
Maximum Likelihood Estimation 
for Allele Frequencies

Biostatistics 666



Previous Series of Lectures:
Introduction to Coalescent Models
• Computationally efficient framework

• Alternative to forward simulations

• Amenable to analytical solutions

• Predictions about sequence variation
• Number of polymorphisms

• Frequency of polymorphisms

• Distribution of polymorphisms across haplotypes



Next Series of Lectures

• Estimating allele and haplotype frequencies from genotype data
• Maximum likelihood approach

• Application of an E-M algorithm

• Challenges
• Using information from related individuals

• Allowing for non-codominant genotypes

• Allowing for ambiguity in haplotype assignments



Maximum Likelihood

• A general framework for estimating model parameters
• Find parameter values that maximize the probability of the observed data

• Learn about population characteristics
• E.g. allele frequencies, population size

• Using a specific sample 
• E.g. a set sequences, unrelated individuals, or even families

• Applicable to many different problems



Example: Allele Frequencies

• Consider…
• A sample of n chromosomes

• X of these are of type “a”

• Parameter of interest is allele frequency…
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Evaluate for various parameters

p 1-p L

0.0 1.0 0.000

0.2 0.8 0.088

0.4 0.6 0.251

0.6 0.4 0.111

0.8 0.2 0.006

1.0 0.0 0.000

For n = 10 and X = 4



Likelihood Plot
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For n = 10 and X = 4



In this case

• The likelihood tells us the data is most probable if p = 0.4

• The likelihood curve allows us to evaluate alternatives…
• Is p = 0.8 a possibility?

• Is p = 0.2 a possibility?



Example: Estimating 4N

• Consider S polymorphisms in sample of n sequences…

• Where Pn is calculated using the Qn and P2 functions defined 
previously
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Likelihood Plot
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With n = 5,  S = 10

MLE



Maximum Likelihood Estimation

• Two basic steps…

• In principle, applicable to any problem where a likelihood 
function exists
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MLEs

• Parameter values that maximize likelihood
•  where observations have maximum probability

• Finding MLEs is an optimization problem

• How do MLEs compare to other estimators?



Comparing Estimators

• How do MLEs rate in terms of …
• Unbiasedness 

• Consistency

• Efficiency

• For a review, see Garthwaite, Jolliffe, Jones (1995) Statistical 
Inference, Prentice Hall



Analytical Solutions

• Write out log-likelihood …

• Calculate derivative of likelihood

• Find zeros for derivative function
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Information

• The second derivative is also extremely useful

• The speed at which log-likelihood decreases

• Provides an asymptotic variance for estimates
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Allele Frequency Estimation …

• When individual chromosomes are observed this is not so tricky…

• What about with genotypes?

• What about with parent-offspring pairs?



Coming up …

• We will walk through allele frequency estimation in three distinct 
settings:

• Samples single chromosomes …

• Samples of unrelated Individuals …

• Samples of parents and offspring …



I. Single Alleles Observed

• Consider…
• A sample of n chromosomes

• X of these are of type “a”

• Parameter of interest is allele frequency…
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Some Notes

• The following two likelihoods are just as good:

• For ML estimation, constant factors in likelihood 
don’t matter
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Analytic Solution

• The log-likelihood

• The derivative

• Find zero …
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Samples of 
Individual Chromosomes
• The natural estimator (where we count the proportion of sequences 

of a particular type) and the MLE give identical solutions

• Maximum likelihood provides a justification for using the “natural” 
estimator



II. Genotypes Observed

• Use notation nij to denote the number of individuals with genotype i / j

• Sample of n individuals

Genotype Counts

Genotype A1A1 A1A2 A2A2 Total

Observed Counts n11 n12 n22 n=n11+n12+n22

Frequency p11 p12 p22 1.0



Allele Frequencies by Counting…

• A natural estimate for allele frequencies is to calculate the proportion 
of individuals carrying each allele

Allele Counts

Genotype A1 A2 Total

Observed Counts n1 = 2n11 + n12 n2 = 2n22 + n12 2n=n1+n2

Frequency p1=n1/2n p2=n2/2n 1.0



MLE using genotype data…

• Consider a sample such as ...

