Biostatistics 602 - Statistical Inference Lecture 01 Introduction to BIOSTAT602 Principles of Data Reduction

Hyun Min Kang

January 10th, 2013

Today's Outline

- Course Syllabus
- Overview of BIOSTAT602
- Sufficient Statistics

2 / 39

Basic Polls: Home Department

What is your home department?

- **Biostatistics**
- Statistics
- **Bioinformatics**
- Survey Methodology
- Other Departments

Basic Polls: Official Roster

Are you taking the class, or just sitting in?

- Taking for credit
- Sitting in
- Plan to take, but needs permission

Basic Polls: 601 History

Have you taken BIOSTAT601 or equivalent class?

- Ltook BIOSTAT601.
- I took an BIOSTAT601-equivalent class.
- I do not have BIOSTAT601 equivalent background

BIOSTAT602 - Course Information

Instructor

Syllabus

•000000

Name Hyun Min Kang

Office M4531, SPH II

E-mail hmkang@umich.edu

Office hours Thursday 4:30-5:30pm

Course Web Page

- See http://genome.sph.umich.edu/wiki/602
- No C-Tools site will be available in 2013.

BIOSTAT602 - Basic Information

Class Time and Location

Syllabus 0000000

Time Tuesday and Thursday 1:00-3:00pm.

Location USB 2260

BIOSTAT602 - Basic Information

Class Time and Location

Time Tuesday and Thursday 1:00-3:00pm.

Location USB 2260

Prerequisites

Syllabus

000000

- BIOSTAT601 or equivalent knowledge (Chapter 1-5.5 of Casella and Berger)
- Basic calculus and matrix algebra

BIOSTAT602 - Textbooks

Required Textbook

Statistical Inference, 2nd Edition, by Casella and Berger

BIOSTAT602 - Textbooks

Required Textbook

Statistical Inference, 2nd Edition, by Casella and Berger

Recommended Textbooks

- Statistical Inference, by Garthwaite, Jolliffe and Jones.
- All of Statistics: A Concise Course in Statistical Inference, by Wasserman
- Mathematical Statistics: Basics Ideas and Selected Topics, by Bickel and Doksum.

Grading

Syllabus 0000000

- Homework 20%
- Midterm 40%
- Final 40%

0000000

- First Lecture: Thursday January 10th, 2013
- Midterm: 1:00pm 3:00pm, Thursday February 21st, 2013
- No lectures on March 5th and 7th (Vacation)
- No lecture on April 2nd (Instructor out of town)
- Last Lecture: Tuesday April 23rd, 2013 (Total of 26 lectures)
- Final: 4:00pm 6:00pm, Thursday April 25th, 2013 (University-wide schedule)

Syllabus 0000000

- Honor code is STRONGLY enforced throughout the course.
 - The key principle is that all your homework and exams must be on your own.
 - See http://www.sph.umich.edu/academics/policies/conduct.html for details.

Syllabus

0000000

- Honor code is STRONGLY enforced throughout the course.
 - The key principle is that all your homework and exams must be on your own.
 - See http://www.sph.umich.edu/academics/policies/conduct.html for details.
- You are encouraged to discuss the homework with your colleagues.

Syllabus

0000000

- Honor code is STRONGLY enforced throughout the course.
 - The key principle is that all your homework and exams must be on your own.
 - See http://www.sph.umich.edu/academics/policies/conduct.html for details.
- You are encouraged to discuss the homework with your colleagues.
- You are NOT allowed to share any piece of your homework with your colleagues electronically or by a hard copy.

- Honor code is STRONGLY enforced throughout the course.
 - The key principle is that all your homework and exams must be on your own.
 - See http://www.sph.umich.edu/academics/policies/conduct.html for details.
- You are encouraged to discuss the homework with your colleagues.
- You are NOT allowed to share any piece of your homework with your colleagues electronically or by a hard copy.
- If a break of honor code is identified, your entire homework (or exam) will be graded as zero, while incomplete submission of homework assignment will be considered for partial credit.

11 / 39

About the style of the class

In previous years, the instructors wrote the notes on the whiteboard or projected the notes onto a screen during the class

12 / 39

000000

About the style of the class

- In previous years, the instructors wrote the notes on the whiteboard or projected the notes onto a screen during the class
- In this class, we will use prepared slides for the sake of clarity.

