf{X})$.
- The family of probability distributions is called complete if
- $E[g(T)|\theta] = 0$ for all θ implies $\Pr[g(T) = 0|\theta] = 1$ for all θ .
 - In other words, g(T) = 0 almost surely.
- Equivalently, T(X) is called a complete statistic

Example - Poisson distribution

When parameter space is limited - NOT complete

• Suppose $\mathcal{T}=\left\{f_T:f_T(t|\lambda)=rac{\lambda^te^{-\lambda}}{t!}
ight\}$ for $t\in\{0,1,2,\cdots\}$. Let $\lambda \in \Omega = \{1, 2\}$. This family is NOT complete

When parameter space is limited - NOT complete

• Suppose $\mathcal{T}=\left\{f_T:f_T(t|\lambda)=\frac{\lambda^t e^{-\lambda}}{t!}\right\}$ for $t\in\{0,1,2,\cdots\}$. Let $\lambda\in\Omega=\{1,2\}.$ This family is NOT complete

With full parameter space - complete

- $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \text{Poisson}(\lambda), \lambda > 0.$
- $T(\mathbf{X}) = \sum_{i=1}^{n} X_i$ is a complete statistic.

Problem

Let X is a uniform random sample from $\{1, \dots, \theta\}$ where $\theta \in \Omega = \mathbb{N}$.

Problem

Let X is a uniform random sample from $\{1,\cdots,\theta\}$ where $\theta\in\Omega=\mathbb{N}.$ Is T(X)=X a complete statistic?

Problem

Let X is a uniform random sample from $\{1, \dots, \theta\}$ where $\theta \in \Omega = \mathbb{N}$. Is T(X) = X a complete statistic?

Solution

Consider a function q(T) such that $E[q(T)|\theta] = 0$ for all $\theta \in \mathbb{N}$. Note that $f_X(x) = \frac{1}{a}I(x \in \{1, \dots, \theta\}) = \frac{1}{a}I_{\mathbb{N}_a}(x)$.

Problem

Let X is a uniform random sample from $\{1, \dots, \theta\}$ where $\theta \in \Omega = \mathbb{N}$. Is T(X) = X a complete statistic?

Solution

Consider a function q(T) such that $E[q(T)|\theta] = 0$ for all $\theta \in \mathbb{N}$. Note that $f_X(x) = \frac{1}{a}I(x \in \{1, \dots, \theta\}) = \frac{1}{a}I_{\mathbb{N}_a}(x)$.

$$E[g(T)|\theta] = E[g(X)|\theta] = \sum_{x=1}^{\theta} \frac{1}{\theta} g(x) = \frac{1}{\theta} \sum_{x=1}^{\theta} g(x) = 0$$

Problem

Let X is a uniform random sample from $\{1, \dots, \theta\}$ where $\theta \in \Omega = \mathbb{N}$. Is T(X) = X a complete statistic?

Solution

Consider a function q(T) such that $E[q(T)|\theta] = 0$ for all $\theta \in \mathbb{N}$. Note that $f_X(x) = \frac{1}{a}I(x \in \{1, \dots, \theta\}) = \frac{1}{a}I_{\mathbb{N}_a}(x)$.

$$E[g(T)|\theta] = E[g(X)|\theta] = \sum_{x=1}^{\theta} \frac{1}{\theta} g(x) = \frac{1}{\theta} \sum_{x=1}^{\theta} g(x) = 0$$

$$\sum_{x=1}^{\theta} g(x) = 0$$

Solution (cont'd)

for all $\theta \in \mathbb{N}$, which implies

• if
$$\theta = 1$$
, $\sum_{x=1}^{\theta} g(x) = g(1) = 0$

Solution (cont'd)

Complete Statistics 0000000000

for all $\theta \in \mathbb{N}$, which implies

• if
$$\theta = 1$$
, $\sum_{x=1}^{\theta} g(x) = g(1) = 0$

• if
$$\theta = 2$$
, $\sum_{x=1}^{\theta} g(x) = g(1) + g(2) = g(2) = 0$.

Solution (cont'd)

Complete Statistics

0000000000

for all $\theta \in \mathbb{N}$, which implies

• if
$$\theta = 1$$
, $\sum_{x=1}^{\theta} g(x) = g(1) = 0$

• if
$$\theta = 2$$
, $\sum_{x=1}^{\theta} g(x) = g(1) + g(2) = g(2) = 0$.

- if $\theta = k$, $\sum_{x=1}^{\theta} g(x) = q(1) + \dots + q(k-1) + q(2) = q(k) = 0$.

for all $\theta \in \mathbb{N}$, which implies

• if
$$\theta = 1$$
, $\sum_{x=1}^{\theta} g(x) = g(1) = 0$

• if
$$\theta = 2$$
, $\sum_{x=1}^{\theta} g(x) = g(1) + g(2) = g(2) = 0$.

- if $\theta = k$, $\sum_{x=1}^{\theta} g(x) = g(1) + \dots + g(k-1) + g(2) = g(k) = 0$.

Therefore, g(x)=0 for all $x\in\mathbb{N}$, and T(X)=X is a complete statistic for $\theta\in\Omega=\mathbb{N}$.

Is the previous example barely complete?

Modified Problem

Let X is a uniform random sample from $\{1, \cdots, \theta\}$ where $\theta \in \Omega = \mathbb{N} - \{n\}$.

Is the previous example barely complete?

Modified Problem

Let X is a uniform random sample from $\{1, \dots, \theta\}$ where $\theta \in \Omega = \mathbb{N} - \{n\}$. Is T(X) = X a complete statistic?

Modified Problem

Let X is a uniform random sample from $\{1, \cdots, \theta\}$ where $\theta \in \Omega = \mathbb{N} - \{n\}$. Is T(X) = X a complete statistic?

Solution

Define a nonzero g(x) as follows

$$g(x) = \begin{cases} 1 & x = n \\ -1 & x = n+1 \\ 0 & \text{otherwise} \end{cases}$$

Is the previous example barely complete?

Modified Problem

Let X is a uniform random sample from $\{1, \dots, \theta\}$ where $\theta \in \Omega = \mathbb{N} - \{n\}$. Is T(X) = X a complete statistic?

Solution

Complete Statistics 0000000000

Define a nonzero g(x) as follows

$$g(x) = \begin{cases} 1 & x = n \\ -1 & x = n+1 \\ 0 & \text{otherwise} \end{cases}$$

$$E[g(T)|\theta] = \frac{1}{\theta} \sum_{x=1}^{\theta} g(x) = \begin{cases} 0 & \theta \neq n \\ \frac{1}{\theta} & \theta = n \end{cases}$$

Is the previous example barely complete?

Modified Problem

Let X is a uniform random sample from $\{1, \cdots, \theta\}$ where $\theta \in \Omega = \mathbb{N} - \{n\}$. Is T(X) = X a complete statistic?

