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Last Lecture - Key Questions

..1 How do we show that a statistic is sufficient for θ?

..2 What is a necessary and sufficient condition for a statistic to be
sufficient for θ?

..3 What is an effective strategy to find sufficient statistics using the
Factorization Theorem?

..4 Is the dimension of a sufficient statistic the always same to the
dimension of the parameters?
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Recap - Sufficient Statistic

.Definition 6.2.1..

......
A statistic T(X) is a sufficient statistic for θ if the conditional distribution
of sample X given the value of T(X) does not depend on θ.
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Recap - A Theorem for Sufficient Statistics

.Theorem 6.2.2..

......

• Let fX(x|θ) is a joint pdf or pmf of X
• and q(t|θ) is the pdf or pmf of T(X).
• Then T(X) is a sufficient statistic for θ,
• if, for every x ∈ X ,
• the ratio fX(x|θ)/q(T(x)|θ) is constant as a function of θ.
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Recap - Factorization Theorem

.Theorem 6.2.6 - Factorization Theorem..

......

• Let fX(x|θ) denote the joint pdf or pmf of a sample X.
• A statistic T(X) is a sufficient statistic for θ, if and only if

• There exists function g(t|θ) and h(x) such that,
• for all sample points x,
• and for all parameter points θ,
• fX(x|θ) = g(T(x)|θ)h(x).
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Minimal Sufficient Statistic

.Sufficient statistics are not unique..

......

• T(x) = x : The random sample itself is a trivial sufficient statistic for
any θ.

• An ordered statistic (X(1), · · · ,X(n)) is always a sufficient statistic for
θ, if X1, · · · ,Xn are iid.

• For any sufficient statistic T(X), its one-to-one function q(T(X)) is
also a sufficient statistic for θ.

.Question..

......
Can we find a sufficient statistic that achieves the maximum data
reduction?
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Minimal Sufficient Statistic

.Definition 6.2.11..

......
A sufficient statistic T(X) is called a minimal sufficient statistic if, for any
other sufficient statistic T′(X), T(X) is a function of T′(X).

.Why is this called ”minimal” sufficient statistic?..

......

• The sample space X consists of every possible sample - finest partition
• Given T(X), X can be partitioned into At where

t ∈ T = {t : t = T(X) for some x ∈ X}
• Maximum data reduction is achieved when |T | is minimal.
• If size of T ′ = t : t = T′(x) for some x ∈ X is not less than |T |, then

|T | can be called as a minimal sufficient statistic.
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Theorem for Minimal Sufficient Statistics

.Theorem 6.2.13..

......

• fX(x) be pmf or pdf of a sample X.

• Suppose that there exists a function T(x) such that,
• For every two sample points x and y,
• The ratio fX(x|θ)/fX(y|θ) is constant as a function of θ if and only if

T(x) = T(y).
• Then T(X) is a minimal sufficient statistic for θ.

.In other words....

......

• fX(x|θ)/fX(y|θ) is constant as a function of θ =⇒ T(x) = T(y).
• T(x) = T(y) =⇒ fX(x|θ)/fX(y|θ) is constant as a function of θ
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Example from the first lecture

.Problem..

......

• X1,X2,X3
i.i.d.∼ Bernoulli(p)

• Q1: Is T1(X) = (X1 + X2,X3) a sufficient statistic for p?
• Q2: Is T2(X) = X1 + X2 + X3 a minimal sufficient statistic for p?
• Q3: Is T1(X) = (X1 + X2,X3) a minimal sufficient statistic for p?
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Is T1(X) = (X1 + X2,X3) a sufficient statistic?

fX(x|p) = px1+x2+x3(1− p)3−x1−x2−x3

= px1+x2(1− p)2−x1−x2px3(1− p)1−x3

h(x) = 1

g(t1, t2|p) = pt1(1− p)2−t1pt2(1− p)1−t2

fX(x|p) = g(x1 + x2, x3|p)h(x)

By Factorization Theorem, T1(X) = (X1 + X2,X3) is a sufficient statistic.
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Is T2(X) = (X1 + X2 + X3) a minimal sufficient statistic?

fX(x|θ)
fX(y|θ)

=
p
∑

xi(1− p)3−
∑

xi

p
∑

yi(1− p)3−
∑

yi

=

(
p

1− p

)∑
xi−

∑
yi

• If T2(x) = T2(y), i.e.
∑

xi =
∑

yi, then the ratio does not depend
on p.