About the style of the class

Syllabus

0000000

- In previous years, the instructors wrote the notes on the whiteboard or projected the notes onto a screen during the class
- In this class, we will use prepared slides for the sake of clarity.
- For this reason, the his class has a risk to serve as a slot for after-lunch nap.

0000000

About the style of the class

- In previous years, the instructors wrote the notes on the whiteboard or projected the notes onto a screen during the class
- In this class, we will use prepared slides for the sake of clarity.
- For this reason, the his class has a risk to serve as a slot for after-lunch nap.
- Instructor strongly encourages to copy the slides during the class by hand to digest the material, although all slides will be available online.

0000000

About the style of the class

- In previous years, the instructors wrote the notes on the whiteboard or projected the notes onto a screen during the class
- In this class, we will use prepared slides for the sake of clarity.
- For this reason, the his class has a risk to serve as a slot for after-lunch nap.
- Instructor strongly encourages to copy the slides during the class by hand to digest the material, although all slides will be available online.
- Focusing on the class will be helpful a lot.

0000000

- In previous years, the instructors wrote the notes on the whiteboard or projected the notes onto a screen during the class
- In this class, we will use prepared slides for the sake of clarity.
- For this reason, the his class has a risk to serve as a slot for after-lunch nap.
- Instructor strongly encourages to copy the slides during the class by hand to digest the material, although all slides will be available online.
- Focusing on the class will be helpful a lot.
- Feedback on the class, especially on the lecture style, would be very much appreciated.

"Statistical Inference"

Probability in BIOSTAT601

Given some specified probability mass function (pmf) or probability density function (pdf), we can make probabilistic statement about data that could be generated from the model.

"Statistical Inference"

Probability in BIOSTAT601

Given some specified probability mass function (pmf) or probability density function (pdf), we can make probabilistic statement about data that could be generated from the model.

Statistical Inference in BIOSTAT602

A process of drawing conclusions or making statements about a population of data based on a random sample of data from the population.

Notations in BIOSTAT602

• X_1, \dots, X_n : Random variables identically and independently distributed (iid) with probability density (or mass) function $f_X(x|\theta)$.

Notations in BIOSTAT602

- X_1, \dots, X_n : Random variables identically and independently distributed (iid) with probability density (or mass) function $f_X(x|\theta)$.
- x_1, \dots, x_n : Realization of random variables X_1, \dots, X_n .

- X_1, \dots, X_n : Random variables identically and independently distributed (iid) with probability density (or mass) function $f_X(x|\theta)$.
- x_1, \dots, x_n : Realization of random variables X_1, \dots, X_n .
- **X** = (X_1, \dots, X_n) is a random sample of a population (typically iid), and the characteristics of this population are described by $f_{\mathbf{X}}(\mathbf{x}|\theta)$.

• X_1, \dots, X_n : Random variables identically and independently distributed (iid) with probability density (or mass) function $f_X(x|\theta)$.

- x_1, \dots, x_n : Realization of random variables X_1, \dots, X_n .
- $\mathbf{X} = (X_1, \cdots, X_n)$ is a random sample of a population (typically iid), and the characteristics of this population are described by $f_{\mathbf{X}}(\mathbf{x}|\theta)$.
- The joint pdf (or pmf) of $\mathbf{X} = (X_1, \cdots, X_n)$ (assuming iid) is

$$f_{\mathbf{X}}(\mathbf{x}|\theta) = \prod_{i=1}^{n} f_{X}(x_{i}|\theta)$$

BIOSTAT601

In BIOSTAT601, we assume the knowledge of θ in making probabilistic statements about X_1, \dots, X_n .

BIOSTAT601 vs BIOSTAT602

BIOSTAT601

In BIOSTAT601, we assume the knowledge of θ in making probabilistic statements about X_1, \dots, X_n .

BIOSTAT602

In BIOSTAT602, we do not know the true value of the parameter θ , and instead we try to learn about this true parameter value through the observed data x_1, \dots, x_n .

Example of BIOSTAT601 Questions

For a sample size n, let $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \text{Bernoulli}(p_0)$. What is the probability of $\sum_{i=1}^n X_i \leq m$?

