Biostatistics 602 - Statistical Inference Lecture 03 Minimal Sufficient Statistics

Hyun Min Kang

January 17th, 2013

1 How do we show that a statistic is sufficient for θ ?

∃ ▶ ∢

< 17 > <

- **1** How do we show that a statistic is sufficient for θ ?
- 2 What is a necessary and sufficient condition for a statistic to be sufficient for θ ?

- **1** How do we show that a statistic is sufficient for θ ?
- 2 What is a necessary and sufficient condition for a statistic to be sufficient for θ ?
- **3** What is an effective strategy to find sufficient statistics using the Factorization Theorem?

- **1** How do we show that a statistic is sufficient for θ ?
- 2 What is a necessary and sufficient condition for a statistic to be sufficient for θ ?
- **3** What is an effective strategy to find sufficient statistics using the Factorization Theorem?
- ④ Is the dimension of a sufficient statistic the always same to the dimension of the parameters?

Recap - Sufficient Statistic

Definition 6.2.1

A statistic $T(\mathbf{X})$ is a *sufficient statistic* for θ if the conditional distribution of sample **X** given the value of $T(\mathbf{X})$ does not depend on θ .

Recap - A Theorem for Sufficient Statistics

Theorem 6.2.2

- Let $f_{\mathbf{X}}(\mathbf{x}|\theta)$ is a joint pdf or pmf of X
- and $q(t|\theta)$ is the pdf or pmf of $T(\mathbf{X})$.
- Then T(X) is a sufficient statistic for θ,
- if, for every $\mathbf{x} \in \mathcal{X}$,
- the ratio $f_{\mathbf{X}}(\mathbf{x}|\theta)/q(T(\mathbf{x})|\theta)$ is constant as a function of θ .

E 5 4

Recap - Factorization Theorem

Theorem 6.2.6 - Factorization Theorem

- Let $f_{\mathbf{X}}(\mathbf{x}|\theta)$ denote the joint pdf or pmf of a sample \mathbf{X} .
- A statistic $T(\mathbf{X})$ is a sufficient statistic for θ , if and only if
 - There exists function $g(t|\theta)$ and $h(\mathbf{x})$ such that,
 - for all sample points x,
 - and for all parameter points θ ,
 - $f_{\mathbf{X}}(\mathbf{x}|\theta) = g(T(\mathbf{x})|\theta)h(\mathbf{x}).$

過 ト イ ヨ ト イ ヨ

Sufficient statistics are not unique

 T(x) = x : The random sample itself is a trivial sufficient statistic for any θ.

Sufficient statistics are not unique

- T(x) = x : The random sample itself is a trivial sufficient statistic for any θ.
- An ordered statistic $(X_{(1)},\cdots,X_{(n)})$ is always a sufficient statistic for θ , if X_1,\cdots,X_n are iid.

伺 ト イ ヨ ト イ ヨ

Sufficient statistics are not unique

- T(x) = x : The random sample itself is a trivial sufficient statistic for any θ.
- An ordered statistic $(X_{(1)}, \cdots, X_{(n)})$ is always a sufficient statistic for θ , if X_1, \cdots, X_n are iid.
- For any sufficient statistic $T(\mathbf{X})$, its one-to-one function $q(T(\mathbf{X}))$ is also a sufficient statistic for θ .

Sufficient statistics are not unique

- T(x) = x : The random sample itself is a trivial sufficient statistic for any θ.
- An ordered statistic $(X_{(1)}, \cdots, X_{(n)})$ is always a sufficient statistic for θ , if X_1, \cdots, X_n are iid.
- For any sufficient statistic $T(\mathbf{X})$, its one-to-one function $q(T(\mathbf{X}))$ is also a sufficient statistic for θ .

Question

Can we find a sufficient statistic that achieves the maximum data reduction?

< 日 > < 同 > < 回 > < 回 > < 回 > <

Definition 6.2.11

A sufficient statistic $T(\mathbf{X})$ is called a *minimal sufficient statistic* if, for any other sufficient statistic $T'(\mathbf{X})$, $T(\mathbf{X})$ is a function of $T'(\mathbf{X})$.

글 🕨 🖌 글

Definition 6.2.11

A sufficient statistic $T(\mathbf{X})$ is called a *minimal sufficient statistic* if, for any other sufficient statistic $T'(\mathbf{X})$, $T(\mathbf{X})$ is a function of $T'(\mathbf{X})$.

Why is this called "minimal" sufficient statistic?

