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Goal of Human Genetic Studies
Find biological processes that, 

when changed, alter disease course

Understand Disease:
Enable new treatments

Predict disease:
Enable early prevention and early decision making



How human genetic studies work …

• DNA is our instruction manual

• We are all built mostly to the same plan…
• Any two human DNA molecules are ~99.9% the same

• We each have our manual, with small variations from the typical plan
• Some variations are common and typically have small consequences
• Many variations are rare and these can have more severe consequences



Human Genetics, Study Sizes over My Time

Year No. of Samples No. of Markers Publication

2012 1,092 40 million The 1000 Genomes Project (Nature)

2010 Hundreds 16 million The 1000 Genomes Project (Nature)

2010 ~100,000 2.5 million Lipid GWAS (Nature)

2008 ~9,000 2.5 million Lipid GWAS (Nature Genetics)

2007 Hundreds 3.1 million HapMap (Nature)

2005 Hundreds 1 million HapMap (Nature)

2003 Hundreds 10,000 Chr. 19 Variation Map (Nature Genetics)

2002 Hundreds 1,500 Chr. 22 Variation Map (Nature)

2001 Thousands 127 Three Region Variation Map (Am J Hum Genet)

2000 Hundreds 26 T-cell receptor variation (Hum Mol Genet)
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Early studies looked at a few genetic variants,
picked based on intuition and prejudice.

New discoveries were few and far between.
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Modern studies are more 
comprehensive and systematic.

New discoveries accumulate fast, but 
understanding their implications is challenging.



Current State of Genetic Association Studies

• Surveying common variation across 10,000s - 100,000s of individuals 
is now routine

• Many common alleles have been associated with a variety of human 
complex traits

• The functional consequences of these alleles are often subtle, and 
translating the results into mechanistic insights remains challenging



Global Lipids Genetics Consortium

• An example of the current standard for genetic association studies

• Most recent analysis includes 188,578 individuals and identifies 157 
loci associated with blood lipid levels

• Associated loci can:
• Suggest new targets for therapy
• Confirm suspected targets or known biology
• Provide insights on the relationship between lipids and other phenotypes

Sekar 
Kathiresan

Cristen
Willer

Willer et al, Nat Genet, 2008; Teslovich et al, Nature, 2010; Willer et al, Nat Genet, 2013; Do et al, Nat Genet, 2013 



HDL cholesterol (46):

HDGF-PMVK, ANGPTL1, CPS1, ATG7, 
SETD2, RBM5, STAB1, GSK3B, 

C4orf52, FAM13A, ADH5, DAGLB, 
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PEPD, GALNT2, IRS1, 
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MIR148A, 
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4 loci:

CETP, TRIB1, 
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A SNAPSHOT OF LIPID GENETICS

LDL cholesterol (9):

ANXA9-CERS2, EHBP1, BRCA2, 
FN1, APOH-PRXCA, SPTLC3, SNX5, 

MTMR3, NYNRIN



Suggesting New Targets: GALNT2

• GWAS allele with 40% frequency 
associated with ±1 mg/dl in HDL-C

• Explored consequences of modifying 
GALNT2 expression in mouse liver…

• Overexpression of GALNT2 or Galnt2
decreases HDL-C ~20%

• Knockdown of Galnt2 increases HDL-C 
by ~30%

Teslovich et al, Nature, 2012Dan Rader



Supporting Previous Leads: GPR146

• Our work shows that variants 
near GPR146 are associated 
with total cholesterol

• U. S. Patent Application 
#20,090,036,394 discloses that, 
in mice, targeting GPR146 
lowers cholesterol

• Together, the two pieces of 
evidence could encourage 
human trials



Insights about biology …

• In our first lipid GWAS, we showed that every allele that increased LDL-C 
was also associated with increased coronary heart disease risk…

• Later, we showed that alleles with the largest impact on HDL-C in blood, 
also modify the risk of age related macular degeneration

• Our most recent analysis show that the impact of an allele on triglyceride 
levels predicts heart disease risk

• Even after controlling for its association with HDL-C and LDL-C
• Analysis continues to support causal role for LDL-C (but not for HDL-C)



Challenges and Opportunities

• Discovery of variants with clear functional consequence is now easier.
• Almost every gene will be severely defective in at least a few individuals.