Example of BIOSTAT601 Questions

For a sample size n, let $X_1, \dots, X_n \overset{\text{i.i.d.}}{\sim} \text{Bernoulli}(p_0)$. What is the probability of $\sum_{i=1}^n X_i \leq m$?

$$\sum_{i=1}^{n} X_i \sim \operatorname{Binomial}(n, p_0)$$

Example of BIOSTAT601 Questions

For a sample size n, let $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \text{Bernoulli}(p_0)$. What is the probability of $\sum_{i=1}^{n} X_i \leq m$?

$$\sum_{i=1} X_i \sim \operatorname{Binomial}(n, p_0)$$

$$\operatorname{Pr}\left(\sum_{i=1}^n X_i \leq m\right) = \sum_{k=0}^m \binom{n}{k} p_0^k (1 - p_0)^{n-k}$$

Example of BIOSTAT602 Questions

We assume that the data was generated by a pdf (or pmf) that belongs to a class of pdfs (or pmfs).

$$\mathcal{P} = \{ f_X(x|\theta), \theta \in \Omega \subset \mathbb{R}^p \}$$

Example of BIOSTAT602 Questions

We assume that the data was generated by a pdf (or pmf) that belongs to a class of pdfs (or pmfs).

$$\mathcal{P} = \{ f_X(x|\theta), \theta \in \Omega \subset \mathbb{R}^p \}$$

For example $X \sim \text{Bernoulli}(\theta), \theta \in (0, 1) = \Omega \subset \mathbb{R}$.

Example of BIOSTAT602 Questions

We assume that the data was generated by a pdf (or pmf) that belongs to a class of pdfs (or pmfs).

$$\mathcal{P} = \{ f_X(x|\theta), \theta \in \Omega \subset \mathbb{R}^p \}$$

For example $X \sim \text{Bernoulli}(\theta), \theta \in (0, 1) = \Omega \subset \mathbb{R}$.

We collect data in order to

- **1** Estimate θ (point estimation)
- **2** Perform tests of hypothesis about θ .
- **3** Estimate confidence intervals for θ (interval estimation).
- Make predictions of future data.

- **1** Estimate θ (point estimation)
 - What is the estimated probability of head given a series of coin tosses?

- **1** Estimate θ (point estimation)
 - What is the estimated probability of head given a series of coin tosses?
- **2** Perform tests of hypothesis about θ .
 - Given a series of coin tosses, can you tell whether the coin is biased or not?

- **1** Estimate θ (point estimation)
 - What is the estimated probability of head given a series of coin tosses?
- **2** Perform tests of hypothesis about θ .
 - Given a series of coin tosses, can you tell whether the coin is biased or not?
- **3** Estimate confidence intervals for θ (interval estimation).
 - What is the plausible range of the true probability of head, given a series of coin tosses?

- **1** Estimate θ (point estimation)
 - What is the estimated probability of head given a series of coin tosses?
- **2** Perform tests of hypothesis about θ .
 - Given a series of coin tosses, can you tell whether the coin is biased or not?
- **3** Estimate confidence intervals for θ (interval estimation).
 - What is the plausible range of the true probability of head, given a series of coin tosses?
- 4 Make predictions of future data.
 - Given the series of coin tosses, can you predict what the outcome of the next coin toss?

Data

 x_1, \dots, x_n : Realization of random variables X_1, \dots, X_n .

Data

 x_1, \dots, x_n : Realization of random variables X_1, \dots, X_n .

Data Reduction

Define a function of data

$$T(x_1, \cdots, x_n) : \mathbb{R}^n \to \mathbb{R}^d$$

Data

 x_1, \dots, x_n : Realization of random variables X_1, \dots, X_n .

Data Reduction

Define a function of data

$$T(x_1, \cdots, x_n) : \mathbb{R}^n \to \mathbb{R}^d$$

We wish this summary of data to..

- 1 Be simpler than the original data, e.g. $d \le n$.
- **2** Keep all the information about θ that is contained in the original data x_1, \dots, x_n .

Statistic

$$T(X_1,\cdots,X_n)=T(\mathbf{X})$$

- It is a function of random variables X_1, \dots, X_n .
- $T(\mathbf{X})$ itself is also a random variable.
- $T(\mathbf{X})$ defines a form of data reduction or data summary.

Data reduction in terms of a statistic $T(\mathbf{X})$ is a partition of the sample space \mathcal{X} .