Solution

Complete Statistics

0000000000

Define a nonzero g(x) as follows

$$g(x) = \begin{cases} 1 & x = n \\ -1 & x = n+1 \\ 0 & \text{otherwise} \end{cases}$$

$$E[g(T)|\theta] = \frac{1}{\theta} \sum_{x=1}^{\theta} g(x) = \begin{cases} 0 & \theta \neq n \\ \frac{1}{\theta} & \theta = n \end{cases}$$

Because Ω does not include n, g(x)=0 for all $\theta\in\Omega=\mathbb{N}-\{n\}$, and T(X)=X is not a complete statistic.

Hyun Min Kang Biostatistics 6

Problem

- Let $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \text{Uniform}(\theta, \theta + 1), \ \theta \in \mathbb{R}$.
- Is $\mathbf{T}(\mathbf{X}) = (X_{(1)}, X_{(n)})$ a complete statistic?

Last Lecture: Ancillary and Complete Statistics

Problem

- Let $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \text{Uniform}(\theta, \theta + 1), \ \theta \in \mathbb{R}$.
- Is $\mathbf{T}(\mathbf{X}) = (X_{(1)}, X_{(n)})$ a complete statistic?

A Simple Proof

• We know that $R = X_{(n)} - X_{(1)}$ is an ancillary statistic, which do not depend on θ .

Problem

- Let $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \text{Uniform}(\theta, \theta + 1), \ \theta \in \mathbb{R}$.
- Is $\mathbf{T}(\mathbf{X}) = (X_{(1)}, X_{(n)})$ a complete statistic?

A Simple Proof

- We know that $R=X_{(n)}-X_{(1)}$ is an ancillary statistic, which do not depend on θ .
- Define $g(\mathbf{T}) = X_{(n)} X_{(1)} E(R)$. Note that E(R) is constant to θ .

Problem

- Let $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \text{Uniform}(\theta, \theta + 1), \ \theta \in \mathbb{R}$.
- Is $\mathbf{T}(\mathbf{X}) = (X_{(1)}, X_{(n)})$ a complete statistic?

A Simple Proof

- We know that $R=X_{(n)}-X_{(1)}$ is an ancillary statistic, which do not depend on θ .
- Define $g(\mathbf{T}) = X_{(n)} X_{(1)} E(R)$. Note that E(R) is constant to θ .
- Then $E[g(\mathbf{T})|\theta] = E(R) E(R) = 0$, so T is not a complete statistic.

Fact

For a statistic $T(\mathbf{X})$, If a non-constant function of T, say r(T) is ancillary, then $T(\mathbf{X})$ cannot be complete

Useful Fact 1: Ancillary and Complete Statistics

Fact

For a statistic $T(\mathbf{X})$, If a non-constant function of T, say r(T) is ancillary, then $T(\mathbf{X})$ cannot be complete

Proof

Define g(T)=r(T)-E[r(T)], which does not depend on the parameter θ because r(T) is ancillary.

Useful Fact 1: Ancillary and Complete Statistics

Fact

For a statistic $T(\mathbf{X})$, If a non-constant function of T, say r(T) is ancillary, then $T(\mathbf{X})$ cannot be complete

Proof

Define g(T)=r(T)-E[r(T)], which does not depend on the parameter θ because r(T) is ancillary. Then $E[g(T)|\theta]=0$ for a non-zero function g(T), and $T(\mathbf{X})$ is not a complete statistic.

Useful Fact 2 : Arbitrary Function of Complete Statistics

Fact

If $T(\mathbf{X})$ is a complete statistic, then a function of T, say $T^*=r(T)$ is also complete.

Useful Fact 2: Arbitrary Function of Complete Statistics

Fact

If $T(\mathbf{X})$ is a complete statistic, then a function of T, say $T^* = r(T)$ is also complete.

Proof

$$E[g(T^*)|\theta] = E[g \circ r(T)|\theta]$$

Useful Fact 2: Arbitrary Function of Complete Statistics

Fact

If $T(\mathbf{X})$ is a complete statistic, then a function of T, say $T^* = r(T)$ is also complete.

Proof

$$E[g(T^*)|\theta] = E[g \circ r(T)|\theta]$$

Assume that $E[g(T^*)|\theta] = 0$ for all θ ,

Useful Fact 2: Arbitrary Function of Complete Statistics

Fact

If $T(\mathbf{X})$ is a complete statistic, then a function of T, say $T^* = r(T)$ is also complete.

Proof

$$E[g(T^*)|\theta] = E[g \circ r(T)|\theta]$$

Assume that $E[g(T^*)|\theta] = 0$ for all θ , then $E[g \circ r(T)|\theta] = 0$ holds for all θ too.

Fact

If $T(\mathbf{X})$ is a complete statistic, then a function of T, say $T^*=r(T)$ is also complete.

Proof

$$E[g(T^*)|\theta] = E[g \circ r(T)|\theta]$$

Assume that $E[g(T^*)|\theta]=0$ for all θ , then $E[g\circ r(T)|\theta]=0$ holds for all θ too. Because $T(\mathbf{X})$ is a complete statistic,

Fact

If $T(\mathbf{X})$ is a complete statistic, then a function of T, say $T^*=r(T)$ is also complete.

Proof

$$E[g(T^*)|\theta] = E[g \circ r(T)|\theta]$$

Assume that $E[g(T^*)|\theta]=0$ for all θ , then $E[g\circ r(T)|\theta]=0$ holds for all θ too. Because $T(\mathbf{X})$ is a complete statistic, $\Pr[g\circ r(T)=0]=1,\ \forall \theta\in\Omega.$ Therefore $\Pr[g(T^*)=0]=1$, and T^* is a complete statistic.

Theorem 6.2.28 - Lehman and Schefle (1950)

The textbook version

If a minimal sufficient statistic exists, then any complete statistic is also a minimal sufficient statistic.

The textbook version

If a minimal sufficient statistic exists, then any complete statistic is also a minimal sufficient statistic.

Paraphrased version

Any complete, and sufficient statistic is also a minimal sufficient statistic

Theorem 6.2.28 - Lehman and Schefle (1950)

The textbook version

If a minimal sufficient statistic exists, then any complete statistic is also a minimal sufficient statistic.

Paraphrased version

Any complete, and sufficient statistic is also a minimal sufficient statistic

The converse is NOT true

A minimal sufficient statistic is not necessarily complete. (Recall the example in the last lecture).

Theorem 6.2.24

If $T(\mathbf{X})$ is a complete sufficient statistic, then $T(\mathbf{X})$ is independent of every ancillary statistic.

Theorem 6.2.24

If $T(\mathbf{X})$ is a complete sufficient statistic, then $T(\mathbf{X})$ is independent of every ancillary statistic.

