Biostatistics 615/815 Lecture 13:
Programming with Matrix

Hyun Min Kang

February 17th, 2011

Hyun Min Kang Biostatistics 615/815 - Lecture 13 February 17th, 2011

Introduction
0®00000

1/28

Last lecture - Conditional independence in graphical models

Pr(A)

Pr(B|A)

Pr(E|B)

Pr(C|B)

e Pr(A, C, D, E|B) = Pr(A|B) Pr(C|B) Pr(D|B) Pr(E|B)

February 17th, 2011

Biostatistics 615/815 - Lecture 13

Hyun Min Kang

3/28

Introduction
9000000

Annoucements

Homework #3

e Homework 3 is due today

e If you're using Visual C++ and still have problems in using boost
library, you can ask for another extension

Homework #4

e Homework 4 is out

e Floyd-Warshall algorithm
e Note that some key information was not covered in the class.

e Fair/biased coint HMM

Hyun Min Kang Biostatistics 615/815 - Lecture 13 February 17th, 2011 2/28

Introduction
foleX Yololele}

Markov Blanket

Q@ OF

e If conditioned on the variables in the gray area (variables with direct
dependency), A is independent of all the other nodes.
e AL (U—A—WA)’WA

Hyun Min Kang Biostatistics 615/815 - Lecture 13 February 17th, 2011 4 /28

Introduction
000@000

Hidden Markov Models

Hyun Min Kang Biostatistics 615/815 - Lecture 13 February 17th, 2011 5/28

Introduction
0000000

Viterbi algorithm - example

e When observations were (walk, shop, clean)

e Similar to Dijkstra's or Manhattan tourist algorithm

Rainy
¥\ 0.01344

Ve .,
s/ Sunny |
0.00259

Day 1 Day 2 Day 3

Hyun Min Kang Biostatistics 615/815 - Lecture 13 February 17th, 2011 7 /28

Introduction
0O000e00

Conditional dependency in forward-backward algorithms

e Forward : (g 0¢) L 0} |q;_;.
e Backward : 0,11 L o) |q;, ;.

t-1 t

sse ()Pl ch

Introduction
000000

Today's lecture

e Calculating Power

e Linear algebra 101

e Using Eigen library for linear algebra

e Implementing a simple linear regression

t+1

O41

Hyun Min Kang Biostatistics 615/815 - Lecture 13

February 17th, 2011

Hyun Min Kang Biostatistics 615/815 - Lecture 13

February 17th, 2011

Power
@000

Calculating power

e Computing a™, where a € R and n € N.
e How many multiplications would be needed?

v

Function slowPower()

double slowPower(double a, int n) {

double x = a;

for(int i=1; i < n; ++i) {
X *= a;

}

return Xx;

Hyun Min Kang Biostatistics 615/815 - Lecture 13 February 17th, 2011 9 /28

Power
[e]e] lo}

Computational time

int main(int argc, char** argv) {
double a = 1.0000001;
int n = 1000000000;
clock_t t1 = clock();
double x = slowPower(a,n);
clock_t t2 = clock();
double y = fastPower(a,n);
clock_t t3 = clock();
std::cout << "slowPower ans = << x << ", sec = "
<< (double)(t2-t1)/CLOCKS_PER_SEC << std::endl;

" "

std::cout << "fastPower ans = <<y << ", sec =
<< (double)(t3-t2)/CLOCKS_PER_SEC << std::endl;

v

Running examples

slowPower ans = 2.6881le+43, sec = 1.88659
astPo = 6881e+4 = 3e-0

Biosttistics 615/815 - Lecture 13

February 17th, 2011 11 / 28

Power
0e00

More efficient computation of power

Function fastPower()

double fastPower(double a, int n) {
if (n==1) {
return a;

}

else {

double x = fastPower(a,n/2);
if (n % =0) {
return * X;

X N

¥
else {
return x * x * a;

Biostatistics 615/815 - Lecture 13

Hyun Min Kang February 17th, 2011 10 / 28

Power
[e]e]e]]

Summary - fastPower()

e O(logn) complexity compared to O(n) complexity of slowPower()
e Similar to binary search vs linear search

e Good example to illustrate how the efficiency of numerical
computation could change by clever algorithms

