Power of Genomewide Association Studies

Biostatistics 666

Genomewide Association Studies

- Survey ~500,000 SNPs in a large set of cases and controls
 - Subset of SNPs is typically followed up in more samples
- Comprehensively survey common variants across genome
 - Via linkage disequilibrium, most common variants assessed
- Successful: many loci implicated in common disorders
 - Especially in contrast to results of candidate gene studies

Collaborative Association Study of Psoriasis: Example of a Successful GWAS

- Examined ~1,500 cases / ~1,500 controls at ~500,000 SNPs
- Examined 20 promising SNPs in extra ~5,000 cases / ~5,000 controls
- Outcome: 7 regions of confirmed association with psoriasis

Green hits have $p < 5x10^{-8}$ in final analysis

HLA-C

Top psoriasis associated SNPs in **strong linkage disequilibrium with HLA-Cw6**. Evidence for psoriasis associated SNPs that are far from HLA-Cw6.

IL23R

Previously identified locus, psoriasis associated SNPs also associated with Crohn's.

IL12B

Previously identified locus, psoriasis associated SNPs associated with Crohn's.

IL23A

New locus, psoriasis associated SNPs **not associated** with Crohn's.

TNFAIP3

New locus; other SNPs in the locus are associated with lupus and rheumatoid arthritis.

TNIP1

New locus; note potential evidence for independently associated alleles.

IL4/IL13

New locus; IL4 and IL13 are excellent functional candidates.

Q-Q Plot

Multiple hits within a pathway...

Three of the top replicated hits are for:

```
    IL23R (IL-23 receptor)
    IL23A (IL-23 subunit)
    IL12B (IL-23/IL-12 subunit)
    1 x 10<sup>-28</sup>
```

Two other replicated hits at:

```
    TNFAIP3 (TNFα-inducible protein 3)
    9x10<sup>-12</sup>
    TNIP1 (TNFAIP3 interacting protein 1)
    1x10<sup>-20</sup>
```

- Evidence for epistasis among these SNPs?
 - None.

Summary of Results

	Stage 1			Stage 2				Nearby
SNP	f _{cases}	f _{controls}	OR	f _{cases}	f _{controls}	OR	P-value	Genes
rs12191877	.31	.14	2.79	.30	.15	2.64	<10 ⁻¹⁰⁰	HLA-C
rs2082412	.86	.79	1.56	.85	.80	1.44	2x10 ⁻²⁸	IL12B
rs17727338	.09	.06	1.72	.09	.05	1.59	1x10 ⁻²⁰	TNIP1
rs20541	.83	.78	1.37	.83	.79	1.27	5x10 ⁻¹⁵	IL13
rs610604	.37	.32	1.28	.36	.32	1.19	9x10 ⁻¹²	TNFAIP3
rs2066808	.96	.93	1.68	.95	.93	1.34	1x10 ⁻⁹	IL23A
rs2201841	.35	.29	1.35	.32	.30	1.13	3x10 ⁻⁸	IL23R

Notice how estimated effect size is consistently higher in Stage 1. The "Winner's Curse" is a common feature of genomewide studies.

Today

Calculating the power of a genomewide association study

Designing a two stage genomewide association study

Choices for analysis of two stage association studies

Power Calculations

- For a given genetic model, evaluate alternative study designs
- For a given study design, identify genetic models that are likely to be detected
- Typically deal with many uncertainties...
 - What is an appropriate genetic model?
 - What is a desirable level of power?

Test Statistic

$$z = \frac{\hat{p}' - \hat{p}}{\sqrt{[\hat{p}'(1-\hat{p}') + \hat{p}(1-\hat{p})]/2N}}$$

Where:

 \hat{p}' is the observed case allele frequency \hat{p} is the observed control allele frequency N is the number of cases and controls

Distribution Under the Null

- Under the null hypothesis p = p'
- Z is distributed as Normal(0, 1)
- Using Inverse Normal Cumulative Distribution Function
- Derive P-value thresholds for target significance level α

$$-\alpha = 0.05$$
 leads to $C = -\Phi^{-1}\left(\frac{0.05}{2}\right) = 1.96$

$$-\alpha = 5 \cdot 10^{-8}$$
 leads to $C = -\Phi^{-1} \left(\frac{5 \cdot 10^{-8}}{2} \right) = 5.45$

Distribution Under The Alternative

 For a specific set of expected case and control allele frequencies, ...

...we can calculate expected value of test statistic

$$\mu = \frac{p' - p}{\sqrt{[p'(1-p') + p(1-p)]/2N}}$$

• Under the alternative, statistic is Normal(μ , 1).

Power

- To calculate power, we first calculate:
 - Significance threshold C
 - Expected test statistic μ
- Use normal cumulative distribution function Φ

•
$$P(|Z| > C)$$

= $P(Z > C) + P(Z < -C)$
= $1 - \Phi(C - \mu) + \Phi(-C - \mu)$

Example

- Test 1,000,000 independent markers
 - $-\alpha = 0.05/1,000,000 = 5x10^{-8}$
 - C = 5.45
- Case allele frequency p' = 0.55
- Control allele frequency p = 0.45
- $N_{cases} = N_{controls} = 1,000$
- $\mu = 6.35$
- Power = 81%
 - If N = 500, power = 17%
 - If N = 2000, power = 100%

One Stage Genomewide Study

A comprehensive study might examine all M SNPs in all N samples.