•00000000

Proof strategy - for discrete case

Suppose that $S(\mathbf{X})$ is an ancillary statistic. We want to show that

$$\Pr(S(\mathbf{X}) = s | T(\mathbf{X}) = t) = \Pr(S(\mathbf{X}) = s), \ \forall t \in \mathcal{T}$$

Theorem 6.2.24

If $T(\mathbf{X})$ is a complete sufficient statistic, then $T(\mathbf{X})$ is independent of every ancillary statistic.

Proof strategy - for discrete case

Suppose that $S(\mathbf{X})$ is an ancillary statistic. We want to show that

$$\Pr(S(\mathbf{X}) = s | T(\mathbf{X}) = t) = \Pr(S(\mathbf{X}) = s), \ \forall t \in \mathcal{T}$$

Alternatively, we can show that

$$Pr(T(\mathbf{X}) = t | S(\mathbf{X}) = s) = Pr(T(\mathbf{X}) = t)$$

- 《ロ》 《御》 《意》 《意》 - 意 - 釣ので

Theorem 6.2.24

If $T(\mathbf{X})$ is a complete sufficient statistic, then $T(\mathbf{X})$ is independent of every ancillary statistic.

Proof strategy - for discrete case

Suppose that $S(\mathbf{X})$ is an ancillary statistic. We want to show that

$$\Pr(S(\mathbf{X}) = s | T(\mathbf{X}) = t) = \Pr(S(\mathbf{X}) = s), \ \forall t \in \mathcal{T}$$

Alternatively, we can show that

$$\Pr(T(\mathbf{X}) = t | S(\mathbf{X}) = s) = \Pr(T(\mathbf{X}) = t)$$

$$\Pr(T(\mathbf{X}) = t \land S(\mathbf{X}) = s) = \Pr(T(\mathbf{X}) = t) \Pr(S(\mathbf{X}) = s)$$

• As $S(\mathbf{X})$ is ancillary, by definition, it does not depend on θ .

As $S(\mathbf{X})$ is ancillary, by definition, it does not depend on θ .

00000000

As $T(\mathbf{X})$ is sufficient, by definition, $f_{\mathbf{X}}(\mathbf{X}|T(\mathbf{X}))$ is independent of θ .

- As $S(\mathbf{X})$ is ancillary, by definition, it does not depend on θ .
- As T(X) is sufficient, by definition, f_X(X|T(X)) is independent of θ.
- Because $S(\mathbf{X})$ is a function of \mathbf{X} , $\Pr(S_{\mathbf{X}}|T(\mathbf{X}))$ is also independent of θ .

- As $S(\mathbf{X})$ is ancillary, by definition, it does not depend on θ .
- As $T(\mathbf{X})$ is sufficient, by definition, $f_{\mathbf{X}}(\mathbf{X}|T(\mathbf{X}))$ is independent of θ .
- Because $S(\mathbf{X})$ is a function of \mathbf{X} , $\Pr(S_{\mathbf{X}}|T(\mathbf{X}))$ is also independent of θ .
- We need to show that $\Pr(S(\mathbf{X}) = s | T(\mathbf{X}) = t) = \Pr(S(\mathbf{X}) = s), \ \forall t \in \mathcal{T}.$

$$\Pr(S(\mathbf{X}) = s | \theta) = \sum_{t \in \mathcal{T}} \Pr(S(\mathbf{X}) = s | T(\mathbf{X}) = t) \Pr(T(\mathbf{X}) = t | \theta)$$
 (1)

$$\Pr(S(\mathbf{X}) = s | \theta) = \sum_{t \in \mathcal{T}} \Pr(S(\mathbf{X}) = s | T(\mathbf{X}) = t) \Pr(T(\mathbf{X}) = t | \theta)$$
 (1)

$$\Pr(S(\mathbf{X}) = s | \theta) = \Pr(S(\mathbf{X}) = s) \sum_{t \in \mathcal{T}} \Pr(T(\mathbf{X}) = t | \theta)$$
 (2)

$$\Pr(S(\mathbf{X}) = s | \theta) = \sum_{t \in \mathcal{T}} \Pr(S(\mathbf{X}) = s | T(\mathbf{X}) = t) \Pr(T(\mathbf{X}) = t | \theta)$$
 (1)

$$\Pr(S(\mathbf{X}) = s | \theta) = \Pr(S(\mathbf{X}) = s) \sum_{t \in \mathcal{T}} \Pr(T(\mathbf{X}) = t | \theta)$$

$$= \sum_{t \in \mathcal{T}} \Pr(S(\mathbf{X}) = s) \Pr(T(\mathbf{X}) = t | \theta)$$
(2)

$$\Pr(S(\mathbf{X}) = s | \theta) = \sum_{t \in \mathcal{T}} \Pr(S(\mathbf{X}) = s | T(\mathbf{X}) = t) \Pr(T(\mathbf{X}) = t | \theta)$$
 (1)

$$\Pr(S(\mathbf{X}) = s | \theta) = \Pr(S(\mathbf{X}) = s) \sum_{t \in \mathcal{T}} \Pr(T(\mathbf{X}) = t | \theta)$$
 (2)

$$= \sum_{t \in \mathcal{T}} \Pr(S(\mathbf{X}) = s) \Pr(T(\mathbf{X}) = t | \theta)$$
 (3)

Define
$$g(t) = \Pr(S(\mathbf{X}) = s | T(\mathbf{X}) = t) - \Pr(S(\mathbf{X}) = s)$$
.

$$\Pr(S(\mathbf{X}) = s | \theta) = \sum_{t \in \mathcal{T}} \Pr(S(\mathbf{X}) = s | T(\mathbf{X}) = t) \Pr(T(\mathbf{X}) = t | \theta)$$
 (1)

$$\Pr(S(\mathbf{X}) = s | \theta) = \Pr(S(\mathbf{X}) = s) \sum_{t \in \mathcal{T}} \Pr(T(\mathbf{X}) = t | \theta)$$
 (2)

$$= \sum_{t \in \mathcal{T}} \Pr(S(\mathbf{X}) = s) \Pr(T(\mathbf{X}) = t | \theta)$$
 (3)

Define
$$g(t) = \Pr(S(\mathbf{X}) = s | T(\mathbf{X}) = t) - \Pr(S(\mathbf{X}) = s)$$
. Taking (1)-(3),

$$\sum_{t \in \mathcal{T}} \left[\Pr(S(\mathbf{X}) = s | T(\mathbf{X}) = t) - \Pr(S(\mathbf{X}) = s) \right] \Pr(T(\mathbf{X}) = t | \theta) = 0$$

$$\Pr(S(\mathbf{X}) = s | \theta) = \sum_{t \in \mathcal{T}} \Pr(S(\mathbf{X}) = s | T(\mathbf{X}) = t) \Pr(T(\mathbf{X}) = t | \theta)$$
 (1)

$$\Pr(S(\mathbf{X}) = s | \theta) = \Pr(S(\mathbf{X}) = s) \sum_{t \in \mathcal{T}} \Pr(T(\mathbf{X}) = t | \theta)$$
 (2)

$$= \sum_{t \in \mathcal{T}} \Pr(S(\mathbf{X}) = s) \Pr(T(\mathbf{X}) = t | \theta)$$
 (3)