Biostatistics 615/815 - Lecture 13

Hyun Min Kang February 17th, 2011

12 /28

Matrix
®0000

Matrix
0@000

Programming with Matrix

Why Matrix matters?

e Many statistical models can be well represented as matrix operations

e Linear regression
e Logistic regression
e Mixed models

o Efficient matrix computation can make difference in the practicality of
a statistical method

e Understanding C++ implementation of matrix operation can expedite
the efficiency by orders of magnitude

Hyun Min Kang Biostatistics 615/815 - Lecture 13

February 17th, 2011 13 /28

Matrix
[ele] lele)

Using a third party library

Ways to Matrix programmming

e Implementing Matrix libraries on your own
e Implementation can well fit to specific need
e Need to pay for implementation overhead
e Computational efficiency may not be excellent for large matrices

e Using BLAS/LAPACK library

o Low-level Fortran/C API

e ATLAS implementation for gcc, MKL library for intel compiler (with
multithread support)

e Used in many statistical packages including R

o Not user-friendly interface use.

e boost supports C++ interface for BLAS

e Using a third-party library, Eigen package
e A convenient C++ interface

e Reasonably fast performance
e Supports most functions BLAS /LAPACK provides

Hyun Min Kang Biostatistics 615/815 - Lecture 13 February 17th, 2011

Matrix
[e]e]e] Je]

Example usages of Eigen library

Downloading and installing Eigen package

e Download at http://eigen.tuxfamily.org/index.php?title=3.0_beta

e To install - just uncompress it

Using Eigen package

e Add -I DOWNLOADED_PATH/eigen option when compile

e No need to install separate library. Including header files is sufficient

Hyun Min Kang Biostatistics 615/815 - Lecture 13

February 17th, 2011 15 / 28

#include <iostream>
#include <Eigen/Dense> // For non-sparse matrix
using namespace Eigen; // avoid using Eigen::
int main()
{
Matrix2d a; // 2x2 matrix type is defined for convenience
a << 1, 2,
3, 4;
MatrixXd b(2,2); // but you can define the type from arbitrary-size matrix
b << 2, 3,
1, 4;
std::cout << "a + b =\n" << a + b << std::endl; // matrix addition
std::cout << "a - b =\n" << a - b << std::endl; // matrix subtraction
std::cout << "Doing a += b;" << std::endl;
a += b;
std::cout << "Now a =\n" << a << std::endl;
Vector3d v(1,2,3); // vector operations
Vector3d w(1,0,90);
std::cout << "-v + w - v =\n" << -v + w - v << std::endl;

Hyun Min Kang Biostatistics 615/815 - Lecture 13 February 17th, 2011

Matrix
[eje]e]e] }

More examples

Matrix Computation
@00

#tinclude <iostream>
#include <Eigen/Dense>

using namespace Eigen;
int main()
{
Matrix2d mat;
mat << 1, 2,
3, 4;
Vector2d u(-1,1), v(2,0); // 2D vector
std::cout << "Here is mat*mat:\n" << mat*mat << std::endl;
std::cout << "Here is mat*u:\n" << mat*u << std::endl;
std::cout << "Here is u T*mat:\n" << u.transpose()*mat << std::endl;
std::cout << "Here is u T*v:\n" << u.transpose()*v << std::endl;
std::cout << "Here is u*v T:\n" << u*v.transpose() << std::endl;
std::cout << "Let's multiply mat by itself" << std::endl;
mat = mat*mat;

// 2*2 matrix

std::cout << "Now mat is mat:\n" << mat << std::endl;

Hyun Min Kang Biostatistics 615/815 - Lecture 13 February 17th, 2011

17 / 28

Matrix Computation
fo] o)

Computational considerations in matrix operations

Time complexity of matrix computation

Square matrix multiplication / inversion

e Naive algorithm : O(n?)
e Strassen algorithm : O(n?807)

o Coppersmith-Winograd algorithm : O(n
constant factor)

2.376) (with very large

e Laplace expansion : O(n!)
O(n?)
e Bareiss algorithm : O(n?)

e LU decomposition :

Fast matrix multiplication algorithm : O(n?376)