• The likelihood as a function of allele frequencies is …
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Genotype Counts

Genotype A1A1 A1A2 A2A2 Total

Observed Counts n11 n12 n22 n=n11+n12+n22

Frequency p11 p12 p22 1.0



Which gives…

• Log-likelihood and its derivative

• Giving the MLE as …
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Samples of
Unrelated Individuals
• Again, natural estimator (where we count the proportion of alleles of 

a particular type) and the MLE give identical solutions

• Maximum likelihood provides a justification for using the “natural” 
estimator



III. Parent-Offspring Pairs

Child

Parent A1A1 A1A2 A2A2

A1A1 a1 a2 0 a1+a2

A1A2 a3 a4 a5 a3+a4+a5

A2A2 0 a6 a7 a6+a7

a1+a3 a2+a4+a6 a5+a7 N pairs



Probability for Each Observation

Child

Parent A1A1 A1A2 A2A2

A1A1

A1A2

A2A2

1.0



Probability for Each Observation

Child

Parent A1A1 A1A2 A2A2

A1A1 p1
3 p1

2p2 0 p1
2

A1A2 p1
2p2 p1p2 p1p2

2 2p1p2

A2A2 0 p1p2
2 p2

3 p2
2

p1
2 2p1p2 p2

2 1.0



Which gives…
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Samples of
Parent Offspring-Pairs

• The natural estimator (where we count the 
proportion of alleles of a particular type) and the 
MLE no longer give identical solutions

• In this case, we expect the MLE to be more accurate



Comparing Sampling Strategies

• We can compare sampling strategies by calculating 
the information for each one

• Which one to you expect to be most informative?
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How informative is each setting?

• Single chromosomes

• Unrelated individuals

• Parent offspring pairs
43
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Other Likelihoods

• Allele frequencies when individuals are…
• Diagnosed for Mendelian disorder

• Genotyped at two neighboring loci

• Phenotyped for the ABO blood groups

• Many other interesting problems…

• … but some have no analytical solution



Today’s Summary

• Examples of Maximum Likelihood

• Allele Frequency Estimation
• Allele counts

• Genotype counts

• Pairs of Individuals



Take home reading

• Excoffier and Slatkin (1995)
• Mol Biol Evol 12:921-927

• Introduces the E-M algorithm

• Widely used for maximizing likelihoods in genetic problems



Properties of Estimators
For Review



Unbiasedness

• An estimator is unbiased if

• Multiple unbiased estimators may exist

• Other properties may be desirable
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Consistency

• An estimator is consistent if

• for any 

• Estimate converges to true value in probability with increasing sample 
size

   nP  as 0|ˆ| 



Mean Squared Error

• MSE is defined as

• If MSE  0 as n  then the estimator must be consistent



Efficiency

• The relative efficiency of two estimators is the ratio of their variances

• Comparison only meaningful for estimators with equal biases
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Sufficiency
• Consider…

• Observations X1, X2, … Xn

• Statistic T(X1, X2, … Xn)

• T is a sufficient statistic if it includes all information about 
parameter  in the sample
• Distribution of Xi conditional on T is independent of 

• Posterior distribution of  conditional on T is independent of Xi



Minimal Sufficient Statistic

• There can be many alternative sufficient statistics.

• A statistic is a minimal sufficient statistic if it can be expressed as a 
function of every other sufficient statistic.



Typical Properties of MLEs

• Bias
• Can be biased or unbiased

• Consistency
• Subject to regularity conditions, MLEs are consistent 

• Efficiency
• Typically, MLEs are asymptotically efficient estimators

• Sufficiency
• Often, but not always

• Cox and Hinkley, 1974



Strategies for Likelihood 
Optimization

For Review



Generic Approaches

• Suitable for when analytical solutions are impractical

• Bracketing

• Simplex Method

• Newton-Rhapson



Bracketing

• Find 3 points such that 
• a < b < c

• L(b) > L(a) and L(b) > L(c)

• Search for maximum by
• Select trial point in interval

• Keep maximum and flanking points



Bracketing
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The Simplex Method

• Calculate likelihoods at simplex vertices
• Geometric shape with k+1 corners

• E.g. a triangle in k = 2 dimensions

• At each step, move the high vertex in the direction of lower points



The Simplex Method II

high
low

Original Simplex

reflection

reflection and
expansion

contraction

multiple
contraction



One parameter maximization

• Simple but inefficient approach

• Consider
• Parameters  = (1, 2, …, k)

• Likelihood function L (; x)

• Maximize  with respect to each i in turn
• Cycle through parameters



The Inefficiency…
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Steepest Descent

• Consider
• Parameters  = (1, 2, …, k)

• Likelihood function L (; x)

• Score vector

• Find maximum along  + S
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Still inefficient…

Consecutive steps are perpendicular!



Local Approximations to 
Log-Likelihood Function
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Newton’s Method
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Fisher Scoring

• Use expected information matrix instead of 
observed information:
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Compared to Newton-Rhapson:

Converges faster when estimates

are poor.

Converges slower when close to

MLE.