Example

Suppose $X_i \stackrel{\text{i.i.d.}}{\sim} \text{Bernoulli}(p)$ for i = 1, 2, 3, and 0 .

Define $T(X_1, X_2, X_3) = X_1 + X_2 + X_3$, then $T: \{0, 1\}^3 \to \{0, 1, 2, 3\}$.

21 / 39

Example of Data Reduction

Partition	X_1	X_2	X_3	$T(\mathbf{X}) = X_1 + X_2 + X_3$
A_0	0	0	0	0
A_1	0	0	1	1
	0	1	0	1
	1	0	0	1
A_2	0	1	1	2
	1	0	1	2
	1	1	0	2
A_3	1	1	1	3

Example of Data Reduction

Partition	X_1	X_2	X_3	$T(\mathbf{X}) = X_1 + X_2 + X_3$
A_0	0	0	0	0
	0	0	1	1
A_1	0	1	0	1
	1	0	0	1
A_2	0	1	1	2
	1	0	1	2
	1	1	0	2
A_3	1	1	1	3

$$\mathcal{T} = \{t : t = T(\mathbf{X}) \text{ for some } \mathbf{x} \in \mathcal{X}\}\$$

 $A_t = \{\mathbf{x} : T(\mathbf{X}) = t, t \in \mathcal{T}\}\$

Instead of reporting $\mathbf{x} = (x_1, x_2, x_3)^T$, we report only $T(\mathbf{X}) = t$, or equivalently $\mathbf{x} \in A_t$.

Example of Data Reduction

The partition of the sample space based on $T(\mathbf{X})$ is "coarser" than the original sample space.

- There are 8 elements in the sample space \mathcal{X} .
- They are partitioned into 4 subsets
- Thus, $T(\mathbf{X})$ is simpler (or coarser) than \mathbf{X} .

Sufficient Statistics

Definition 6.2.1

A statistic $T(\mathbf{X})$ is a *sufficient statistic* for θ if the conditional distribution of sample **X** given the value of $T(\mathbf{X})$ does not depend on θ .

Sufficient Statistics

Definition 6.2.1

A statistic $T(\mathbf{X})$ is a *sufficient statistic* for θ if the conditional distribution of sample **X** given the value of $T(\mathbf{X})$ does not depend on θ .

In other words, the conditional pdf or pmf of **X** given T=t, $f_{\mathbf{x}}(\mathbf{x}|T(\mathbf{X})=t)=h(\mathbf{x})$ does not depend on θ

Sufficient Statistics: Example

- Suppose $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \text{Bernoulli}(p), \ 0$
- Claim that $T(X_1, \dots, X_n) = \sum_{i=1}^n X_i$ is a sufficient statistic for p.

Proof: Overview

- $T(\mathbf{X}) = \sum_{i=1}^{n} X_i \sim \text{Binomial}(n, p)$
- Need to find the conditional pmf of **X** given T = t.
- And show that the distribution does not depend on p.

26 / 39

Detailed Proof

$$\Pr\left(X_1 = x_1, \dots, X_n = x_n | \sum_{i=1}^n X_i = t\right)$$

$$\Pr\left(X_{1} = x_{1}, \dots, X_{n} = x_{n} | \sum_{i=1}^{n} X_{i} = t\right)$$

$$= \frac{\Pr\left(X_{1} = x_{1}, \dots, X_{n} = x_{n}, \sum_{i=1}^{n} X_{i} = t\right)}{\Pr\left(\sum_{i=1}^{n} X_{i} = t\right)}$$

Detailed Proof

$$\Pr\left(X_{1} = x_{1}, \dots, X_{n} = x_{n} | \sum_{i=1}^{n} X_{i} = t\right)$$

$$= \frac{\Pr\left(X_{1} = x_{1}, \dots, X_{n} = x_{n}, \sum_{i=1}^{n} X_{i} = t\right)}{\Pr\left(\sum_{i=1}^{n} X_{i} = t\right)}$$

$$= \begin{cases} \frac{\Pr\left(X_{1} = x_{1}, \dots, X_{n} = x_{n}\right)}{\Pr\left(\sum_{i=1}^{n} X_{i} = t\right)} & \text{if } \sum_{i=1}^{n} X_{i} = t\\ 0 & \text{otherwise} \end{cases}$$