• Studies of these variants present new challenges and opportunities.
• With loss-of-function variants, much easier path from association to biology. 
• Most loss-of-function variants are individually very rare. 

• To increase power, it is useful to consider cost-effective strategies:
• Analytical strategies that economize sequencing effort.
• Opportunities to aggregate information across studies and variants.

• Need more collaboration about clinical experts, biologists and human genetics. 
• Ensure that we focus on the most important outcomes.
• Ensure that we translate findings into biological insights.



Questions that Might Be Answered With 
Complete Sequence Data…

• What is the contribution of each identified locus to a trait?
• Likely that multiple variants, common and rare, will contribute

• What is the mechanism? What happens when we knockout a gene?
• Most often, the causal variant will not have been examined directly
• Rare coding variants will provide important insights into mechanisms

• What is the contribution of structural variation to disease?
• These are hard to interrogate using current genotyping arrays.

• Are there additional susceptibility loci to be found?
• Only subset of functional elements include common variants …
• Rare variants are more numerous and thus will point to additional loci



What Is the Total 
Contribution of Each Locus?

Evidence that 
Multiple Variants Will be Important



Evidence for Multiple Variants Per Locus
Example from Lipid Biology

Willer et al, Nat Genet, 2008
Kathiresan et al, Nat Genet, 2008, 2009



For several loci, there is 
clear evidence for 
independently associated 
common variants – even 
among markers typed in 
GWAS. 

Including these in the 
analysis increases variance 
explained by ~10%.

Evidence for Multiple Variants Per Locus
Example from Lipid Biology

Willer et al, Nat Genet, 2008
Kathiresan et al, Nat Genet, 2008, 2009



What is The Contribution of 
Structural Variants?
Current Arrays Interrogate 1,000,000s of SNPs, 

but 100s of Structural Variants



Evidence that Copy Number Variants Important
Example from Genetics of Obesity

Seven of eight confirmed BMI loci show strongest expression in the brain…

Willer et al, Nature Genetics, 2009



Evidence that Copy Number Variants Important
Example from Genetics of Obesity

Willer et al, Nature Genetics, 2009



Note hole in marker
panels….

Willer et al, Nature Genetics, 2009

Evidence that Copy Number Variants Important
Example from Genetics of Obesity



Associated Haplotype Carries Deletion

Willer et al, Nature Genetics, 2009



What is the Mechanism?
What Can We Learn From Rare 

Knockouts?

Early Example from Type 1 Diabetes



Can Rare Variants Replace Model Systems?
Example from Type 1 Diabetes

• Nejentsev, Walker, Riches, Egholm, Todd (2009) 
IFIH1, gene implicated in anti-viral responses, protects against T1D
Science 324:387-389

• Common variants in IFIH1 previously associated with type 1 diabetes

• Sequenced IFIH1 in ~480 cases and ~480 controls
• Followed-up of identified variants in >30,000 individuals

• Identified 4 variants associated with type 1 diabetes including:
• 1 nonsense variant associated with reduced risk
• 2 variants in conserved splice donor sites associated with reduced risk
• Result suggests disabling the gene protects against type 1 diabetes



Next Generation Sequencing



Massive Throughput Sequencing

• Tools to generate sequence data evolving rapidly

• Commercial platforms produce gigabases of sequence rapidly and 
inexpensively

• ABI SOLiD, Illumina Solexa, Roche 454, Complete Genomics, Ion Torrent, and 
others…

• Sequence data consist of thousands or millions of short sequence 
reads with moderate accuracy

• 0.5 – 1.0% error rates per base may be typical



Shotgun Sequence Reads

• Typical short read might be <25-100 bp long and not 
very informative on its own

• Reads must be arranged (aligned) relative to each 
other to reconstruct longer sequences



Base Qualities

• Each base is typically associated with a quality value

• Measured on a “Phred” scale, which was introduced by Phil 
Green for his Phred sequence analysis tool