Define
$$g(t) = \Pr(S(\mathbf{X}) = s | T(\mathbf{X}) = t) - \Pr(S(\mathbf{X}) = s)$$
. Taking (1)-(3),

$$\sum_{t \in \mathcal{T}} \left[\Pr(S(\mathbf{X}) = s | T(\mathbf{X}) = t) - \Pr(S(\mathbf{X}) = s) \right] \Pr(T(\mathbf{X}) = t | \theta) = 0$$

$$\sum_{t \in \mathcal{T}} g(t) \Pr(T(\mathbf{X}) = t | \theta) = E[g(T(\mathbf{X})) | \theta] = 0$$

$$\Pr(S(\mathbf{X}) = s | \theta) = \sum_{t \in \mathcal{T}} \Pr(S(\mathbf{X}) = s | T(\mathbf{X}) = t) \Pr(T(\mathbf{X}) = t | \theta)$$
 (1)

$$\Pr(S(\mathbf{X}) = s | \theta) = \Pr(S(\mathbf{X}) = s) \sum_{t \in \mathcal{T}} \Pr(T(\mathbf{X}) = t | \theta)$$
 (2)

$$= \sum_{t \in \mathcal{T}} \Pr(S(\mathbf{X}) = s) \Pr(T(\mathbf{X}) = t | \theta)$$
 (3)

Define
$$g(t) = \Pr(S(\mathbf{X}) = s | T(\mathbf{X}) = t) - \Pr(S(\mathbf{X}) = s)$$
. Taking (1)-(3),

$$\sum_{t \in \mathcal{T}} \left[\Pr(S(\mathbf{X}) = s | T(\mathbf{X}) = t) - \Pr(S(\mathbf{X}) = s) \right] \Pr(T(\mathbf{X}) = t | \theta) = 0$$

$$\sum_{t \in \mathcal{T}} g(t) \Pr(T(\mathbf{X}) = t | \theta) = E[g(T(\mathbf{X})) | \theta] = 0$$

Because $T(\mathbf{X})$ is a complete statistic,

<ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 る の へ ○ < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回

$$\Pr(S(\mathbf{X}) = s | \theta) = \sum_{t \in \mathcal{T}} \Pr(S(\mathbf{X}) = s | T(\mathbf{X}) = t) \Pr(T(\mathbf{X}) = t | \theta)$$
 (1)

$$\Pr(S(\mathbf{X}) = s | \theta) = \Pr(S(\mathbf{X}) = s) \sum_{t \in \mathcal{T}} \Pr(T(\mathbf{X}) = t | \theta)$$
 (2)

$$= \sum_{t \in \mathcal{T}} \Pr(S(\mathbf{X}) = s) \Pr(T(\mathbf{X}) = t | \theta)$$
 (3)

Define
$$g(t) = \Pr(S(\mathbf{X}) = s | T(\mathbf{X}) = t) - \Pr(S(\mathbf{X}) = s)$$
. Taking (1)-(3),

$$\sum_{t \in \mathcal{T}} \left[\Pr(S(\mathbf{X}) = s | T(\mathbf{X}) = t) - \Pr(S(\mathbf{X}) = s) \right] \Pr(T(\mathbf{X}) = t | \theta) = 0$$

$$\sum_{t \in \mathcal{T}} g(t) \Pr(T(\mathbf{X}) = t | \theta) = E[g(T(\mathbf{X})) | \theta] = 0$$

Because $T(\mathbf{X})$ is a complete statistic, it implies that g(t)=0 almost surely for all possible $t\in\mathcal{T}$

$$\Pr(S(\mathbf{X}) = s | \theta) = \sum_{t \in \mathcal{T}} \Pr(S(\mathbf{X}) = s | T(\mathbf{X}) = t) \Pr(T(\mathbf{X}) = t | \theta)$$
 (1)

$$\Pr(S(\mathbf{X}) = s | \theta) = \Pr(S(\mathbf{X}) = s) \sum_{t \in \mathcal{T}} \Pr(T(\mathbf{X}) = t | \theta)$$
 (2)

$$= \sum_{t \in \mathcal{T}} \Pr(S(\mathbf{X}) = s) \Pr(T(\mathbf{X}) = t | \theta)$$
 (3)

Define
$$g(t) = \Pr(S(\mathbf{X}) = s | T(\mathbf{X}) = t) - \Pr(S(\mathbf{X}) = s)$$
. Taking (1)-(3),

$$\sum_{t \in \mathcal{T}} \left[\Pr(S(\mathbf{X}) = s | T(\mathbf{X}) = t) - \Pr(S(\mathbf{X}) = s) \right] \Pr(T(\mathbf{X}) = t | \theta) = 0$$

$$\sum_{t \in \mathcal{T}} g(t) \Pr(T(\mathbf{X}) = t | \theta) = E[g(T(\mathbf{X})) | \theta] = 0$$

Because $T(\mathbf{X})$ is a complete statistic, it implies that g(t) = 0 almost surely for all possible $t \in \mathcal{T}$ Therefore $S(\mathbf{Y})$ is independent of $T(\mathbf{Y})$

Problem

• $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \text{Uniform}(0, \theta).$

Problem

- $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \text{Uniform}(0, \theta).$
- Calculate $E\left[\frac{X_{(1)}}{X_{(n)}}\right]$ and $E\left[\frac{X_{(1)}+X_{(2)}}{X_{(n)}}\right]$

Problem

- $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \text{Uniform}(0, \theta).$
- Calculate $E\left[\frac{X_{(1)}}{X_{(n)}}\right]$ and $E\left[\frac{X_{(1)}+X_{(2)}}{X_{(n)}}\right]$

A strategy for the solution

• We know that $X_{(n)}$ is sufficient statistic.

Problem

- $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \text{Uniform}(0, \theta).$
- Calculate $E\left[\frac{X_{(1)}}{X_{(n)}}\right]$ and $E\left[\frac{X_{(1)}+X_{(2)}}{X_{(n)}}\right]$

A strategy for the solution

- We know that $X_{(n)}$ is sufficient statistic.
- We know that $X_{(n)}$ is complete, too.

