Power of Genomewide Association Studies

Biostatistics 666
A Simple Disease Model

- Risk allele frequency p
- Background allele frequency f
- Increase in disease risk per allele r

- Examples:
 - HLA-C risk allele for psoriasis, $p=.15$, $f=.0065$, $r=2.6$
 - $TNIP1$ risk allele for psoriasis, $p=.05$, $f=.0095$, $r=1.8$
 - $TCF7L2$ risk allele for type 2 diabetes, $p=.35$, $f=.08$, $r=1.4$
 - $R1210C$ risk allele for macular degeneration, $p=10^{-4}$, $f=.05$, $r=25$

- f selected so overall risk of disease is about 1%
What Happens in Cases ...

\[
P(\text{case} \& \text{low risk}) = (1 - p)^2 f
\]
\[
P(\text{case} \& \text{med risk}) = 2p(1 - p)fr
\]
\[
P(\text{case} \& \text{high risk}) = p^2 fr^2
\]

\[
P(\text{case}) = ((1 - p)^2 + 2p(1 - p)r + p^2 r^2) f
\]

\[
P(\text{low risk}|\text{case}) = (1 - p)^2 f / P(\text{case})
\]
\[
P(\text{med risk}|\text{case}) = 2p(1 - p)fr / P(\text{case})
\]
\[
P(\text{high risk}|\text{case}) = p^2 fr^2 / P(\text{case})
\]

\[
P(\text{risk allele}|\text{case}) = (p(1 - p)r + p^2 r^2) / P(\text{case})
\]
What Happens in Screened Controls ...

\[P(\text{control} \& \text{low risk}) = (1 - p)^2(1 - f) \]
\[P(\text{control} \& \text{med risk}) = 2p(1 - p)(1 - fr) \]
\[P(\text{control} \& \text{high risk}) = p^2(1 - fr^2) \]

\[P(\text{control}) = (1 - p)^2(1 - f) + 2p(1 - p)(1 - fr) + p^2(1 - fr^2) \]

\[P(\text{low risk}|\text{control}) = (1 - p)^2(1 - f)/P(\text{control}) \]
\[P(\text{med risk}|\text{control}) = 2p(1 - p)(1 - fr)/P(\text{control}) \]
\[P(\text{high risk}|\text{control}) = p^2(1 - fr^2)/P(\text{control}) \]

\[P(\text{risk allele}|\text{control}) = (p(1 - p)(1 - fr) + p^2(1 - fr^2))/P(\text{control}) \]
Today

• A simple genetic model: frequency + risk

• A typical genomewide association study

• Power for genomewide association study

• Designing a two stage genomewide study

• Choices for analysis of two stage studies
Genomewide Association Studies

• Survey ~500,000 SNPs in a large set of cases and controls
 – Subset of SNPs is typically followed up in more samples

• Comprehensively survey common variants across genome
 – Via linkage disequilibrium, most common variants assessed

• Successful: many loci implicated in common disorders
 – Especially in contrast to results of candidate gene studies
Collaborative Association Study of Psoriasis: Example of a Successful GWAS

- Examined ~1,500 cases / ~1,500 controls at ~500,000 SNPs
- Examined 20 promising SNPs in extra ~5,000 cases / ~5,000 controls
- Outcome: 7 regions of confirmed association with psoriasis

Green hits have $p < 5 \times 10^{-8}$ in final analysis

Nair et al, 2009
Top psoriasis associated SNPs in **strong linkage disequilibrium with HLA-Cw6**. Evidence for psoriasis associated SNPs that are far from HLA-Cw6.
Previously identified locus, psoriasis associated SNPs also associated with Crohn’s.
Previously identified locus, psoriasis associated SNPs associated with Crohn’s.
New locus, psoriasis associated SNPs **not associated** with Crohn’s.
New locus; other SNPs in the locus are associated with lupus and rheumatoid arthritis.
TNIP1

New locus; note potential evidence for independently associated alleles.
New locus; IL4 and IL13 are excellent functional candidates.
Q-Q Plot

Genomic control = 1.03
Multiple hits within a pathway...