𝐵𝐵𝐵𝐵 = − log10 𝜖𝜖 ,𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝜖𝜖 𝑖𝑖𝑖𝑖 𝑡𝑡𝑤𝑤𝑤 𝑝𝑝𝑤𝑤𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑝𝑝𝑖𝑖𝑡𝑡𝑝𝑝 𝑝𝑝𝑜𝑜 𝑝𝑝𝑎𝑎 𝑤𝑤𝑤𝑤𝑤𝑤𝑝𝑝𝑤𝑤

GCTAGCTGATAGCTAGCTAGCTGATGAGCCCGA

30.30.28.28.29.27.30.29.28.25.24.26.27.24.24.23.20.21.22.10.25.25.20.20.18.17.16.15.14.14.13.12.10

Short Read Sequence

Short Read Base Qualities



Read Alignment

• The first step in analysis of human short read data is to align each 
read to genome, typically using a hash table based indexing 
procedure

• This process now takes no more than a few hours per million reads …

• Analyzing these data without a reference human genome would 
require much longer reads or result in very fragmented assemblies

5’-ACTGGTCGATGCTAGCTGATAGCTAGCTAGCTGATGAGCCCGATCGCTGCTAGCTCGACG-3’

Reference Genome (3,000,000,000 bp)

GCTAGCTGATAGCTAGCTAGCTGATGAGCCCGA
Short Read (30-100 bp)



Read Alignment – Food for Thought

• Typically, all the words present in the genome are indexed to facilitate 
read mapping …

• What are the benefits of using short words?
• What are the benefits of using long words?

• How matches do you expect, on average, for a 10-base word?
• Do you expect large deviations from this average?



Mapping Quality

• Measures the confidence in an alignment, which depends on:
• Size and repeat structure of the genome
• Sequence content and quality of the read
• Number of alternate alignments with few mismatches

• The mapping quality is usually also measured on a “Phred” scale

• Idea introduced by Li, Ruan and Durbin (2008) Genome Research 
18:1851-1858



Refinements to Mapping Quality

• In their simplest form, mapping qualities apply to the entire read

• However, in gapped alignments, uncertainty in alignment can differ 
for different portions of the read

• For example, it has been noted that many wrong variant calls are supported 
by bases near the edges of a read

• Per base alignment qualities were introduced to summarize local 
uncertainty in the alignment



Per Base Alignment Qualities

Heng Li

5’-AGCTGATAGCTAGCTAGCTGATGAGCCCGATC-3’
GATAGCTAGCTAGCTGATGA GCCG

Reference Genome

Short Read



Per Base Alignment Qualities

Heng Li

5’-AGCTGATAGCTAGCTAGCTGATGAGCCCGATC-3’
GATAGCTAGCTAGCTGATGAGCC-G

Reference Genome

Short Read

Should we insert a gap?



Per Base Alignment Qualities

Heng Li

5’-AGCTGATAGCTAGCTAGCTGATGAGCCCGATC-3’
GATAGCTAGCTAGCTGATGAGCCG

Reference Genome

Short Read

Compensate for Alignment Uncertainty
With Lower Base Quality



Paired End Sequencing

Population of DNA fragments of known size (mean + stdev)
Paired end sequences



Paired End Sequencing
Paired Reads

Initial alignment to the reference genome

Paired end resolution



Detecting Structural Variation
• Read depth

• Regions where depth is different from expected
• Expectation defined by comparing to rest of genome …
• … or, even better, by comparing to other individuals

• Split reads
• If reads are longer, it may be possible to find reads that span the 

structural variation

• Discrepant pairs
• If we find pairs of reads that appear to map significantly closer or further 

apart than expected, could indicate an insertion or deletion

• For this approach, “physical coverage” which is the sum of read length 
and insert size is key

• De Novo Assembly



How Much Variation is There?