Problem

- $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \text{Uniform}(0, \theta).$
- Calculate $E\left[\frac{X_{(1)}}{X_{(n)}}\right]$ and $E\left[\frac{X_{(1)}+X_{(2)}}{X_{(n)}}\right]$

A strategy for the solution

- We know that $X_{(n)}$ is sufficient statistic.
- We know that $X_{(n)}$ is complete, too.
- We can easily show that $X_{(1)}/X_{(n)}$ is an ancillary statistic.

Problem

- $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \text{Uniform}(0, \theta).$
- Calculate $E\left[\frac{X_{(1)}}{X_{(n)}}\right]$ and $E\left[\frac{X_{(1)}+X_{(2)}}{X_{(n)}}\right]$

A strategy for the solution

- We know that $X_{(n)}$ is sufficient statistic.
- We know that $X_{(n)}$ is complete, too.
- We can easily show that $X_{(1)}/X_{(n)}$ is an ancillary statistic.
- Then we can leverage Basu's Theorem for the calculation.

$$f_X(x|\theta) = \frac{1}{\theta}I(0 < x < \theta)$$

$$f_X(x|\theta) = \frac{1}{\theta}I(0 < x < \theta)$$

Let $y = x/\theta$, then $|dx/dy| = \theta$, and $Y \sim \text{Uniform}(0, 1)$.

000000000

Showing that $X_{(1)}/X_{(n)}$ is Ancillary

$$f_X(x|\theta) = \frac{1}{\theta}I(0 < x < \theta)$$

Let $y = x/\theta$, then $|dx/dy| = \theta$, and $Y \sim \text{Uniform}(0, 1)$.

$$f_Y(y|\theta) = I(0 < y < 1)$$

Showing that $X_{(1)}/X_{(n)}$ is Ancillary

$$f_X(x|\theta) = \frac{1}{\theta}I(0 < x < \theta)$$

Let $y = x/\theta$, then $|dx/dy| = \theta$, and $Y \sim \text{Uniform}(0, 1)$.

$$\begin{array}{rcl} f_Y(y|\theta) & = & I(0 < y < 1) \\ \frac{X_{(1)}}{X_{(n)}} & = & \frac{Y_{(1)}}{Y_{(n)}} \end{array}$$

Showing that $X_{(1)}/X_{(n)}$ is Ancillary

$$f_X(x|\theta) = \frac{1}{\theta}I(0 < x < \theta)$$

Let $y = x/\theta$, then $|dx/dy| = \theta$, and $Y \sim \text{Uniform}(0, 1)$.

$$f_Y(y|\theta) = I(0 < y < 1)$$

$$\frac{X_{(1)}}{X_{(n)}} = \frac{Y_{(1)}}{Y_{(n)}}$$

Because the distribution of Y_1, \cdots, Y_n does not depend on θ , $X_{(1)}/X_{(n)}$ is an ancillary statistic for θ .

• By Basu's Theorem, $X_{(1)}/X_{(n)}$ is independent of $X_{(n)}$.

- By Basu's Theorem, $X_{(1)}/X_{(n)}$ is independent of $X_{(n)}$.
- If X and Y are independent, E(XY) = E(X)E(Y).

Applying Basu's Theorem

- By Basu's Theorem, $X_{(1)}/X_{(n)}$ is independent of $X_{(n)}$.
- If X and Y are independent, E(XY) = E(X)E(Y).

$$E[X_{(1)}] = E\left[\frac{X_{(1)}}{X_{(n)}}X_{(n)}\right]$$

Applying Basu's Theorem

- By Basu's Theorem, $X_{(1)}/X_{(n)}$ is independent of $X_{(n)}$.
- If X and Y are independent, E(XY) = E(X)E(Y).

$$E[X_{(1)}] = E\left[\frac{X_{(1)}}{X_{(n)}}X_{(n)}\right] = E\left[\frac{X_{(1)}}{X_{(n)}}\right]E[X_{(n)}]$$

- By Basu's Theorem, $X_{(1)}/X_{(n)}$ is independent of $X_{(n)}$.
- If X and Y are independent, E(XY) = E(X)E(Y).

000000000

$$\begin{split} E[X_{(1)}] &= E\left[\frac{X_{(1)}}{X_{(n)}}X_{(n)}\right] = E\left[\frac{X_{(1)}}{X_{(n)}}\right]E\left[X_{(n)}\right] \\ E\left[\frac{X_{(1)}}{X_{(n)}}\right] \end{split}$$

- By Basu's Theorem, $X_{(1)}/X_{(n)}$ is independent of $X_{(n)}$.
- If X and Y are independent, E(XY) = E(X)E(Y).

$$E[X_{(1)}] = E\left[\frac{X_{(1)}}{X_{(n)}}X_{(n)}\right] = E\left[\frac{X_{(1)}}{X_{(n)}}\right]E[X_{(n)}]$$

$$E\left[\frac{X_{(1)}}{X_{(n)}}\right] = \frac{E[X_{(1)}]}{E[X_{(n)}]}$$

Applying Basu's Theorem

- By Basu's Theorem, $X_{(1)}/X_{(n)}$ is independent of $X_{(n)}$.
- If X and Y are independent, E(XY) = E(X)E(Y).

$$E[X_{(1)}] = E\left[\frac{X_{(1)}}{X_{(n)}}X_{(n)}\right] = E\left[\frac{X_{(1)}}{X_{(n)}}\right] E\left[X_{(n)}\right]$$

$$E\left[\frac{X_{(1)}}{X_{(n)}}\right] = \frac{E[X_{(1)}]}{E[X_{(n)}]}$$

$$= \frac{E[\theta Y_{(1)}]}{E[\theta Y_{(n)}]}$$

Applying Basu's Theorem

- By Basu's Theorem, $X_{(1)}/X_{(n)}$ is independent of $X_{(n)}$.
- If X and Y are independent, E(XY) = E(X)E(Y).

$$E[X_{(1)}] = E\left[\frac{X_{(1)}}{X_{(n)}}X_{(n)}\right] = E\left[\frac{X_{(1)}}{X_{(n)}}\right] E\left[X_{(n)}\right]$$

$$E\left[\frac{X_{(1)}}{X_{(n)}}\right] = \frac{E[X_{(1)}]}{E[X_{(n)}]}$$

$$= \frac{E[\theta Y_{(1)}]}{E[\theta Y_{(n)}]}$$

$$= \frac{E[Y_{(1)}]}{E[Y_{(n)}]}$$

 $Y \sim \text{Uniform}(0,1)$

18 / 25

$$Y \sim \text{Uniform}(0, 1)$$

 $f_Y(y) = I(0 < y < 1)$

Basu's Theorem

Obtaining $E[\overline{Y_{(1)}}]$

$$Y \sim \text{Uniform}(0, 1)$$

 $f_Y(y) = I(0 < y < 1)$
 $F_Y(y) = yI(0 < y < 1) + I(y \ge 1)$

$$\begin{array}{rcl} Y & \sim & \mathrm{Uniform}(0,1) \\ f_Y(y) & = & \mathit{I}(0 < y < 1) \\ F_Y(y) & = & \mathit{yI}(0 < y < 1) + \mathit{I}(y \ge 1) \\ f_{Y_{(1)}}(y) & = & \frac{n!}{(n-1)!} f_Y(y) \left[1 - F_Y(y)\right]^{n-1} \mathit{I}(0 < y < 1) \end{array}$$