If
$$\sum_{i=1}^{n} X_i = t$$
, $t \sim \text{Binomial}(n, p)$

$$\Pr(X_1 = x_1, \dots, X_n = x_n) = \prod_{i=1} \Pr(X_i = x_i)$$

If
$$\sum_{i=1}^{n} X_i = t$$
, $t \sim \text{Binomial}(n, p)$

$$\Pr(X_1 = x_1, \dots, X_n = x_n) = \prod_{i=1} \Pr(X_i = x_i)$$
$$= p^{x_1} (1-p)^{1-x_1} \dots p^{x_n} (1-p)^{1-x_n}$$

If
$$\sum_{i=1}^{n} X_i = t$$
, $t \sim \text{Binomial}(n, p)$

$$\Pr(X_1 = x_1, \dots, X_n = x_n) = \prod_{i=1} \Pr(X_i = x_i)$$

$$= p^{x_1} (1 - p)^{1 - x_1} \dots p^{x_n} (1 - p)^{1 - x_n}$$

$$= p^{\sum_{i=1}^n x_i} (1 - p)^{n - \sum_{i=1}^n x_i}$$

If
$$\sum_{i=1}^{n} X_i = t$$
, $t \sim \text{Binomial}(n, p)$

$$\Pr(X_1 = x_1, \dots, X_n = x_n) = \prod_{i=1}^{n} \Pr(X_i = x_i)$$

$$= p^{x_1} (1 - p)^{1 - x_1} \dots p^{x_n} (1 - p)^{1 - x_n}$$

$$= p^{\sum_{i=1}^{n} x_i} (1 - p)^{n - \sum_{i=1}^{n} x_i}$$

$$\Pr\left(\sum_{i=1}^{n} X_i = t\right) = \binom{n}{t} p^t (1 - p)^{n - t}$$

If
$$\sum_{i=1}^{n} X_i = t$$
, $t \sim \text{Binomial}(n, p)$

$$\Pr(X_{1} = x_{1}, \dots, X_{n} = x_{n}) = \prod_{i=1}^{n} \Pr(X_{i} = x_{i})$$

$$= p^{x_{1}} (1 - p)^{1 - x_{1}} \dots p^{x_{n}} (1 - p)^{1 - x_{n}}$$

$$= p^{\sum_{i=1}^{n} x_{i}} (1 - p)^{n - \sum_{i=1}^{n} x_{i}}$$

$$\Pr\left(\sum_{i=1}^{n} X_{i} = t\right) = \binom{n}{t} p^{t} (1 - p)^{n - t}$$

$$\Pr\left(\mathbf{X} = \mathbf{x} | \sum_{i=1}^{n} X_{i} = t\right) = \frac{1}{\binom{n}{t}}$$

Therefore, conditional distribution

$$\Pr\left(\mathbf{X} = \mathbf{x} | \sum_{i=1}^{n} X_i = t\right) = \begin{cases} \frac{1}{\binom{n}{t}} & \text{if } \sum_{i=1}^{n} X_i = t\\ 0 & \text{otherwise} \end{cases}$$

Because $\Pr(X|T(\mathbf{X})=t)$ does not depend on p, by definition, $T(\mathbf{X}) = \sum_{i=1}^{n} X_i$ is a sufficient statistic for p.

Note from the proof

If **X** is a sample point such that $T(\mathbf{X}) \neq t$, then $\Pr(\mathbf{X} = \mathbf{x} | T(\mathbf{x}) = t) = 0$ always, so we don't have to consider the case when $T(\mathbf{x}) \neq t$ in the future.

A Theorem for Sufficient Statistics

Theorem 6.2.2

- Let $f_{\mathbf{X}}(\mathbf{x}|\theta)$ is a joint pdf or pmf of X
- and $q(t|\theta)$ is the pdf or pmf of $T(\mathbf{X})$.
- Then $T(\mathbf{X})$ is a sufficient statistic for θ ,
- if, for every $\mathbf{x} \in \mathcal{X}$,
- the ratio $f_{\mathbf{x}}(\mathbf{x}|\theta)/q(T(\mathbf{x})|\theta)$ is constant as a function of θ .

