Biostatistics 615/815 Lecture 13: Programming with Matrix

Hyun Min Kang

February 17th, 2011

 Introduction
 Power
 Matrix
 Matrix Computation
 Linear System
 Least square
 Summary

 ●000000
 0000
 0000
 000
 000
 000
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

Annoucements

Homework #3

- Homework 3 is due today
- If you're using Visual C++ and still have problems in using boost library, you can ask for another extension

 Introduction
 Power
 Matrix
 Matrix Computation
 Linear System
 Least square
 Summary

 ●000000
 0000
 0000
 000
 000
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0<

Annoucements

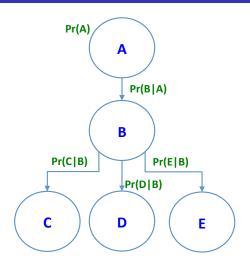
Homework #3

- Homework 3 is due today
- If you're using Visual C++ and still have problems in using boost library, you can ask for another extension

Homework #4

- Homework 4 is out
- Floyd-Warshall algorithm
 - Note that some key information was not covered in the class.
- Fair/biased coint HMM

Last lecture - Conditional independence in graphical models



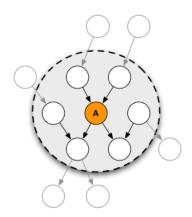
• Pr(A, C, D, E|B) = Pr(A|B) Pr(C|B) Pr(D|B) Pr(E|B)

Hyun Min Kang Biostatistics 615/815 - Lecture 13 February 17th, 2011 3 / 28

 Introduction
 Power
 Matrix
 Matrix Computation
 Linear System
 Least square
 Summary

 00●000
 0000
 0000
 000
 000
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0</

Markov Blanket



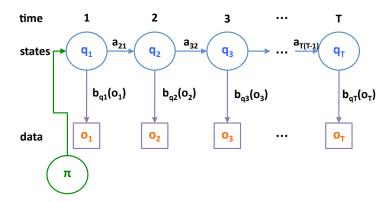
- If conditioned on the variables in the gray area (variables with direct dependency), A is independent of all the other nodes.
- $A \perp (U-A-\pi_A)|\pi_A$

4 □ ▶ 4 □ ▶ 4 □ ▶ 4 □ ▶ 9 Q ○

 Introduction
 Power
 Matrix
 Matrix Computation
 Linear System
 Least square
 Summary

 000●000
 0000
 0000
 000
 000
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0<

Hidden Markov Models

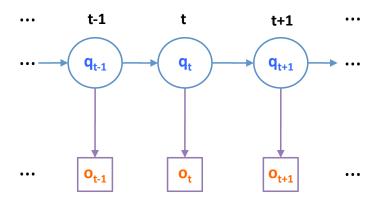


Conditional dependency in forward-backward algorithms

• Forward : $(q_t, o_t) \perp \mathbf{o}_t^- | \mathbf{q}_{t-1}$.

0000000

• Backward : $o_{t+1} \perp \mathbf{o}_{t+1}^+ | \mathbf{q}_{t+1}$.

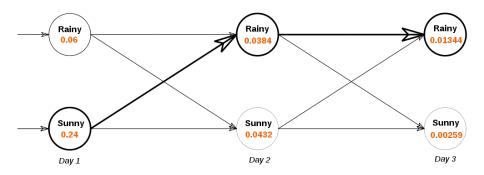


 Introduction
 Power
 Matrix
 Matrix Computation
 Linear System
 Least square
 Summary

 00000 €0
 0000
 0000
 000
 000
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

Viterbi algorithm - example

- When observations were (walk, shop, clean)
- Similar to Dijkstra's or Manhattan tourist algorithm



 Introduction 000000 0000
 Power 000000 0000
 Matrix 000000 0000
 Linear System 0000 0000
 Least square 0000 0000
 Summary 0000 000

Today's lecture

- Calculating Power
- Linear algebra 101
- Using Eigen library for linear algebra
- Implementing a simple linear regression

Calculating power

Problem

- Computing a^n , where $a \in \mathbb{R}$ and $n \in \mathbb{N}$.
- How many multiplications would be needed?

Function slowPower()

```
double slowPower(double a, int n) {
  double x = a;
  for(int i=1; i < n; ++i) {
    x *= a;
  }
  return x;
}</pre>
```


More efficient computation of power

Function fastPower()

```
double fastPower(double a, int n) {
  if ( n == 1 ) {
    return a;
  else {
    double x = fastPower(a,n/2);
    if ( n % 2 == 0 ) {
      return x * x;
    else {
      return x * x * a;
```

10 / 28

Computational time

```
main()
int main(int argc, char** argv) {
  double a = 1.0000001:
  int n = 10000000000;
  clock t t1 = clock();
  double x = slowPower(a,n);
  clock t t2 = clock();
  double y = fastPower(a,n);
  clock t t3 = clock():
  std::cout << "slowPower ans = " << x << ", sec = "
            << (double)(t2-t1)/CLOCKS PER SEC << std::endl;
  std::cout << "fastPower ans = " << y << ", sec = "
            << (double)(t3-t2)/CLOCKS PER SEC << std::endl:
```

Running examples

```
slowPower ans = 2.6881e+43, sec = 1.88659
fastPower ans = 2.6881e+43, sec = 3e-06
```

ntroduction Power Matrix Matrix Computation Linear System Least square Summary

Summary - fastPower()

- $\Theta(\log n)$ complexity compared to $\Theta(n)$ complexity of slowPower()
- Similar to binary search vs linear search
- Good example to illustrate how the efficiency of numerical computation could change by clever algorithms

ntroduction Power Matrix Matrix Computation Linear System Least square Summary

Programming with Matrix

Why Matrix matters?