Hyun Min Kang Biostatistics 615/815 - Lecture 13 February 17th, 2011

Matrix Computation
ocoe

Quadratic multiplication

Avoiding expensive computation

e Computation of u’ABv

e If the order is (((u'(AB))v)
e O(n?) + O(n?) + O(n) operations
e O(n?) overall

o If the order is (((u’A)B)v)

e Two O(n?) operations and one O(n) operation
e O(n?) overall

Hyun Min Kang Biostatistics 615/815 - Lecture 13

Same time complexity, but one is slightly more efficient

e Computing x'Ay.
e O(n?) + O(n) if ordered as (x'A)y.
e Can be simplified as >, > " z:44y;

y

A symmetric case

e Computing x’Ax where A = LI/

e u = I'x can be computed more efficiently than Ax.

e X' Ax = u'u

February 17th, 2011

19 / 28

Hyun Min Kang Biostatistics 615/815 - Lecture 13 February 17th, 2011 20 / 28

Linear System
@00

Solving linear systems

Linear System
000

Using matrix decomposition to solve linear systems

Problem
Find x that satisfies Ax = b

A simplest approach

Calculate A™!, and x = A~ 'b
Time complexity is O(n?) + O(n?)
A has to be invertible

[] [] (]
| \

Potential issue of numerical instability

A\

Biostatistics 615/815 - Lecture 13

Hyun Min Kang February 17th, 2011 21 /28

Linear System

(o]e] }

Cholesky decomposition

e A is a square, symmetric, and positive definite matrix.
e A= UUis a special case of LU decomposition

o Computationally efficient and accurate

Biostatistics 615/815 - Lecture 13

LU decomposition
e A= LU, making Ux = L 'b

A needs to be square and invertible.

Fewer additions and multiplications

e Precision problems may occur

QR decomposition
e A= QR where A is m x n matrix
e () is orthogonal matrix, @ Q = I.
e Ris m x n upper-triangular matrix, Rx = Q'b.

Hyun Min Kang February 17th, 2011 22 /28

Biostatistics 615/815 - Lecture 13

Least square
€000

Solving least square

Solving via inverse

e Most straightforward strategy

e y=XGB+¢ yisnx1, Xisnxp.

B=(XX)"1Xy.

Computational complexity is O(np?) + O(np) + O(p?).

e The computation may become unstable if X’ X is singular

Need to make sure that rank(X) = p.

Hyun Min Kang February 17th, 2011

23 /28

Hyun Min Kang Biostatistics 615/815 - Lecture 13 February 17th, 2011

Least square
0e00

Singular value decomposition

Least square
[e]e] le]

Stable inferecne of least square using SVD

A m x n(m > n) matrix A can be represented as A = UDV7 such that
e Uis m x n matrix with orthogonal columns (U'U = I,,)

e Dis n X n diagnonal matrix with non-negative entries
o VTis n x n matrix with orthogonal matrix (V' V= VV = I,).

4

Computational complexity
e 4m?n+ 8mn? + 9m?> for computing U, V,and D.
e 4mn? + 8n3 for computing V and D only.

e The algorithm is numerically very stable

Hyun Min Kang Biostatistics 615/815 - Lecture 13 February 17th, 2011

Least square
oooe

Stable inferecne of least square using SVD

#include <iostream>
#include <Eigen/Dense>

using namespace std;
#using namespace Eigen;

int main()

{

MatrixXf A = MatrixXf::Random(3, 2);

cout << "Here is the matrix A:\n" << A << endl;

VectorXf b = VectorXf::Random(3);

cout << "Here is the right hand side b:\n" << b << endl;

cout << "The least-squares solution is:\n"

<< A.jacobiSvd(ComputeThinU | ComputeThinV).solve(b) << endl;

¥

Hyun Min Kang Biostatistics 615/815 - Lecture 13 February 17th, 2011

UDv'

(X' X)Xy

(VDU UDV')~1vDU'y
= (VD*V)"lvDUy

= VD2V VDUYy

= VD 'Uy

Hyun Min Kang Biostatistics 615/815 - Lecture 13 February 17th, 2011 26 / 28

Summary
°

Summary

Calculating Power

Linear algebra 101

Using Eigen library for linear algebra

Implementing a simple linear regression

Hyun Min Kang

Biostatistics 615/815 - Lecture 13 February 17th, 2011 28 / 28