$$\Pr\left(\mathbf{X} = \mathbf{x} | T(\mathbf{X}) = t\right) = \frac{\Pr\left(\mathbf{X} = \mathbf{x}, T(\mathbf{X}) = t\right)}{\Pr\left(T(\mathbf{X}) = t\right)}$$

$$\Pr\left(\mathbf{X} = \mathbf{x} | T(\mathbf{X}) = t\right) = \frac{\Pr\left(\mathbf{X} = \mathbf{x}, T(\mathbf{X}) = t\right)}{\Pr\left(T(\mathbf{X}) = t\right)}$$

$$= \begin{cases} \frac{\Pr\left(\mathbf{X} = \mathbf{x}\right)}{\Pr\left(T(\mathbf{X}) = t\right)} & \text{if } T(\mathbf{x}) = t\\ 0 & \text{otherwise} \end{cases}$$

$$\Pr\left(\mathbf{X} = \mathbf{x} | T(\mathbf{X}) = t\right) = \frac{\Pr\left(\mathbf{X} = \mathbf{x}, T(\mathbf{X}) = t\right)}{\Pr\left(T(\mathbf{X}) = t\right)}$$

$$= \begin{cases} \frac{\Pr(\mathbf{X} = \mathbf{x})}{\Pr\left(T(\mathbf{X}) = t\right)} & \text{if } T(\mathbf{x}) = t\\ 0 & \text{otherwise} \end{cases}$$

$$= \begin{cases} \frac{f_{\mathbf{X}}(\mathbf{x} | \theta)}{q(T(\mathbf{x}) | \theta)} & \text{if } T(\mathbf{x}) = t\\ 0 & \text{otherwise} \end{cases}$$

$$\Pr\left(\mathbf{X} = \mathbf{x} | T(\mathbf{X}) = t\right) = \frac{\Pr\left(\mathbf{X} = \mathbf{x}, T(\mathbf{X}) = t\right)}{\Pr\left(T(\mathbf{X}) = t\right)}$$

$$= \begin{cases} \frac{\Pr(\mathbf{X} = \mathbf{x})}{\Pr\left(T(\mathbf{X}) = t\right)} & \text{if } T(\mathbf{x}) = t\\ 0 & \text{otherwise} \end{cases}$$

$$= \begin{cases} \frac{f_{\mathbf{X}}(\mathbf{x} | \theta)}{q(T(\mathbf{x}) | \theta)} & \text{if } T(\mathbf{x}) = t\\ 0 & \text{otherwise} \end{cases}$$

which does not depend on θ by assumption. Therefore, $T(\mathbf{X})$ is a sufficient statistic for θ .

Problem

- $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \text{Bernoulli}(p), 0 < \theta < 1.$
- Show that $T(\mathbf{X}) = \sum_{i=1}^{n} X_i$ is a sufficient statistic for θ .

This is the same problem from the last lecture, but we would like to solve is using Theorem 6.2.2.

$$f_{\mathbf{X}}(\mathbf{x}|p) = p^{x_1} (1-p)^{1-x_1} \cdots p^{x_n} (1-p)^{1-x_n}$$
$$= p^{\sum_{i=1}^n x_i} (1-p)^{n-\sum_{i=1}^n x_i}$$

$$f_{\mathbf{X}}(\mathbf{x}|p) = p^{x_1} (1-p)^{1-x_1} \cdots p^{x_n} (1-p)^{1-x_n}$$

$$= p^{\sum_{i=1}^n x_i} (1-p)^{n-\sum_{i=1}^n x_i}$$

$$T(\mathbf{X}) \sim \text{Binomial}(n,p)$$

$$f_{\mathbf{X}}(\mathbf{x}|p) = p^{x_1} (1-p)^{1-x_1} \cdots p^{x_n} (1-p)^{1-x_n}$$

$$= p^{\sum_{i=1}^n x_i} (1-p)^{n-\sum_{i=1}^n x_i}$$

$$T(\mathbf{X}) \sim \text{Binomial}(n,p)$$

$$q(t|p) = \binom{n}{t} p^t (1-p)^{n-t}$$

$$f_{\mathbf{X}}(\mathbf{x}|p) = p^{x_1} (1-p)^{1-x_1} \cdots p^{x_n} (1-p)^{1-x_n}$$

$$= p^{\sum_{i=1}^n x_i} (1-p)^{n-\sum_{i=1}^n x_i}$$

$$T(\mathbf{X}) \sim \text{Binomial}(n,p)$$

$$q(t|p) = \binom{n}{t} p^t (1-p)^{n-t}$$

$$\frac{f_{\mathbf{X}}(\mathbf{x}|p)}{q(T(\mathbf{x})|p)} = \frac{p^{\sum_{i=1}^n x_i} (1-p)^{n-\sum_{i=1}^n x_i}}{\binom{n}{\sum_{i=1}^n x_i} p^{\sum_{i=1}^n x_i} (1-p)^{n-\sum_{i=1}^n x_i}}$$