- The sample space ${\mathcal X}$ consists of every possible sample - finest partition

Definition 6.2.11

A sufficient statistic $T(\mathbf{X})$ is called a *minimal sufficient statistic* if, for any other sufficient statistic $T'(\mathbf{X})$, $T(\mathbf{X})$ is a function of $T'(\mathbf{X})$.

Why is this called "minimal" sufficient statistic?

- The sample space ${\mathcal X}$ consists of every possible sample finest partition
- Given $T(\mathbf{X})$, \mathcal{X} can be partitioned into A_t where $t \in \mathcal{T} = \{t : t = T(\mathbf{X}) \text{ for some } \mathbf{x} \in \mathcal{X}\}$

Definition 6.2.11

A sufficient statistic $T(\mathbf{X})$ is called a *minimal sufficient statistic* if, for any other sufficient statistic $T'(\mathbf{X})$, $T(\mathbf{X})$ is a function of $T'(\mathbf{X})$.

Why is this called "minimal" sufficient statistic?

- The sample space ${\mathcal X}$ consists of every possible sample finest partition
- Given $T(\mathbf{X})$, \mathcal{X} can be partitioned into A_t where $t \in \mathcal{T} = \{t : t = T(\mathbf{X}) \text{ for some } \mathbf{x} \in \mathcal{X}\}$
- Maximum data reduction is achieved when $|\mathcal{T}|$ is minimal.

Definition 6.2.11

A sufficient statistic $T(\mathbf{X})$ is called a *minimal sufficient statistic* if, for any other sufficient statistic $T'(\mathbf{X})$, $T(\mathbf{X})$ is a function of $T'(\mathbf{X})$.

Why is this called "minimal" sufficient statistic?

- The sample space ${\mathcal X}$ consists of every possible sample finest partition
- Given $T(\mathbf{X})$, \mathcal{X} can be partitioned into A_t where $t \in \mathcal{T} = \{t : t = T(\mathbf{X}) \text{ for some } \mathbf{x} \in \mathcal{X}\}$
- Maximum data reduction is achieved when $|\mathcal{T}|$ is minimal.
- If size of $\mathcal{T}' = t : t = T'(\mathbf{x})$ for some $\mathbf{x} \in \mathcal{X}$ is not less than $|\mathcal{T}|$, then $|\mathcal{T}|$ can be called as a minimal sufficient statistic.

Theorem 6.2.13

• $f_{\mathbf{X}}(\mathbf{x})$ be pmf or pdf of a sample \mathbf{X} .

47 ▶

- N

- f_X(x) be pmf or pdf of a sample X.
- Suppose that there exists a function T(x) such that,

- f_X(x) be pmf or pdf of a sample X.
- Suppose that there exists a function T(x) such that,
- For every two sample points x and y,

- $f_{\mathbf{X}}(\mathbf{x})$ be pmf or pdf of a sample \mathbf{X} .
- Suppose that there exists a function $T(\mathbf{x})$ such that,
- For every two sample points x and y,
- The ratio $f_{\mathbf{X}}(\mathbf{x}|\theta)/f_{\mathbf{X}}(\mathbf{y}|\theta)$ is constant as a function of θ if and only if $T(\mathbf{x}) = T(\mathbf{y})$.

- $f_{\mathbf{X}}(\mathbf{x})$ be pmf or pdf of a sample \mathbf{X} .
- Suppose that there exists a function $T(\mathbf{x})$ such that,
- For every two sample points x and y,
- The ratio $f_{\mathbf{X}}(\mathbf{x}|\theta)/f_{\mathbf{X}}(\mathbf{y}|\theta)$ is constant as a function of θ if and only if $T(\mathbf{x}) = T(\mathbf{y})$.
- Then $T(\mathbf{X})$ is a minimal sufficient statistic for θ .

Theorem 6.2.13

- $f_{\mathbf{X}}(\mathbf{x})$ be pmf or pdf of a sample \mathbf{X} .
- Suppose that there exists a function $T(\mathbf{x})$ such that,
- For every two sample points x and y,
- The ratio $f_{\mathbf{X}}(\mathbf{x}|\theta)/f_{\mathbf{X}}(\mathbf{y}|\theta)$ is constant as a function of θ if and only if $T(\mathbf{x}) = T(\mathbf{y})$.
- Then $T(\mathbf{X})$ is a minimal sufficient statistic for θ .

In other words ..

• $f_{\mathbf{X}}(\mathbf{x}|\theta)/f_{\mathbf{X}}(\mathbf{y}|\theta)$ is constant as a function of $\theta \implies T(\mathbf{x}) = T(\mathbf{y})$.