$$\begin{array}{rcl} Y & \sim & \mathrm{Uniform}(0,1) \\ f_Y(y) & = & I(0 < y < 1) \\ F_Y(y) & = & yI(0 < y < 1) + I(y \ge 1) \\ f_{Y_{(1)}}(y) & = & \frac{n!}{(n-1)!} f_Y(y) \left[1 - F_Y(y)\right]^{n-1} I(0 < y < 1) \\ & = & n(1-y)^{n-1} I(0 < y < 1) \end{array}$$

$$\begin{array}{rcl} Y & \sim & \mathrm{Uniform}(0,1) \\ f_Y(y) & = & \mathit{I}(0 < y < 1) \\ F_Y(y) & = & \mathit{yI}(0 < y < 1) + \mathit{I}(y \ge 1) \\ f_{Y_{(1)}}(y) & = & \frac{n!}{(n-1)!} f_Y(y) \left[1 - F_Y(y)\right]^{n-1} \mathit{I}(0 < y < 1) \\ & = & \mathit{n}(1-y)^{n-1} \mathit{I}(0 < y < 1) \\ Y_{(1)} & \sim & \mathrm{Beta}(1,n) \end{array}$$

$$\begin{array}{rcl} Y & \sim & \mathrm{Uniform}(0,1) \\ f_Y(y) & = & I(0 < y < 1) \\ F_Y(y) & = & yI(0 < y < 1) + I(y \ge 1) \\ f_{Y_{(1)}}(y) & = & \frac{n!}{(n-1)!} f_Y(y) \left[1 - F_Y(y)\right]^{n-1} I(0 < y < 1) \\ & = & n(1-y)^{n-1} I(0 < y < 1) \\ Y_{(1)} & \sim & \mathrm{Beta}(1,n) \\ E[Y_{(1)}] & = & \frac{1}{n+1} \end{array}$$

 $Y \sim \text{Uniform}(0,1)$

$$Y \sim \text{Uniform}(0, 1)$$

 $f_Y(y) = I(0 < y < 1)$

Basu's Theorem

$$Y \sim \text{Uniform}(0, 1)$$

 $f_Y(y) = I(0 < y < 1)$
 $F_Y(y) = yI(0 < y < 1) + I(y \ge 1)$

$$\begin{array}{rcl} Y & \sim & \mathrm{Uniform}(0,1) \\ f_Y(y) & = & I(0 < y < 1) \\ F_Y(y) & = & yI(0 < y < 1) + I(y \ge 1) \\ f_{Y_{(n)}}(y) & = & \frac{n!}{(n-1)!} f_Y(y) \left[F_Y(y) \right]^{n-1} I(0 < y < 1) \end{array}$$

$$Y \sim \text{Uniform}(0,1)$$
 $f_Y(y) = I(0 < y < 1)$
 $F_Y(y) = yI(0 < y < 1) + I(y \ge 1)$
 $f_{Y_{(n)}}(y) = \frac{n!}{(n-1)!} f_Y(y) [F_Y(y)]^{n-1} I(0 < y < 1)$
 $= ny^{n-1} I(0 < y < 1)$

$$Y \sim \text{Uniform}(0,1)$$
 $f_Y(y) = I(0 < y < 1)$
 $F_Y(y) = yI(0 < y < 1) + I(y \ge 1)$
 $f_{Y_{(n)}}(y) = \frac{n!}{(n-1)!} f_Y(y) [F_Y(y)]^{n-1} I(0 < y < 1)$
 $= ny^{n-1} I(0 < y < 1)$
 $Y_{(n)} \sim \text{Beta}(n,1)$

Complete Statistics

$$\begin{array}{rcl} Y & \sim & \mathrm{Uniform}(0,1) \\ f_Y(y) & = & I(0 < y < 1) \\ F_Y(y) & = & yI(0 < y < 1) + I(y \ge 1) \\ f_{Y_{(n)}}(y) & = & \frac{n!}{(n-1)!} f_Y(y) \left[F_Y(y) \right]^{n-1} I(0 < y < 1) \\ & = & ny^{n-1} I(0 < y < 1) \\ Y_{(n)} & \sim & \mathrm{Beta}(n,1) \\ E[Y_{(n)}] & = & \frac{n}{n+1} \end{array}$$

Therefore, $E\left[\frac{X_{(1)}}{X_{(n)}}\right] = \frac{E[Y_{(1)}]}{E[Y_{(n)}]} = \frac{1}{n}$

 $Y \sim \text{Uniform}(0,1)$

$$Y \sim \text{Uniform}(0, 1)$$

 $f_Y(y) = I(0 < y < 1)$

$$Y \sim \text{Uniform}(0, 1)$$

 $f_Y(y) = I(0 < y < 1)$
 $F_Y(y) = yI(0 < y < 1) + I(y \ge 1)$

00000000

$$\begin{array}{rcl} Y & \sim & \mathrm{Uniform}(0,1) \\ f_Y(y) & = & \mathit{I}(0 < y < 1) \\ F_Y(y) & = & \mathit{yI}(0 < y < 1) + \mathit{I}(y \geq 1) \\ f_{Y_{(2)}}(y) & = & \frac{n!}{(n-2)!} \left[1 - F_Y(y)\right]^{n-2} f_Y(y) \left[F_Y(y)\right] \mathit{I}(0 < y < 1) \end{array}$$

$$\begin{array}{rcl} Y & \sim & \mathrm{Uniform}(0,1) \\ f_Y(y) & = & \mathit{I}(0 < y < 1) \\ F_Y(y) & = & \mathit{yI}(0 < y < 1) + \mathit{I}(y \geq 1) \\ f_{Y_{(2)}}(y) & = & \frac{n!}{(n-2)!} \left[1 - F_Y(y)\right]^{n-2} f_Y(y) \left[F_Y(y)\right] \mathit{I}(0 < y < 1) \\ & = & \mathit{n}(n-1) \mathit{y}(1-y)^{n-1} \mathit{I}(0 < y < 1) \end{array}$$

$$\begin{array}{rcl} Y & \sim & \mathrm{Uniform}(0,1) \\ f_Y(y) & = & I(0 < y < 1) \\ F_Y(y) & = & yI(0 < y < 1) + I(y \ge 1) \\ f_{Y_{(2)}}(y) & = & \frac{n!}{(n-2)!} \left[1 - F_Y(y)\right]^{n-2} f_Y(y) \left[F_Y(y)\right] I(0 < y < 1) \\ & = & n(n-1)y(1-y)^{n-1} I(0 < y < 1) \\ Y_{(2)} & \sim & \mathrm{Beta}(2,n-2) \end{array}$$