Example 6.2.3 - Binomial Sufficient Statistic

Proof

$$f_{\mathbf{X}}(\mathbf{x}|p) = p^{x_1} (1-p)^{1-x_1} \cdots p^{x_n} (1-p)^{1-x_n}$$

$$= p^{\sum_{i=1}^n x_i} (1-p)^{n-\sum_{i=1}^n x_i}$$

$$T(\mathbf{X}) \sim \text{Binomial}(n,p)$$

$$q(t|p) = \binom{n}{t} p^t (1-p)^{n-t}$$

$$\frac{f_{\mathbf{X}}(\mathbf{x}|p)}{q(T(\mathbf{x})|p)} = \frac{p^{\sum_{i=1}^n x_i} (1-p)^{n-\sum_{i=1}^n x_i}}{\binom{n}{\sum_{i=1}^n x_i} p^{\sum_{i=1}^n x_i} (1-p)^{n-\sum_{i=1}^n x_i}}$$

$$= \frac{1}{\binom{n}{\sum_{i=1}^n x_i}} = \frac{1}{\binom{n}{T(\mathbf{x})}}$$

Example 6.2.3 - Binomial Sufficient Statistic

Proof

$$f_{\mathbf{X}}(\mathbf{x}|p) = p^{x_1} (1-p)^{1-x_1} \cdots p^{x_n} (1-p)^{1-x_n}$$

$$= p^{\sum_{i=1}^n x_i} (1-p)^{n-\sum_{i=1}^n x_i}$$

$$T(\mathbf{X}) \sim \text{Binomial}(n,p)$$

$$q(t|p) = \binom{n}{t} p^t (1-p)^{n-t}$$

$$\frac{f_{\mathbf{X}}(\mathbf{x}|p)}{q(T(\mathbf{x})|p)} = \frac{p^{\sum_{i=1}^n x_i} (1-p)^{n-\sum_{i=1}^n x_i}}{\binom{n}{\sum_{i=1}^n x_i} p^{\sum_{i=1}^n x_i} (1-p)^{n-\sum_{i=1}^n x_i}}$$

$$= \frac{1}{\binom{n}{\sum_{i=1}^n x_i}} = \frac{1}{\binom{n}{T(\mathbf{x})}}$$

By theorem 6.2.2. $T(\mathbf{X})$ is a sufficient statistic for p.

Example 6.2.4 - Normal Sufficient Statistic

Problem

- $X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mu, \sigma^2)$
- Assume that σ^2 is known.
- Show that the sample mean $T(\mathbf{X}) = \overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ is a sufficient statistic for μ .

$$f_{\mathbf{X}}(\mathbf{x}|\mu)$$

$$f_{\mathbf{X}}(\mathbf{x}|\boldsymbol{\mu}) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x_i - \boldsymbol{\mu})^2}{2\sigma^2}\right)$$

$f_{\mathbf{X}}(\mathbf{x}|\mu)$

$$f_{\mathbf{X}}(\mathbf{x}|\mu) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x_i - \mu)^2}{2\sigma^2}\right)$$
$$= (2\pi\sigma^2)^{-n/2} \exp\left(-\sum_{i=1}^{n} \frac{(x_i - \mu)^2}{2\sigma^2}\right)$$

$f_{\mathbf{X}}(\mathbf{x}|\mu)$

$$f_{\mathbf{X}}(\mathbf{x}|\mu) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(x_i - \mu)^2}{2\sigma^2}\right)$$

$$= (2\pi\sigma^2)^{-n/2} \exp\left(-\sum_{i=1}^{n} \frac{(x_i - \mu)^2}{2\sigma^2}\right)$$

$$= (2\pi\sigma^2)^{-n/2} \exp\left(-\sum_{i=1}^{n} \frac{(x_i - \overline{x} + \overline{x} - \mu)^2}{2\sigma^2}\right)$$