• Three of the top replicated hits are for:
 – IL23R (IL-23 receptor) 3×10^{-8}
 – IL23A (IL-23 subunit) 9×10^{-10}
 – IL12B (IL-23/IL-12 subunit) 1×10^{-28}

• Two other replicated hits at:
 – TNFAIP3 (TNFα-inducible protein 3) 9×10^{-12}
 – TNIP1 (TNFAIP3 interacting protein 1) 1×10^{-20}

• Evidence for epistasis among these SNPs?
 – None.
Summary of Results

<table>
<thead>
<tr>
<th>SNP</th>
<th>Stage 1</th>
<th>Stage 2</th>
<th>P-value</th>
<th>Nearby Genes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>f_{cases}</td>
<td>f_{controls}</td>
<td>OR</td>
<td>f_{cases}</td>
</tr>
<tr>
<td>rs12191877</td>
<td>.31</td>
<td>.14</td>
<td>2.79</td>
<td>.30</td>
</tr>
<tr>
<td>rs2082412</td>
<td>.86</td>
<td>.79</td>
<td>1.56</td>
<td>.85</td>
</tr>
<tr>
<td>rs17727338</td>
<td>.09</td>
<td>.06</td>
<td>1.72</td>
<td>.09</td>
</tr>
<tr>
<td>rs20541</td>
<td>.83</td>
<td>.78</td>
<td>1.37</td>
<td>.83</td>
</tr>
<tr>
<td>rs610604</td>
<td>.37</td>
<td>.32</td>
<td>1.28</td>
<td>.36</td>
</tr>
<tr>
<td>rs2066808</td>
<td>.96</td>
<td>.93</td>
<td>1.68</td>
<td>.95</td>
</tr>
<tr>
<td>rs2201841</td>
<td>.35</td>
<td>.29</td>
<td>1.35</td>
<td>.32</td>
</tr>
</tbody>
</table>

Notice how estimated effect size is consistently higher in Stage 1. The “Winner’s Curse” is a common feature of genomewide studies.
Power Calculations

• For a given genetic model, evaluate alternative study designs

• For a given study design, identify genetic models that are likely to be detected

• Typically deal with many uncertainties...
 – What is an appropriate genetic model?
 – What is a desirable level of power?
Test Statistic

\[z = \frac{\hat{p}' - \hat{p}}{\sqrt{[\hat{p}'(1 - \hat{p}')] + \hat{p}(1 - \hat{p})]/2N} \]

Where:

\(\hat{p}' \) is the observed case allele frequency
\(\hat{p} \) is the observed control allele frequency
\(N \) is the number of cases and controls
Distribution Under the Null

- Under the null hypothesis $p = p'$

- Z is distributed as $\text{Normal}(0, 1)$

- Derive P-value thresholds for target significance level α

- Using Inverse Normal Cumulative Distribution Function
 - $\alpha = 0.05$ leads to $C = -\Phi^{-1}\left(\frac{0.05}{2}\right) = 1.96$
 - $\alpha = 5 \cdot 10^{-8}$ leads to $C = -\Phi^{-1}\left(\frac{5 \cdot 10^{-8}}{2}\right) = 5.45$
Distribution Under The Alternative

• For a specific set of expected case and control allele frequencies, ...

• ...we can calculate expected value of test statistic

\[\mu = \frac{p' - p}{\sqrt{[p'(1 - p') + p (1 - p)]/2N}} \]

• Under the alternative, statistic is Normal(\(\mu, 1\)).
Power

• To calculate power, we first calculate:
 – Significance threshold \(C \)
 – Expected test statistic \(\mu \)

• Use normal cumulative distribution function \(\Phi \)

• \(P(|Z| > C) \)
 \[
 = P(Z > C) + P(Z < -C) \\
 = 1 - \Phi(C - \mu) + \Phi(-C - \mu)
 \]
Example

- Test 1,000,000 independent markers
 - \(\alpha = \frac{0.05}{1,000,000} = 5 \times 10^{-8} \)
 - \(C = 5.45 \)

- Case allele frequency \(p' = 0.55 \)
- Control allele frequency \(p = 0.45 \)
- \(N_{\text{cases}} = N_{\text{controls}} = 1,000 \)
- \(\mu = 6.35 \)

- Power = 81%
 - If \(N = 500 \), power = 17%
 - If \(N = 2000 \), power = 100%
A comprehensive study might examine all M SNPs in all N samples.
Analysis of One Stage Study

Declare significance using p-value threshold of $0.05 / M$. Threshold of 5×10^{-8} is typical, assumes 1 million independent tests.
Two Stage Genomewide Association Studies
Two Stage Genomewide Study

A more cost effective study might only examine:

- All SNPs in a fraction of samples, π_{samples}
- All individuals for a fraction of markers, π_{markers}
Relative Genotyping Effort

• The total number of genotypes required in a two stage study is …

\[N_{genotypes} = MN \pi_{samples} + MN(1 - \pi_{samples})\pi_{markers} \]

• For example, if we …
 – Genotype 30% of samples in Stage 1
 – Follow-up 0.1% of markers in Stage 2
 – Total number of genotypes will be reduced 69.93%
Relative Cost