• An average genome includes:
• 3.6M SNPs
• 350K indels
• 700 large deletions

• Numbers are probably underestimates …
• … some variants are hard to call with short reads

• 1000 Genomes Project (2012) Nature 491:56-65



How Much Variation is There?
SNPs Per Individual in Gene Regions 

European
Ancestry # SNP # HET # ALT # Singletons Ts/Tv

SILENT 10127 6174 3953 38.2 5.10
MISSENSE 8541 5184 3357 72.2 2.16
NONSENSE 86 57 29 2.1 1.70

African 
Ancestry # SNP # HET # ALT # Singletons Ts/Tv

SILENT 12028 8038 3990 53.2 5.19
MISSENSE 9870 6502 3367 94.2 2.16
NONSENSE 92 57 35 2.4 1.57

Primarily European Ancestry

Primarily African Ancestry

NHLBI Exome Sequencing Project



Lots of Rare Functional Variants to Discover

SET # SNPs Singletons Doubletons Tripletons >3 Occurrences

Synonymous 270,263 128,319
(47%)

29,340
(11%)

13,129
(5%)

99,475
(37%)

Nonsynonymous 410,956 234,633
(57%)

46,740
(11%)

19,274
(5%)

110,309
(27%)

Nonsense 8,913 6,196
(70%)

926
(10%)

326
(4%)

1,465
(16%)

Non-Syn / Syn
Ratio 1.8 to 1 1.6 to 1 1.4 to 1 1.1 to 1

There is  a very large reservoir of extremely rare, likely functional, coding variants.
(Results above correspond to approximately 5,000 individuals)

NHLBI Exome Sequencing Project



Allele Frequency Spectrum
(After Sequencing 12,000+ Individuals)
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Estimates of Genetic Ancestry 
from Tiny Bits of Sequence Data



Age-Related Macular Degeneration

• Common cause of blindness among 
the elderly

• Affects >2 million individuals in the 
United States

• Prevalence increases with old age:
• ~4% at age 75
• ~12% at age 80

Normal 
Vision

Macular
Degeneration
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Recent updates in Fritsche et al (Nature Genetics, 2013) and Zhan et al (Nature Genetics, 2013).



Age Related Macular Degeneration:
Close-Up of Specific Region



Evidence for Association is… “Circumstantial!”

• In any one region, many alleles will typically be associated
• These all appear in the ancestral fragment carrying the “causal” variant(s)

• In any one region, many causal genes and mechanisms can often be postulated
• Need a strategy to systematically adjudicate between options

• Identifying causal mechanisms requires…
• Exhaustively examining all variants
• Additional experiments
• Guesswork

• Identification of causal mechanisms can be helped by …
• Studies in different populations, with different haplotype structure
• Identification of independently associated variants



Our First 
Detailed Look at CFH

• Li et al (2006) Nature Genetics 38:1049-1054.

• Examined 84 genetic variants near CFH.

• Found:
• 2 common risk haplotypes (one without Y402H)
• 2 common protective haplotypes
• Rare haplotypes associated with disease risk

Mingyao Li Anand Swaroop



Rare Variants in CFH

• Raychauduri et al (2011) Nature Genetics 43:1232-36

• Sequenced representatives of each haplotype
• Focused on carriers of a rare, high-risk haplotype 

• Frequency ~0.0004 in controls, ~ 0.007 in cases

• Showed R1210C variant strongly associated with AMD
• Present in 40 of 2,423 cases
• Present in 1 of 1,123 controls
• Variant compromises CFH’s C-terminal ligand binding



Targeted Sequencing of AMD Risk Loci

• Examine rare variants in known loci to obtain clues about 
functional mechanisms

• Cost to carry out search genomewide outside our budget
• Set out to examine previously identified risk loci

• Sequenced 2,348 AMD cases and 789 controls 
• Sequencing at Washington University Genome Center
• R1210C variant seen in 23 cases, 0 controls (good!)
• P-value is about .008 (middling!)
• Variant present 2 of 12,000+ sequenced exomes (amazing!)

• Studying rare variants, requires very large sample sizes!



Expanding Our Experiment

• Can we identify additional well matched controls to augment our 
sequencing study?

• Plan:
• Place AMD samples in ancestry map of the world
• Place other sequenced samples in the same map
• Identify matched controls for each case …



Principal Component Ancestry Map of Europe

Novembre et al. (2008) Nature

Dataset includes:
1,385 individuals of known ancestry
318,682 genetic markers passing filters

52



Targeted sequencing data
Target Target

Sample 1

Sample 2

Sample 3

53



What Happens When We Apply PCA Analysis 
to Targeted Sequence Data?