$f_{\mathbf{X}}(\mathbf{x}|\mu)$

$$f_{\mathbf{X}}(\mathbf{x}|\mu) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^{2}}} \exp\left(-\frac{(x_{i} - \mu)^{2}}{2\sigma^{2}}\right)$$

$$= (2\pi\sigma^{2})^{-n/2} \exp\left(-\sum_{i=1}^{n} \frac{(x_{i} - \mu)^{2}}{2\sigma^{2}}\right)$$

$$= (2\pi\sigma^{2})^{-n/2} \exp\left(-\sum_{i=1}^{n} \frac{(x_{i} - \overline{x} + \overline{x} - \mu)^{2}}{2\sigma^{2}}\right)$$

$$= (2\pi\sigma^{2})^{-n/2} \exp\left(-\frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2} + n(\overline{x} - \mu)^{2}}{2\sigma^{2}}\right)$$

4 D > 4 A > 4 B > 4 B >

Example 6.2.4 - Proof (cont'd)

$q(T(\mathbf{x})|\mu)$

Remember from BIOSTAT601 that $T(\mathbf{X}) = \overline{X} \sim \mathcal{N}(\mu, \sigma^2/n)$.

$$q(T(\mathbf{x})|\mu) = \frac{1}{\sqrt{2\pi\sigma^2/n}} \exp\left(-n(\overline{x}-\mu)^2/(2\sigma^2)\right)$$

Putting things together

$$\frac{f_{\mathbf{X}}(\mathbf{x}|\mu)}{q(T(\mathbf{x})|\mu)} = \frac{(2\pi\sigma^2)^{-n/2} \exp\left(-\frac{\sum_{i=1}^n (x_i - \overline{x})^2 + n(\overline{x} - \mu)^2}{2\sigma^2}\right)}{(2\pi\sigma^2/n)^{-1/2} \exp\left(-\frac{n(\overline{x} - \mu)^2}{2\sigma^2}\right)}$$

Putting things together

$$\frac{f_{\mathbf{X}}(\mathbf{x}|\mu)}{q(T(\mathbf{x})|\mu)} = \frac{(2\pi\sigma^2)^{-n/2} \exp\left(-\frac{\sum_{i=1}^n (x_i - \bar{x})^2 + n(\bar{x} - \mu)^2}{2\sigma^2}\right)}{(2\pi\sigma^2/n)^{-1/2} \exp\left(-\frac{n(\bar{x} - \mu)^2}{2\sigma^2}\right)}$$

$$= n^{-1/2} (2\pi\sigma^2)^{-(n-1)/2} \exp\left(-\frac{\sum_{i=1}^n (x_i - \bar{x})^2}{2\sigma^2}\right)$$

Putting things together

$$\frac{f_{\mathbf{X}}(\mathbf{x}|\mu)}{q(T(\mathbf{x})|\mu)} = \frac{(2\pi\sigma^2)^{-n/2} \exp\left(-\frac{\sum_{i=1}^n (x_i - \bar{x})^2 + n(\bar{x} - \mu)^2}{2\sigma^2}\right)}{(2\pi\sigma^2/n)^{-1/2} \exp\left(-\frac{n(\bar{x} - \mu)^2}{2\sigma^2}\right)}$$

$$= n^{-1/2} (2\pi\sigma^2)^{-(n-1)/2} \exp\left(-\frac{\sum_{i=1}^n (x_i - \bar{x})^2}{2\sigma^2}\right)$$

which does not depend on μ . By Theorem 6.2.2, the sample mean is a sufficient statistic for μ .

Summary

Today

- Overview of BIOSTAT602
- Key differences between BIOSTAT601 and BIOSTAT602
- Sufficient Statistics
 - **X** is conditionally independent on θ given $T(\mathbf{X})$
 - If ratio of pdfs between **X** and $T(\mathbf{X})$ does not depend on θ , $T(\mathbf{X})$ is a sufficient statistic.

Summary

Today

- Overview of BIOSTAT602
- Key differences between BIOSTAT601 and BIOSTAT602
- Sufficient Statistics
 - **X** is conditionally independent on θ given $T(\mathbf{X})$
 - If ratio of pdfs between **X** and $T(\mathbf{X})$ does not depend on θ , $T(\mathbf{X})$ is a sufficient statistic.

Next Lecture

- More on Sufficient Statistics
- Factorization Theorem