Analysis of One Stage Study

Declare significance using p-value threshold of 0.05 / M. Threshold of $5x10^{-8}$ is typical, assumes 1 million independent tests.

Two Stage Genomewide Association Studies

Two Stage Genomewide Study

A more cost effective study might only examine:

- All SNPs in a fraction of samples, π_{samples}
- All individuals for a fraction of markers, $\pi_{markers}$

Relative Genotyping Effort

- The total number of genotypes required in a two stage study is ...
- $N_{genotypes} = MN\pi_{samples} + MN(1 \pi_{samples})\pi_{markers}$
- For example, if we ...
 - Genotype 30% of samples in Stage 1
 - Follow-up 0.1% of markers in Stage 2
 - Total number of genotypes will be reduced 69.93%

Relative Cost

- The reduction in cost is typically less dramatic ...
- ... but still substantial
- Main limitation is that genotyping is cheaper "in bulk"
 - $-\tau$ is ratio of stage 1 to stage 2 costs on a per genotype basis
- $Cost\ ratio = \pi_{samples} + (1 \pi_{samples})\pi_{markers}\tau$
- For example, if we ...
 - Genotype 30% of samples in Stage 1
 - Follow-up 0.1% of markers in Stage 2
 - Relative cost ratio is 100
 - Total cost will be reduced 63.00%

Replication Based Analysis

Select markers to follow-up using p-value threshold of $\pi_{markers}$. Declare significance using threshold of 0.05/(M \cdot $\pi_{markers}$) Final analysis uses only stage 2 samples.

Joint Analysis

Select markers to follow-up using p-value threshold of π_{markers} . Declare significance using threshold of approximately 0.05/M. Final analysis uses stage 1 and stage 2 samples.

Power for Replication Based Analysis

- Simplest approach would be to calculate
 - C₁ and C₂ as the significance thresholds for each stage
 - $-\mu_1$ and μ_2 as the expected statistics for each stage
 - $-P_1$ and P_2 as the power for each stage
 - $-P_{replication} = P_1P_2$ as the overall power
- Refined analysis might enforce that stage 1 and stage 2 statistics should have the same sign

$$P_{2} = (1 - \Phi[C_{2} - \mu_{2}]) \frac{1 - \Phi[C_{1} - \mu_{1}]}{1 - \Phi[C_{1} - \mu_{1}] + \Phi[-C_{1} - \mu_{1}]} + \Phi[-C_{2} - \mu_{2}] \frac{\Phi[-C_{1} - \mu_{1}]}{1 - \Phi[C_{1} - \mu_{1}] + \Phi[-C_{1} - \mu_{1}]}$$

Power for Joint Analyses

- Simplest approach would be to calculate
 - C₁ and C as stage 1 and overall significance thresholds
 - μ_1 and μ as stage 1 and overall expected statistics
 - P₁ and P as stage 1 and unphased study power
 - $-P_{joint} = P_1P$ as the overall power
- Refined analysis models joint distribution of stage 1 and overall test statistic

$$\begin{split} P_{\text{joint}} &= P(|z_{\text{joint}}| > C_{\text{joint}}|T) \\ &= \int\limits_{-\infty}^{-C_{1}} [P(z_{\text{joint}} > C_{\text{joint}}|z_{1} = x) + P(z_{\text{joint}} < -C_{\text{joint}}|z_{1} = x)] f(x|T) dx \\ &+ \int\limits_{C_{1}}^{\infty} [P(z_{\text{joint}} > C_{\text{joint}}|z_{1} = x) + P(z_{\text{joint}} < -C_{\text{joint}}|z_{1} = x)] f(x|T) dx \end{split}$$

$$T: |Z| > C_{1}$$

Replication or Joint Analysis?

- Replication based analysis
 - Requires smaller multiple testing adjustment

- Joint analysis uses more data
 - We expect stronger signal all available data
- Both analyses are compatible with the same experimental design

Replication of Joint Analysis?

300,000 markers genotyped on 1000 cases, 1000 controls Multiplicative model, prevalence 10%, GRR = 1.4

Replication or Joint Analysis? Effect of Varying π_{samples}

Replication or Joint Analysis? Effect of Varying $\pi_{markers}$

- $\alpha = 0.05 / 300,000$
- $\pi_{\text{samples}} = 0.30$
- N = 1,000
- p = 0.50
- p' = 0.66

Refining Calculation

- Instead of setting p and p' arbitrarily, use a genetic model
- Suppose that the relative risk of disease is:
 - Baseline for those with no risk alleles
 - $-r_1$ for those with one risk allele
 - $-r_2$ for those with two risk alleles
- Then:

$$p' = \frac{p(1-p)r_1 + p^2r_2}{(1-p)^2 + 2p(1-p)r_1 + p^2r_2}$$

Refining Calculation II

 Instead of setting p and p' arbitrarily, use a genetic model

 Suppose that controls are known to be free of disease and K is the disease prevalence

• Then:

$$p_{control} = \frac{p - Kp'}{1 - K}$$

Some Important Messages

- Power calculations can help design study
 - How to best invest limited funds?
- Well designed two stage studies approximate power of more costly studies where all samples genotyped at all markers
- Joint analysis is much more efficient than replication based analyses

Recommended Reading

• Skol el al (2006) Joint analysis is more efficient than replication based analysis for two-stage genomewide association studies. *Nature Genetics* **38:**209-13

 Nair et al (2009) Genomewide scan reveals association of psoriasis with IL-23 and NF-kB pathways. Nature Genetics 41:199-204