• The reduction in cost is typically less dramatic ...
• ... but still substantial

• Main limitation is that genotyping is cheaper “in bulk”
 – τ is ratio of stage 1 to stage 2 costs on a per genotype basis

• Cost ratio = \(\pi_{samples} + (1 - \pi_{samples})\pi_{markers}\tau \)

• For example, if we ...
 – Genotype 30% of samples in Stage 1
 – Follow-up 0.1% of markers in Stage 2
 – Relative cost ratio is 100

 – Total cost will be reduced 63.00%
Replication Based Analysis

Select markers to follow-up using p-value threshold of π_{markers}.
Declare significance using threshold of $0.05 / (M \cdot \pi_{\text{markers}})$
Final analysis uses only stage 2 samples.
Joint Analysis

Select markers to follow-up using p-value threshold of π_{markers}. Declare significance using threshold of approximately 0.05/M. Final analysis uses stage 1 and stage 2 samples.
Power for Replication Based Analysis

• Simplest approach would be to calculate
 – C_1 and C_2 as the significance thresholds for each stage
 – μ_1 and μ_2 as the expected statistics for each stage
 – P_1 and P_2 as the power for each stage
 – $P_{\text{replication}} = P_1 P_2$ as the overall power

• Refined analysis might enforce that stage 1 and stage 2 statistics should have the same sign

\[
P_2 = (1 - \Phi[C_2 - \mu_2]) \frac{1 - \Phi[C_1 - \mu_1]}{1 - \Phi[C_1 - \mu_1] + \Phi[-C_1 - \mu_1]} + \Phi[-C_2 - \mu_2] \frac{\Phi[-C_1 - \mu_1]}{1 - \Phi[C_1 - \mu_1] + \Phi[-C_1 - \mu_1]}
\]
Power for Joint Analyses

- Simplest approach would be to calculate
 - C_1 and C as stage 1 and overall significance thresholds
 - μ_1 and μ as stage 1 and overall expected statistics
 - P_1 and P as stage 1 and single stage study power
 - $P_{\text{joint}} = P_1 P$ as the overall power

- Refined analysis models joint distribution of stage 1 and overall test statistic

\[
P_{\text{joint}} = P(|z_{\text{joint}} > C_{\text{joint}}| T)
\]
\[
= \int_{-C_1}^{-\infty} [P(z_{\text{joint}} > C_{\text{joint}} | z_1 = x) + P(z_{\text{joint}} < -C_{\text{joint}} | z_1 = x)] f(x|T) dx
\]
\[
+ \int_{C_1}^{\infty} [P(z_{\text{joint}} > C_{\text{joint}} | z_1 = x) + P(z_{\text{joint}} < -C_{\text{joint}} | z_1 = x)] f(x|T) dx
\]

$T: |Z| > C_1$
Replication or Joint Analysis?

• Replication based analysis
 – Requires smaller multiple testing adjustment

• Joint analysis uses more data
 – We expect stronger signal using all available data

• Both analyses are compatible with the same experimental design
Replication of Joint Analysis?

300,000 markers genotyped on 1000 cases, 1000 controls
Multiplicative model, prevalence 10%, GRR = 1.4
Replication or Joint Analysis?
Effect of Varying $\pi_{samples}$

- $\alpha=0.05 / 300,000$
- $\pi_{markers} = 0.01$
- $N = 1,000$
- $p = 0.50$
- $p'= 0.66$
Replication or Joint Analysis?

Effect of Varying π_{markers}

- $\alpha = 0.05 / 300,000$
- $\pi_{\text{samples}} = 0.30$
- $N = 1,000$
- $p = 0.50$
- $p' = 0.66$
Refining Calculation

• Instead of setting p and p' arbitrarily, use a genetic model

• Suppose that the relative risk of disease is:
 – Baseline for those with no risk alleles
 – r_1 for those with one risk allele
 – r_2 for those with two risk alleles

• Then:

$$p' = \frac{p(1 - p)r_1 + p^2 r_2}{(1 - p)^2 + 2p(1 - p)r_1 + p^2 r_2}$$
Refining Calculation II

- Instead of setting p and p' arbitrarily, use a genetic model

- Suppose that controls are known to be free of disease and K is the disease prevalence

- Then:

$$ p_{control} = \frac{p - Kp'}{1 - K} $$
Some Important Messages

• Power calculations can help design study
 – How to best invest limited funds?

• Well designed two stage studies approximate power of more costly studies where all samples genotyped at all markers

• Joint analysis is much more efficient than replication based analyses
Recommended Reading