$$\begin{array}{rcl} Y & \sim & \mathrm{Uniform}(0,1) \\ f_Y(y) & = & I(0 < y < 1) \\ F_Y(y) & = & yI(0 < y < 1) + I(y \ge 1) \\ f_{Y_{(2)}}(y) & = & \frac{n!}{(n-2)!} \left[1 - F_Y(y)\right]^{n-2} f_Y(y) \left[F_Y(y)\right] I(0 < y < 1) \\ & = & n(n-1)y(1-y)^{n-1} I(0 < y < 1) \\ Y_{(2)} & \sim & \mathrm{Beta}(2,n-2) \\ E[Y_{(2)}] & = & \frac{2}{n+1} \end{array}$$

$$\begin{array}{rcl} Y & \sim & \mathrm{Uniform}(0,1) \\ f_Y(y) & = & I(0 < y < 1) \\ F_Y(y) & = & yI(0 < y < 1) + I(y \ge 1) \\ f_{Y_{(2)}}(y) & = & \frac{n!}{(n-2)!} \left[1 - F_Y(y)\right]^{n-2} f_Y(y) \left[F_Y(y)\right] I(0 < y < 1) \\ & = & n(n-1)y(1-y)^{n-1} I(0 < y < 1) \\ Y_{(2)} & \sim & \mathrm{Beta}(2,n-2) \\ E[Y_{(2)}] & = & \frac{2}{n+1} \end{array}$$

Therefore, $E\left[\frac{X_{(1)}+X_{(2)}}{X_{(n)}}\right] = \frac{E[Y_{(1)}+Y_{(2)}]}{E[Y_{(n)}]} = \frac{E[Y_{(1)}]+E[Y_{(2)}]}{E[Y_{(n)}]} = \frac{3}{n}$

Definition 3.4.1

The random variable X belongs to an exponential family of distributions, if its pdf/pmf can be written in the form

Definition 3.4.1

The random variable X belongs to an exponential family of distributions, if its pdf/pmf can be written in the form

$$f(x|\boldsymbol{\theta}) = h(x)c(\boldsymbol{\theta}) \exp \left[\sum_{j=1}^{k} w_j(\boldsymbol{\theta})t_j(x)\right]$$

Definition 3.4.1

The random variable X belongs to an exponential family of distributions, if its pdf/pmf can be written in the form

$$f(x|\boldsymbol{\theta}) = h(x)c(\boldsymbol{\theta}) \exp \left[\sum_{j=1}^{k} w_j(\boldsymbol{\theta})t_j(x)\right]$$

•
$$\boldsymbol{\theta} = (\theta_1, \cdots, \theta_d), d \leq k.$$

Definition 3.4.1

The random variable X belongs to an exponential family of distributions, if its pdf/pmf can be written in the form

$$f(x|\boldsymbol{\theta}) = h(x)c(\boldsymbol{\theta}) \exp \left[\sum_{j=1}^{k} w_j(\boldsymbol{\theta})t_j(x)\right]$$

- $\boldsymbol{\theta} = (\theta_1, \cdots, \theta_d), d < k.$
- $w_i(\theta), j \in \{1, \dots, k\}$ are functions of θ alone.

Definition 3.4.1

The random variable X belongs to an exponential family of distributions, if its pdf/pmf can be written in the form

$$f(x|\boldsymbol{\theta}) = h(x)c(\boldsymbol{\theta}) \exp \left[\sum_{j=1}^{k} w_j(\boldsymbol{\theta})t_j(x)\right]$$

- $\bullet \quad \boldsymbol{\theta} = (\theta_1, \cdots, \theta_d), \ d \leq k.$
- $w_j(\theta), j \in \{1, \dots, k\}$ are functions of $\boldsymbol{\theta}$ alone.
- and $t_i(x)$ and h(x) only involve data.

Definition 3.4.1

The random variable X belongs to an exponential family of distributions, if its pdf/pmf can be written in the form

$$f(x|\boldsymbol{\theta}) = h(x)c(\boldsymbol{\theta}) \exp \left[\sum_{j=1}^{k} w_j(\boldsymbol{\theta})t_j(x)\right]$$

- $\boldsymbol{\theta} = (\theta_1, \cdots, \theta_d), d < k.$
- $w_i(\theta), j \in \{1, \dots, k\}$ are functions of θ alone.
- and t_i(x) and h(x) only involve data.

Problem

Show that a Poisson(λ) ($\lambda > 0$) belongs to the exponential family

Problem

Show that a Poisson(λ) ($\lambda > 0$) belongs to the exponential family

Proof

$$f_X(x|\lambda) = \frac{e^{-\lambda}\lambda^x}{x!}$$

Example of Exponential Family

Problem

Show that a Poisson(λ) ($\lambda > 0$) belongs to the exponential family

Proof

$$f_X(x|\lambda) = \frac{e^{-\lambda}\lambda^x}{x!}$$

= $\frac{1}{x!}e^{-\lambda}\exp(\log \lambda^x)$

Example of Exponential Family

Problem

Show that a Poisson(λ) ($\lambda > 0$) belongs to the exponential family

Proof

$$f_X(x|\lambda) = \frac{e^{-\lambda}\lambda^x}{x!}$$

$$= \frac{1}{x!}e^{-\lambda}\exp(\log \lambda^x)$$

$$= \frac{1}{x!}e^{-\lambda}\exp(x\log \lambda)$$

Example of Exponential Family

Problem

Show that a Poisson(λ) ($\lambda > 0$) belongs to the exponential family

Proof

$$f_X(x|\lambda) = \frac{e^{-\lambda}\lambda^x}{x!}$$

$$= \frac{1}{x!}e^{-\lambda}\exp(\log \lambda^x)$$

$$= \frac{1}{x!}e^{-\lambda}\exp(x\log \lambda)$$

Define h(x) = 1/x!, $c(\lambda) = e^{-\lambda}$, $w(\lambda) = \log \lambda$, and t(x) = x, then