Theorem 6.2.13

- $f_{\mathbf{X}}(\mathbf{x})$ be pmf or pdf of a sample \mathbf{X} .
- Suppose that there exists a function $T(\mathbf{x})$ such that,
- For every two sample points x and y,
- The ratio $f_{\mathbf{X}}(\mathbf{x}|\theta)/f_{\mathbf{X}}(\mathbf{y}|\theta)$ is constant as a function of θ if and only if $T(\mathbf{x}) = T(\mathbf{y})$.
- Then $T(\mathbf{X})$ is a minimal sufficient statistic for θ .

In other words..

- $f_{\mathbf{X}}(\mathbf{x}|\theta)/f_{\mathbf{X}}(\mathbf{y}|\theta)$ is constant as a function of $\theta \implies T(\mathbf{x}) = T(\mathbf{y})$.
- $T(\mathbf{x}) = T(\mathbf{y}) \Longrightarrow f_{\mathbf{X}}(\mathbf{x}|\theta) / f_{\mathbf{X}}(\mathbf{y}|\theta)$ is constant as a function of θ

э

ヘロト 人間ト 人間ト 人間ト

Example from the first lecture

Problem

- $X_1, X_2, X_3 \stackrel{\text{i.i.d.}}{\sim} \text{Bernoulli}(p)$
- Q1: Is $\mathbf{T}_1(\mathbf{X}) = (X_1 + X_2, X_3)$ a sufficient statistic for p?
- Q2: Is $T_2(\mathbf{X}) = X_1 + X_2 + X_3$ a minimal sufficient statistic for p?
- Q3: Is $\mathbf{T}_1(\mathbf{X}) = (X_1 + X_2, X_3)$ a minimal sufficient statistic for p?

$$f_{\mathbf{X}}(\mathbf{x}|p) = p^{x_1+x_2+x_3}(1-p)^{3-x_1-x_2-x_3}$$

э

$$f_{\mathbf{X}}(\mathbf{x}|p) = p^{x_1+x_2+x_3}(1-p)^{3-x_1-x_2-x_3}$$

= $p^{x_1+x_2}(1-p)^{2-x_1-x_2}p^{x_3}(1-p)^{1-x_3}$

э

$$\begin{aligned} f_{\mathbf{X}}(\mathbf{x}|p) &= p^{x_1+x_2+x_3}(1-p)^{3-x_1-x_2-x_3} \\ &= p^{x_1+x_2}(1-p)^{2-x_1-x_2}p^{x_3}(1-p)^{1-x_3} \\ h(\mathbf{x}) &= 1 \end{aligned}$$

э

$$\begin{aligned} f_{\mathbf{X}}(\mathbf{x}|p) &= p^{x_1+x_2+x_3}(1-p)^{3-x_1-x_2-x_3} \\ &= p^{x_1+x_2}(1-p)^{2-x_1-x_2}p^{x_3}(1-p)^{1-x_3} \\ h(\mathbf{x}) &= 1 \\ g(t_1,t_2|p) &= p^{t_1}(1-p)^{2-t_1}p^{t_2}(1-p)^{1-t_2} \end{aligned}$$

Hyun Min Kang

January 17th, 2013 10 / 25

э

$$\begin{aligned} f_{\mathbf{X}}(\mathbf{x}|p) &= p^{x_1+x_2+x_3}(1-p)^{3-x_1-x_2-x_3} \\ &= p^{x_1+x_2}(1-p)^{2-x_1-x_2}p^{x_3}(1-p)^{1-x_3} \\ h(\mathbf{x}) &= 1 \\ g(t_1, t_2|p) &= p^{t_1}(1-p)^{2-t_1}p^{t_2}(1-p)^{1-t_2} \\ f_{\mathbf{X}}(\mathbf{x}|p) &= g(x_1+x_2, x_3|p)h(\mathbf{x}) \end{aligned}$$

э

$$\begin{aligned} f_{\mathbf{X}}(\mathbf{x}|p) &= p^{x_1+x_2+x_3}(1-p)^{3-x_1-x_2-x_3} \\ &= p^{x_1+x_2}(1-p)^{2-x_1-x_2}p^{x_3}(1-p)^{1-x_3} \\ h(\mathbf{x}) &= 1 \\ g(t_1, t_2|p) &= p^{t_1}(1-p)^{2-t_1}p^{t_2}(1-p)^{1-t_2} \\ f_{\mathbf{X}}(\mathbf{x}|p) &= g(x_1+x_2, x_3|p)h(\mathbf{x}) \end{aligned}$$

By Factorization Theorem, $\mathbf{T}_1(\mathbf{X}) = (X_1 + X_2, X_3)$ is a sufficient statistic.

э

イロト イポト イヨト イヨト

Is $T_2(\mathbf{X}) = (X_1 + X_2 + X_3)$ a minimal sufficient statistic?

