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OUTLINE 

•  Simple method for calling large deletions using read depth 

•  Combining multiple evidence 

•  Calling duplications and copy number variants 
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PAIRED END SEQUENCING 

Popula'on	  of	  DNA	  fragments	  of	  known	  size	  (mean	  +	  stdev)	  
Paired	  end	  sequences	  
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DISTANCE BETWEEN PAIR ENDS 

•  The graph shows distance 
between paired end reads 

•  Data summarized across 
24 samples 

•  Courtesy: Xiaowei Zhan, 
University of Michigan DNA 
Sequencing Core  

Distance	  (basepairs)	  

Re
ad

	  C
ou

nt
	  	  (
M
ill
io
ns
)	  

SEQUENCE ANALYSIS WORKSHOP @ U MICHIGAN 4 



EVIDENCE FOR A DELETION 
WITHIN A SINGLE INDIVIDUAL 

•  Split Reads 

•  Read Pair Separation 

•  Read Depth 

Figure	  from	  Handsaker	  et	  al	  (2011)	  
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DETECTING COPY NUMBER VARIATION 
BASED ON READ DEPTHS 

•  Focus on a particular feature of the data 
–  e.g., read depth 

•  Normalize depth for each individual 
–  e.g., adjust for total read count  
–  e.g., adjust for GC content specific read count 

•  Model data as a mixture of distributions, characterized 
using maximum likelihood 

Sara	  Rashkin	  
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Where 
 
di is the depth for individual i 

pj is the frequency of individuals with j deletions (assuming 
Hardy Weinberg Equilibrium) 

µj and σj

2 are the mean and variance of adjusted read depth 
distribution for deletion count j 

DETECTING COPY NUMBER VARIATION 
BASED ON READ DEPTHS 
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•  To estimate a deletion model, maximize 

•  To keep number of parameters modest, we use HWE for 
modeling  (one parameter for three frequencies) and 
can impose additional structure on means and variances 

DETECTING COPY NUMBER VARIATION 
BASED ON READ DEPTHS 
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WELL SEPARATED REGION 
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MODERATELY SEPARATED REGION 
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HARD TO CALL REGION 
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CLUSTER EVALUATION – OVERLAP 

•  Evaluation of cluster separation 
–  Unavoidable error : overlap between two 

distributions 
–  Bayes error rate ~ Bhattacharyya coefficient 
–  For two Gaussian distributions, 

 D = (µ1 – µ2)2 / (8 σavg
2) + (1/2) log [σavg / sqrt(σaσa)] 

 P(Overlap) = exp(-D) 
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P(OVERLAP) EXAMPLE 

max	  exp(-‐D)	  =	  0.933	   max	  exp(-‐D)	  =	  0.0032	  
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1000G CNV DEFAULT CG VS MULTI-SAMPLE 

CG	  Default	   Mul8-‐sample	  	   SNPs	  

#	  Large	  Dele'ons	   2,374	   8,321	   -‐	  

Call	  Rate	  (%)	   95.2	   99.9	   96.73	  

Merlin-‐es'mated	  
Error	  Rate	  (%)	   >10	   0.078	   0.494	  

Trio	  HET/HomREF	   0.750	   1.012	   0.962	  

Trio	  HET/HomALT	   1.055	   1.014	   1.001	  
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CHALLENGES IN READ DEPTH BASED CALLING 
•  Ideal if number of reads per region is large 

•  As technologies improve and reads get longer … 

•  … read depth based calling becomes harder 

•  Important to integrate different types of signal! 
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EVIDENCE AT THE POPULATION LEVEL 

•  Allele Shared Between Multiple Individuals 
–  Multiple individuals show cluster of reads with unusual 

separation in the same location 

•  Evidence for Deletion Recurs in the Same Individuals 
–  Individuals with one unusually separated pair of reads, likely to 

show additional nearby read pairs with unusual separation 

•  Evidence for Reference Allele Decreases as Evidence for Deletion 
Increases 
–  When the number of reads with unusual separation increases, 

the number of nearby reads with expected separation 
decreases 

•  Deletions Segregate on Specific Haplotypes 

SEQUENCE ANALYSIS WORKSHOP @ U MICHIGAN 16 



REFINED ALGORITHM 

•  Build list of candidate variants by finding read pairs with 
abnormal separation 

•  Focus on regions supported by multiple pairs 

•  Check whether highly separated pairs are evenly distributed 
across individuals (why?) 

•  Evaluate read depth distribution 

•  Search for split reads spanning breakpoint 

•  Combine with haplotype based hidden Markov model analysis 

Handsaker	  et	  al	  (2011)	  
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SEARCH FOR ABNORMAL READ PAIRS 

•  Search for read pairs where separation >10x the 
individual specific standard deviation 

•  Even if we require multiple supporting events, the 
number of potential copy number changes is ~10x larger 
than expected 

•  This is because of experimental limitation in preparing 
read pair libraries and of shortcomings in read mapping 

•  A major challenge is to reduce list of candidates 
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“HETEROGENEITY” 

•  Is rate at which widely 
separated read pairs occur 
constant among individuals? 

•  Calculated expected number of 
widely separated pairs using 
sequencing depth, average pair 
separation 
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EXPECTED NUMBER OF  
WIDELY SEPARATED READ PAIRS 

•  The approach of Handsaker et al. requires that we 
calculate, for each individual, the expected number of 
widely separated read pairs 

•  To do this, Handsaker et al (2011) calculate the 
distance between every mapped pair of reads 

•  They then assume that the number of read pairs 
separated by >x bp is proportional to the number of 
reads (across the genome) for which this distance 
exceeds x 
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“ALLELIC SUBSTITUTION” 

•  If we see evidence for deletion, based on read pair separation … 
•  Expect to see reduced evidence for reference bases on read 

depth 
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“ALLELIC SUBSTITUTION” 

•  If we see evidence for deletion, based on read pair separation … 

•  Expect to see reduced evidence for reference based on read 
depth 
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SIZING THE DELETION 

•  If we know the distribution of read pair distances for 
one individual… 

•  Observing an abnormal read pair suggests a specific 
deletion size, but with low confidence 

•  Observing many abnormal read pairs gradually suggests 
more specific deletion sizes and locations 
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COMBINING INFORMATION ACROSS INDIVIDUALS 
IS KEY 
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CALLING MULTI-ALLELIC CNVS 
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CALLING MULTI-ALLELIC CNVS 
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CNVS VS. EXPRESSION LEVELS 
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CONCLUSIONS 

•  Combining information across individuals improves the 
power of deletion analyses 

•  Combining different sources of information within each 
individual also provides increased resolution 

•  Avoiding experimental artifacts is a major challenge in 
analysis of copy number 
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