Example of Exponential Family

Problem

Show that a Poisson(λ) ($\lambda > 0$) belongs to the exponential family

Proof

$$f_X(x|\lambda) = \frac{e^{-\lambda}\lambda^x}{x!}$$

$$= \frac{1}{x!}e^{-\lambda}\exp(\log \lambda^x)$$

$$= \frac{1}{x!}e^{-\lambda}\exp(x\log \lambda)$$

Define h(x) = 1/x!, $c(\lambda) = e^{-\lambda}$, $w(\lambda) = \log \lambda$, and t(x) = x, then

$$f_X(x|\lambda) = h(x)c(\lambda)\exp[w(\lambda)t(x)]$$

$$f_X(x|\boldsymbol{\theta} = (\mu, \sigma^2)) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right]$$

$$f_X(x|\boldsymbol{\theta} = (\mu, \sigma^2)) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right]$$
$$= \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{x^2}{2\sigma^2} + \frac{2\mu x}{2\sigma^2} - \frac{\mu^2}{2\sigma^2}\right]$$

$$f_X(x|\boldsymbol{\theta} = (\mu, \sigma^2)) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right]$$
$$= \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{x^2}{2\sigma^2} + \frac{2\mu x}{2\sigma^2} - \frac{\mu^2}{2\sigma^2}\right]$$

Define
$$h(x) = 1$$
, $c(\theta) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{\mu^2}{2\sigma^2}\right]$,

$$f_X(x|\boldsymbol{\theta} = (\mu, \sigma^2)) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right]$$
$$= \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{x^2}{2\sigma^2} + \frac{2\mu x}{2\sigma^2} - \frac{\mu^2}{2\sigma^2}\right]$$

Define
$$h(x) = 1$$
, $c(\theta) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{\mu^2}{2\sigma^2}\right]$, $k = 2$, $w_1(\theta) = \frac{\mu}{\sigma^2}$, $t_1(x) = x$, $w_2(\theta) = -\frac{1}{2\sigma^2}$, $t_2(x) = x^2$, then

Complete Statistics

Exponential Family

$$f_X(x|\boldsymbol{\theta} = (\mu, \sigma^2)) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(x-\mu)^2}{2\sigma^2}\right]$$
$$= \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{x^2}{2\sigma^2} + \frac{2\mu x}{2\sigma^2} - \frac{\mu^2}{2\sigma^2}\right]$$

Define
$$h(x) = 1$$
, $c(\theta) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{\mu^2}{2\sigma^2}\right]$, $k = 2$, $w_1(\theta) = \frac{\mu}{\sigma^2}$, $t_1(x) = x$, $w_2(\theta) = -\frac{1}{2\sigma^2}$, $t_2(x) = x^2$, then

$$f_X(x|\boldsymbol{\theta}) = h(x)c(\boldsymbol{\theta}) \exp \left[\sum_{j=1}^k w_j(\boldsymbol{\theta})t_j(x)\right]$$

A Specialized Normal Distribution : $\mathcal{N}(\mu, \mu^2)$

$$f_X(x|\mu) = \frac{1}{\sqrt{2\pi\mu^2}} \exp\left[-\frac{(x-\mu)^2}{2\mu^2}\right]$$

$$f_X(x|\mu) = \frac{1}{\sqrt{2\pi\mu^2}} \exp\left[-\frac{(x-\mu)^2}{2\mu^2}\right]$$
$$= \frac{1}{\sqrt{2\pi\mu^2}} \exp\left[-\frac{x^2}{2\mu^2} + \frac{2\mu x}{2\mu^2} - \frac{\mu^2}{2\mu^2}\right]$$

0000

A Specialized Normal Distribution : $\mathcal{N}(\mu, \mu^2)$

$$f_X(x|\mu) = \frac{1}{\sqrt{2\pi\mu^2}} \exp\left[-\frac{(x-\mu)^2}{2\mu^2}\right]$$

$$= \frac{1}{\sqrt{2\pi\mu^2}} \exp\left[-\frac{x^2}{2\mu^2} + \frac{2\mu x}{2\mu^2} - \frac{\mu^2}{2\mu^2}\right]$$

$$= \frac{1}{\sqrt{2\pi\mu^2}} \exp\left(-\frac{1}{2}\right) \exp\left[-\frac{1}{2\mu^2}x^2 + \frac{1}{\mu}x\right]$$

$$f_X(x|\mu) = \frac{1}{\sqrt{2\pi\mu^2}} \exp\left[-\frac{(x-\mu)^2}{2\mu^2}\right]$$

$$= \frac{1}{\sqrt{2\pi\mu^2}} \exp\left[-\frac{x^2}{2\mu^2} + \frac{2\mu x}{2\mu^2} - \frac{\mu^2}{2\mu^2}\right]$$

$$= \frac{1}{\sqrt{2\pi\mu^2}} \exp\left(-\frac{1}{2}\right) \exp\left[-\frac{1}{2\mu^2}x^2 + \frac{1}{\mu}x\right]$$

Define h(x) = 1, $c(\mu) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}}$,

$$f_X(x|\mu) = \frac{1}{\sqrt{2\pi\mu^2}} \exp\left[-\frac{(x-\mu)^2}{2\mu^2}\right]$$

$$= \frac{1}{\sqrt{2\pi\mu^2}} \exp\left[-\frac{x^2}{2\mu^2} + \frac{2\mu x}{2\mu^2} - \frac{\mu^2}{2\mu^2}\right]$$

$$= \frac{1}{\sqrt{2\pi\mu^2}} \exp\left(-\frac{1}{2}\right) \exp\left[-\frac{1}{2\mu^2}x^2 + \frac{1}{\mu}x\right]$$

Define
$$h(x)=1$$
, $c(\mu)=\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{1}{2}}$, $k=2$, $w_1(\mu)=\frac{1}{\mu}$, $t_1(x)=x$, $w_2(\mu)=-\frac{1}{2\mu^2}$, $t_2(x)=x^2$, then

Complete Statistics

A Specialized Normal Distribution : $\mathcal{N}(\mu, \mu^2)$

$$f_X(x|\mu) = \frac{1}{\sqrt{2\pi\mu^2}} \exp\left[-\frac{(x-\mu)^2}{2\mu^2}\right]$$

$$= \frac{1}{\sqrt{2\pi\mu^2}} \exp\left[-\frac{x^2}{2\mu^2} + \frac{2\mu x}{2\mu^2} - \frac{\mu^2}{2\mu^2}\right]$$

$$= \frac{1}{\sqrt{2\pi\mu^2}} \exp\left(-\frac{1}{2}\right) \exp\left[-\frac{1}{2\mu^2}x^2 + \frac{1}{\mu}x\right]$$

Define
$$h(x)=1$$
, $c(\mu)=\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{1}{2}}$, $k=2$, $w_1(\mu)=\frac{1}{\mu}$, $t_1(x)=x$, $w_2(\mu)=-\frac{1}{2\mu^2}$, $t_2(x)=x^2$, then

$$f_X(x|\mu) = h(x)c(\mu) \exp \left[\sum_{j=1}^k w_j(\mu)t_j(x)\right]$$

Summary

Today

- More on complete statistics
- Basu's Theorem
- **Exponential Family**

Summary

Today

- More on complete statistics
- Basu's Theorem
- Exponential Family

Next Lecture

More on Exponential Family