э

Is $T_2(\mathbf{X}) = (X_1 + X_2 + X_3)$ a minimal sufficient statistic?

$$\frac{f_{\mathbf{X}}(\mathbf{x}|\theta)}{f_{\mathbf{X}}(\mathbf{y}|\theta)} = \frac{p^{\sum x_i}(1-p)^{3-\sum x_i}}{p^{\sum y_i}(1-p)^{3-\sum y_i}}$$

э

Is $T_2(\mathbf{X}) = (X_1 + X_2 + X_3)$ a minimal sufficient statistic?

$$\begin{aligned} \frac{f_{\mathbf{X}}(\mathbf{x}|\theta)}{f_{\mathbf{X}}(\mathbf{y}|\theta)} &= \frac{p^{\sum x_i}(1-p)^{3-\sum x_i}}{p^{\sum y_i}(1-p)^{3-\sum y_i}} \\ &= \left(\frac{p}{1-p}\right)^{\sum x_i-\sum y_i} \end{aligned}$$

э

Is $T_2(\mathbf{X}) = (X_1 + X_2 + X_3)$ a minimal sufficient statistic?

$$\frac{f_{\mathbf{X}}(\mathbf{x}|\theta)}{f_{\mathbf{X}}(\mathbf{y}|\theta)} = \frac{p^{\sum x_i}(1-p)^{3-\sum x_i}}{p^{\sum y_i}(1-p)^{3-\sum y_i}} \\ = \left(\frac{p}{1-p}\right)^{\sum x_i-\sum y_i}$$

• If $T_2(\mathbf{x}) = T_2(\mathbf{y})$, i.e. $\sum x_i = \sum y_i$, then the ratio does not depend on p.

< 回 > < 回 > < 回 >

Is $T_2(\mathbf{X}) = (X_1 + X_2 + X_3)$ a minimal sufficient statistic?

$$\frac{f_{\mathbf{X}}(\mathbf{x}|\theta)}{f_{\mathbf{X}}(\mathbf{y}|\theta)} = \frac{p^{\sum x_i}(1-p)^{3-\sum x_i}}{p^{\sum y_i}(1-p)^{3-\sum y_i}} \\ = \left(\frac{p}{1-p}\right)^{\sum x_i-\sum y_i}$$

- If $T_2(\mathbf{x}) = T_2(\mathbf{y})$, i.e. $\sum x_i = \sum y_i$, then the ratio does not depend on p.
- The ratio above is constant as a function of p only if $\sum x_i = \sum y_i$, i.e. $T_2(\mathbf{x}) = T_2(\mathbf{y})$.

Therefore, $T_2(\mathbf{X}) = \sum X_i$ is a minimal sufficient statistic for p by Theorem 6.2.13.

く 何 ト く ヨ ト く ヨ ト
Is $\mathbf{T}_1(\mathbf{X}) = (X_1 + X_2, X_3)$ minimal sufficient?

3

Is $\mathbf{T}_1(\mathbf{X}) = (X_1 + X_2, X_3)$ minimal sufficient?

Let $A(\mathbf{X}) = X_1 + X_2$, and $B(\mathbf{X}) = X_3$.

$$f_{\mathbf{X}}(\mathbf{x}|p) = p^{x_1+x_2}(1-p)^{2-x_1-x_2}p^{x_3}(1-p)^{1-x_3}$$

э

イロト イポト イヨト イヨト

Is $\mathbf{T}_1(\mathbf{X}) = (X_1 + X_2, X_3)$ minimal sufficient?

Let
$$A(\mathbf{X}) = X_1 + X_2$$
, and $B(\mathbf{X}) = X_3$.

$$f_{\mathbf{X}}(\mathbf{x}|p) = p^{x_1+x_2}(1-p)^{2-x_1-x_2}p^{x_3}(1-p)^{1-x_3}$$

= $p^{A(\mathbf{x})}(1-p)^{2-A(\mathbf{x})}p^{B(\mathbf{x})}(1-p)^{1-B(\mathbf{x})}$

3

Is $\mathbf{T}_1(\mathbf{X}) = (X_1 + X_2, X_3)$ minimal sufficient?

Let
$$A(\mathbf{X}) = X_1 + X_2$$
, and $B(\mathbf{X}) = X_3$.

$$\begin{aligned} f_{\mathbf{X}}(\mathbf{x}|p) &= p^{x_1+x_2}(1-p)^{2-x_1-x_2}p^{x_3}(1-p)^{1-x_3} \\ &= p^{A(\mathbf{x})}(1-p)^{2-A(\mathbf{x})}p^{B(\mathbf{x})}(1-p)^{1-B(\mathbf{x})} \\ &= p^{A(\mathbf{x})+B(\mathbf{x})}(1-p)^{3-A(\mathbf{x})-B(\mathbf{x})} \end{aligned}$$

3

Is $\mathbf{T}_1(\mathbf{X}) = (X_1 + X_2, X_3)$ minimal sufficient?