- Many statistical models can be well represented as matrix operations
 - Linear regression
 - Logistic regression
 - Mixed models
- Efficient matrix computation can make difference in the practicality of a statistical method
- Understanding C++ implementation of matrix operation can expedite the efficiency by orders of magnitude

Ways to Matrix programmming

- Implementing Matrix libraries on your own
 - Implementation can well fit to specific need
 - Need to pay for implementation overhead
 - Computational efficiency may not be excellent for large matrices

Ways to Matrix programmming

- Implementing Matrix libraries on your own
 - Implementation can well fit to specific need
 - Need to pay for implementation overhead
 - Computational efficiency may not be excellent for large matrices
- Using BLAS/LAPACK library
 - Low-level Fortran/C API
 - ATLAS implementation for gcc, MKL library for intel compiler (with multithread support)
 - · Used in many statistical packages including R
 - Not user-friendly interface use.
 - boost supports C++ interface for BLAS

roduction Power Matrix Matrix Computation Linear System Least square Summary

Ways to Matrix programmming

- Implementing Matrix libraries on your own
 - Implementation can well fit to specific need
 - Need to pay for implementation overhead
 - Computational efficiency may not be excellent for large matrices
- Using BLAS/LAPACK library
 - Low-level Fortran/C API
 - ATLAS implementation for gcc, MKL library for intel compiler (with multithread support)
 - Used in many statistical packages including R
 - Not user-friendly interface use.
 - boost supports C++ interface for BLAS
- Using a third-party library, Eigen package
 - A convenient C++ interface
 - Reasonably fast performance
 - Supports most functions BLAS/LAPACK provides

ntroduction Power Matrix Matrix Computation Linear System Least square Summary

Using a third party library

Downloading and installing Eigen package

- Download at http://eigen.tuxfamily.org/index.php?title=3.0_beta
- To install just uncompress it

ntroduction Power Matrix Matrix Computation Linear System Least square Summary

Using a third party library

Downloading and installing Eigen package

- Download at http://eigen.tuxfamily.org/index.php?title=3.0_beta
- To install just uncompress it

Using Eigen package

- Add -I DOWNLOADED_PATH/eigen option when compile
- No need to install separate library. Including header files is sufficient

Example usages of Eigen library

```
#include <iostream>
#include <Eigen/Dense> // For non-sparse matrix
using namespace Eigen; // avoid using Eigen::
int main()
                      // 2x2 matrix type is defined for convenience
 Matrix2d a:
 a << 1, 2,
       3, 4;
 MatrixXd b(2.2): // but you can define the type from arbitrary-size matrix
 b << 2, 3,
      1, 4;
  std::cout << "a + b = \n" << a + b << std::endl: // matrix addition
  std::cout << "a - b =\n" << a - b << std::endl; // matrix subtraction
  std::cout << "Doing a += b:" << std::endl:
 a += b:
  std::cout << "Now a =\n" << a << std::endl;
 Vector3d v(1,2,3):
                                                   // vector operations
 Vector3d w(1,0,0);
  std::cout << "-v + w - v = n" << -v + w - v << std::endl:
}
```

More examples

```
#include <iostream>
#include <Eigen/Dense>
using namespace Eigen;
int main()
{
                              // 2*2 matrix
  Matrix2d mat:
  mat << 1, 2,
         3, 4:
  Vector2d u(-1,1), v(2,0); // 2D vector
  std::cout << "Here is mat*mat:\n" << mat*mat << std::endl;</pre>
  std::cout << "Here is mat*u:\n" << mat*u << std::endl:
  std::cout << "Here is u^T*mat:\n" << u.transpose()*mat << std::endl;</pre>
  std::cout << "Here is u^T*v:\n" << u.transpose()*v << std::endl;
  std::cout << "Here is u*v^T:\n" << u*v.transpose() << std::endl;</pre>
  std::cout << "Let's multiply mat by itself" << std::endl;</pre>
  mat = mat*mat:
  std::cout << "Now mat is mat:\n" << mat << std::endl;</pre>
```

Time complexity of matrix computation

Square matrix multiplication / inversion

- Naive algorithm : $O(n^3)$
- Strassen algorithm : $O(n^{2.807})$
- Coppersmith-Winograd algorithm : $O(n^{2.376})$ (with very large constant factor)