On-target genotypes don’t contain enough information to estimate the ancestry 
of a sample. The illustration is based on >80x deep whole exome data. 



The Problem

Xiaowei Zhan         Chaolong Wang      Sebastian Zöllner

• We would like to place individuals on worldwide ancestry map, but …

• Very little information about the genotype of each individual
• Principal components are weighted sum of genotype 
• Must reflect how well we can reconstruct each genotype
• Must reflect information about ancestry from each marker
• Will vary by individual!

• Very little overlap between any pair of individuals…
• Need to build a reference coordinate space

55



Matching Results
• Searched 6,800+ ESP samples for 

matches

• Built matched set 
• 2,268 AMD cases
• 2,268 controls
• Focused on sites with high depth
• Excluded sites near indels

• R1210C variant now has p<10-6

• 23 cases
• 1 control

• New signal at K155Q in C3 gene looks 
promising, reaching 10-15 after follow-up



AMD Risk Variants in CFH and C3 ….

• CFH R1210, OR ~10
• C3 K155Q, OR ~3.0 
• C3 R102G, OR ~1.3

• Variants appear to map in the 
region where C3 and CFH interact

• CFH inactivates C3 to downregulate
alternate complement pathway



Design A Whole Genome 
Sequencing Study in Sardinia

Gonçalo Abecasis
David Schlessinger 
Francesco Cucca



SardiNIA Whole Genome Sequencing
• 6,148 Sardinians from 4 towns in the Lanusei Valley, 

Sardinia
• Recruited among population of ~9,841 individuals
• Sample includes >34,000 relative pairs

• Measured ~100 aging related quantitative traits

• Original plan:
• Sequence >1,000 individuals at 2x to obtain draft sequences
• Genotype all individuals, impute sequences into relatives



How Is Sequencing Progressing?
• NHGRI estimates of sequencing capacity and cost …

– Since 2006, for fixed cost …
– … ~4x increase in sequencing output per year

• In our own hands…
– Mapped high quality bases
– March 2010: ~5.0 Gb/lane
– May 2010: ~7.5 Gb/lane
– September 2010: ~8.6 Gb/lane
– January 2011: ~16 Gb/lane
– Summer 2011: ~45 Gb/lane

• Other small improvements
– No PCR libraries increase genome coverage, reduce duplicate rates

Fabio Busonero, Andrea Maschio



As more samples are sequenced,
Accuracy increases

Heterozygous Mismatch Rate (in %)



Design
Sequence 1000 

individuals 
@ 2x  or greater

“Draft” Genomes
for 1000 Individuals

Genotype 6000 
individuals with 
700,000 SNPs

Haplotypes 
for 6000 Individuals

Whole Genome 
Information on 

6,000 individuals



What Do We See Genomewide?
LDL Cholesterol
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LDL Genetics In Lanusei Valley, Sardinia,
Current Sequenced Based View

Locus Variants MAF Effect Size (SD) H2

HBB Q39X .04 0.90 8.0%??

APOE R176C, C130R .04, .07 0.56, 0.26 3.3%

PCSK9 R46L, rs2479415 .04, .41 0.38, 0.08 1.2%

LDLR rs73015013, V578R .14, .005 0.16, 0.62 1.2%

SORT1 rs583104 .18 0.15 0.6%

APOB rs547235 .19 0.19 0.5%

• Most of these variants  are important across Europe, extensively studied.
• Q39X variant in HBB is especially enriched in Sardinia.
• V578R in LDLR is a Sardinia specific variant, particularly common in Lanusei.



Summary

• Challenges and opportunities in genetic association studies.

• Great need for statistical and computational method development.

• In a specific examples, we …
• Designed method to combine sequence information across samples.
• Applied the method to sequence an interesting population in Sardinia.

• Designed method to infer ancestry from small amounts of sequence.
• Applied the method to identify additional controls for sequencing study.
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