• The ratio above is constant as a function of p only if
∑

xi =
∑

yi,
i.e. T2(x) = T2(y).

Therefore, T2(X) =
∑

Xi is a minimal sufficient statistic for p by
Theorem 6.2.13.
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Partition of sample space

X1 X2 X3 T1(X) = (X1 + X2,X3) T2(X) = X1 + X2 + X3

0 0 0 (0,0) 0
0 0 1 (0,1)

10 1 0 (1,0)1 0 0
0 1 1 (1,1) 21 0 1
1 1 0 (2,0)
1 1 1 (2,1) 3
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Summary

Background knowledges for proving if and only if

Assume that a, b, c, d, a1, · · · , an are constants.
..1 aθ2 + bθ + c = 0 for any θ ∈ R

⇔ a = b = c = 0.
..2
∑k

i=1 aiθi = c for any θ ∈ R
⇔ a1 = · · · = ak = 0.

..3 aθ1 + bθ2 + c = 0 for all (θ1, θ2) ∈ R2

⇔ a = b = c = 0.
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Background knowledges for proving if and only if

..4 The following equation is constant

1 + a1θ + a2θ2 + · · ·+ akθ
k
k

1 + b1θ + b2θ2 + · · ·+ bkθk
k

⇔ a1 = b1, · · · , ak = bk.
Note that this does not hold without the constant 1, for example,

θ + 2θ2

2θ + 4θ2
=

1

2

..5 I(a<θ<b)
I(c<θ<d) is constant a a function of θ. ⇔ a = c, and b = d.

..6 θt is constant function of θ. ⇔ t = 0.
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Uniform Minimal Sufficient Statistic

.Example 6.2.15..

......

• X1, · · · ,Xn
i.i.d.∼ Uniform(θ, θ + 1), where −∞ < θ < ∞.

• Find a minimal sufficient statistic for θ.

.Joint pdf of X..

......
fX(x|θ) =

n∏
i=1

I(θ < xi < θ + 1)
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Summary

Uniform Minimal Sufficient Statistic
.
Examine fX(x|θ)/fX(y|θ)..

......

fX(x|θ)
fX(y|θ)

=

∏n
i=1 I(θ < xi < θ + 1)∏n
i=1 I(θ < yi < θ + 1)

=
I(θ < x1 < θ + 1, · · · , θ < xn < θ + 1)

I(θ < y1 < θ + 1, · · · , θ < yn < θ + 1)

=
I(θ < x(1) ∧ x(n) < θ + 1)

I(θ < y(1) ∧ y(n) < θ + 1)

=
I(x(n) − 1 < θ < x(1))
I(y(n) − 1 < θ < y(1))

The ratio above is constant if and only if x(1) = y(1) and x(n) = y(n).
Therefore, T(X) = (X(1),X(n)) is a minimal sufficient statistic for θ.
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Normal Minimal Sufficient Statistics (Example 6.2.14)

fX(x|µ, σ2)

fX(y|µ, σ2)
= exp

(
−
∑n

i=1(xi − µ)2

2σ2

)
/ exp

(
−
∑n

i=1(yi − µ)2

2σ2

)

= exp
[
− 1

2σ2

( n∑
i=1

(x2i − 2µxi + µ2)−
n∑

i=1

(y2i − 2µyi + µ2)

)]

= exp
[
− 1

2σ2

( n∑
i=1

x2i −
n∑

i=1

y2i

)
+

µ

σ2

( n∑
i=1

xi −
n∑

i=1

yi

)]
The ratio above will not depend on (µ, σ2) if and only if{ ∑n

i=1 x2i =
∑n

i=1 y2i∑n
i=1 xi =

∑n
i=1 yi

Therefore, T(X) = (
∑n

i=1 Xi,
∑n

i=1 X2
i ) is a minimal sufficient statistic for

(µ, σ2) by Theorem 6.2.13
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Summary

Are Minimal Sufficient Statistics Unique?