Determinant

- Laplace expansion : O(n!)
- LU decomposition : $O(n^3)$
- Bareiss algorithm : $O(n^3)$
- Fast matrix multiplication algorithm : $O(n^{2.376})$

Computational considerations in matrix operations

Avoiding expensive computation

• Computation of $\mathbf{u}'AB\mathbf{v}$

Computational considerations in matrix operations

Avoiding expensive computation

- Computation of $\mathbf{u}'AB\mathbf{v}$
- If the order is $(((\mathbf{u}'(AB))\mathbf{v})$
 - $O(n^3) + O(n^2) + O(n)$ operations
 - $O(n^2)$ overall

Computational considerations in matrix operations

Avoiding expensive computation

- Computation of $\mathbf{u}'AB\mathbf{v}$
- If the order is $(((\mathbf{u}'(AB))\mathbf{v})$
 - $O(n^3) + O(n^2) + O(n)$ operations
 - $O(n^2)$ overall
- If the order is $(((\mathbf{u}'A)B)\mathbf{v})$
 - Two $O(n^2)$ operations and one O(n) operation
 - O(n²) overall

Quadratic multiplication

Same time complexity, but one is slightly more efficient

- Computing $\mathbf{x}'A\mathbf{y}$.
- $O(n^2) + O(n)$ if ordered as $(\mathbf{x}'A)\mathbf{y}$.
- \bullet Can be simplified as $\sum_i \sum_j x_i A_{ij} y_j$

A symmetric case

- Computing $\mathbf{x}'A\mathbf{x}$ where A=LL'
- $\mathbf{u} = L'\mathbf{x}$ can be computed more efficiently than $A\mathbf{x}$.
- $\mathbf{x}' A \mathbf{x} = \mathbf{u}' \mathbf{u}$

Solving linear systems

Problem

Find \mathbf{x} that satisfies $A\mathbf{x} = \mathbf{b}$

A simplest approach

- Calculate A^{-1} , and $\mathbf{x} = A^{-1}\mathbf{b}$
- Time complexity is $O(n^3) + O(n^2)$
- A has to be invertible
- Potential issue of numerical instability

Using matrix decomposition to solve linear systems

LU decomposition

- A = LU, making $U\mathbf{x} = \mathbf{L}^{-1}\mathbf{b}$
- A needs to be square and invertible.
- Fewer additions and multiplications
- Precision problems may occur

QR decomposition

- A = QR where A is $m \times n$ matrix
- Q is orthogonal matrix, Q'Q = I.
- R is $m \times n$ upper-triangular matrix, $R\mathbf{x} = Q'\mathbf{b}$.

ntroduction Power Matrix Matrix Computation Linear System Least square Summary

Cholesky decomposition

- A is a square, symmetric, and positive definite matrix.
- A = U'U is a special case of LU decomposition
- Computationally efficient and accurate

Solving least square

Solving via inverse

- Most straightforward strategy
- $\mathbf{y} = X\beta + \epsilon$, \mathbf{y} is $n \times 1$, X is $n \times p$.
- $\beta = (X'X)^{-1}X'y$.
- Computational complexity is $O(np^2) + O(np) + O(p^3)$.
- The computation may become unstable if X'X is singular
- Need to make sure that rank(X) = p.

Singular value decomposition

Definition

A $m \times n (m \ge n)$ matrix A can be represented as $A = UDV^T$ such that

- U is $m \times n$ matrix with orthogonal columns $(U'U = I_n)$
- ullet D is n imes n diagnonal matrix with non-negative entries
- V^T is $n \times n$ matrix with orthogonal matrix ($V'V = VV' = I_n$).

Computational complexity

- $4m^2n + 8mn^2 + 9m^3$ for computing U, V, and D.
- $4mn^2 + 8n^3$ for computing V and D only.
- The algorithm is numerically very stable

Stable inferecne of least square using SVD

$$X = UDV'$$

$$\beta = (X'X)^{-1}X'\mathbf{y}$$

$$= (VDU'UDV')^{-1}VDU'\mathbf{y}$$

$$= (VD^2V')^{-1}VDU'\mathbf{y}$$

$$= VD^{-2}V'VDU'\mathbf{y}$$

$$= VD^{-1}U'\mathbf{y}$$

Stable inferecne of least square using SVD

```
#include <iostream>
#include <Eigen/Dense>
using namespace std;
#using namespace Eigen;
int main()
{
   MatrixXf A = MatrixXf::Random(3, 2):
   cout << "Here is the matrix A:\n" << A << endl;</pre>
   VectorXf b = VectorXf::Random(3):
   cout << "Here is the right hand side b:\n" << b << endl:</pre>
   cout << "The least-squares solution is:\n"</pre>
        << A.jacobiSvd(ComputeThinU | ComputeThinV).solve(b) << endl;
```

ntroduction Power Matrix Matrix Computation Linear System Least square **Summary**

Summary

- Calculating Power
- Linear algebra 101
- Using Eigen library for linear algebra
- Implementing a simple linear regression