• A short answer is ”No”
• For example,

(
X, s2X =

∑n
i=1(Xi − X)2/(n − 1)

)
is also a minimal

sufficient statistic for (µ, σ2) in normal distribution.
• Important Facts

..1 If T(X) is a minimal sufficient statistic for θ, then its one-to-one
function is also a minimal sufficient statistic for θ.

..2 There is always a one-to-one function between any two minimal
sufficient statistics. In other words, the partition created by a minimal
sufficient statistic is unique
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Summary

Proving the important facts

.Theorem for Fact 1..

......
If T(X) is a minimal sufficient statistic for θ, then its one-to-one function
is also a minimal sufficient statistic for θ.

.Strategies for Proof..

......

• Let T∗(X) = q(T(X)) and q is a one-to-one function. Then there
exist a q−1 such that T(X) = q−1(T∗(X))

• First is to prove that T∗(x) is a sufficient statistic.
• Next, prove that T∗(x) is also a minimal sufficient statistic.
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Proof : T∗(x) is a sufficient statistic

Because T(X) is sufficient, by the Factorization Theorem, there exists h
and g such that

fX(x|θ) = g(T(x|θ))h(x)

= g(q−1(T∗(x|θ)))h(x)
= (g ◦ q−1)(T∗(x|θ))h(x)

Therefore, by the Factorization Theorem, T∗ is also a sufficient statistic.
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Proof : T∗(x) is a minimal sufficient statistic

Because T(X) is minimal sufficient, by definition, for any sufficient
statistic S(X), there exist a function w such that T(X) = w(S(x)).

T∗(x) = q(T(X))

= q(w(S(X)))

= (q ◦ w)(S(X))

Thus, T∗(X) is also a function of S(X) always, and by definition, T∗ is
also a minimal sufficient statistic.
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Summary

Proving the important facts
.Theorem for Fact 2..

......

There is always a one-to-one function between any two minimal sufficient
statistics.

(In other words, the partition created by minimal sufficient
statistics is unique)
.Examples..

......

For normal statistics, let T1(X) = (
∑

Xi,
∑

X2
i ) and

T2(X) = (X,
∑

(Xi − X)2/(n − 1)). Then, there exists one-to-one
functions such that ∑

Xi = g1
(
X,
∑

(Xi − X)2/(n − 1)
)∑

X2
i = g2

(
X,
∑

(Xi − X)2/(n − 1)
)

X = h1(
∑

Xi,
∑

X2
i )∑

(Xi − X)2(n − 1) = h2(
∑

Xi,
∑

X2
i )
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Proof

Assume that both T(X) and T∗(X) are minimal sufficient. Then by the
definition of minimal sufficient statistics, there exist q(·) and r(·) such that

T(X) = q(T∗(X))

T∗(X) = r(T(X))

Therefore, q = r−1 holds and they are one-to-one functions.
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Summary

.Today..

......

• Recap of Factorization Theorem
• Minimal Sufficient Statistics

• Theorem 6.2.13
• Two sufficient statistics from binomial distribution
• Uniform Distribution
• Normal Distribution
• Minimal Sufficient Statistics are not unique

.Next Lecture..

......
• Ancillary Statistics

Hyun Min Kang Biostatistics 602 - Lecture 03 January 17th, 2013 25 / 25


	Factorization
	Factorization

	Minimal Sufficient Statistics
	Minimal Sufficient Statistics

	Summary
	Summary