Let
$$A(\mathbf{X}) = X_1 + X_2$$
, and $B(\mathbf{X}) = X_3$.

$$\begin{aligned} f_{\mathbf{X}}(\mathbf{x}|p) &= p^{x_1+x_2}(1-p)^{2-x_1-x_2}p^{x_3}(1-p)^{1-x_3} \\ &= p^{A(\mathbf{x})}(1-p)^{2-A(\mathbf{x})}p^{B(\mathbf{x})}(1-p)^{1-B(\mathbf{x})} \\ &= p^{A(\mathbf{x})+B(\mathbf{x})}(1-p)^{3-A(\mathbf{x})-B(\mathbf{x})} \\ \frac{f_{\mathbf{x}}(\mathbf{x}|\theta)}{f_{\mathbf{x}}(\mathbf{y}|\theta)} &= \frac{p^{A(\mathbf{x})+B(\mathbf{x})}(1-p)^{3-A(\mathbf{x})-B(\mathbf{x})}}{p^{A(\mathbf{y})+B(\mathbf{y})}(1-p)^{3-A(\mathbf{x})-B(\mathbf{y})}} \end{aligned}$$

3

Is $\mathbf{T}_1(\mathbf{X}) = (X_1 + X_2, X_3)$ minimal sufficient?

Let
$$A(\mathbf{X}) = X_1 + X_2$$
, and $B(\mathbf{X}) = X_3$.

$$\begin{aligned} f_{\mathbf{X}}(\mathbf{x}|p) &= p^{x_1+x_2}(1-p)^{2-x_1-x_2}p^{x_3}(1-p)^{1-x_3} \\ &= p^{A(\mathbf{x})}(1-p)^{2-A(\mathbf{x})}p^{B(\mathbf{x})}(1-p)^{1-B(\mathbf{x})} \\ &= p^{A(\mathbf{x})+B(\mathbf{x})}(1-p)^{3-A(\mathbf{x})-B(\mathbf{x})} \\ \frac{f_{\mathbf{x}}(\mathbf{x}|\theta)}{f_{\mathbf{x}}(\mathbf{y}|\theta)} &= \frac{p^{A(\mathbf{x})+B(\mathbf{x})}(1-p)^{3-A(\mathbf{x})-B(\mathbf{x})}}{p^{A(\mathbf{y})+B(\mathbf{y})}(1-p)^{3-A(\mathbf{x})-B(\mathbf{y})}} = \left(\frac{p}{1-p}\right)^{A(\mathbf{x})+B(\mathbf{x})-A(\mathbf{y})-B(\mathbf{y})} \end{aligned}$$

3

Is $\mathbf{T}_1(\mathbf{X}) = (X_1 + X_2, X_3)$ minimal sufficient?

Let
$$A(\mathbf{X}) = X_1 + X_2$$
, and $B(\mathbf{X}) = X_3$.

$$\begin{split} f_{\mathbf{X}}(\mathbf{x}|p) &= p^{x_1+x_2}(1-p)^{2-x_1-x_2}p^{x_3}(1-p)^{1-x_3} \\ &= p^{A(\mathbf{x})}(1-p)^{2-A(\mathbf{x})}p^{B(\mathbf{x})}(1-p)^{1-B(\mathbf{x})} \\ &= p^{A(\mathbf{x})+B(\mathbf{x})}(1-p)^{3-A(\mathbf{x})-B(\mathbf{x})} \\ \frac{f_{\mathbf{x}}(\mathbf{x}|\theta)}{f_{\mathbf{x}}(\mathbf{y}|\theta)} &= \frac{p^{A(\mathbf{x})+B(\mathbf{x})}(1-p)^{3-A(\mathbf{x})-B(\mathbf{x})}}{p^{A(\mathbf{y})+B(\mathbf{y})}(1-p)^{3-A(\mathbf{x})-B(\mathbf{y})}} = \left(\frac{p}{1-p}\right)^{A(\mathbf{x})+B(\mathbf{x})-A(\mathbf{y})-B(\mathbf{y})} \end{split}$$

- The ratio above is constant as a function of p if (but not only if) $A({\bf x})=A({\bf y})$ and $B({\bf x})=B({\bf y})$

э

Is $\mathbf{T}_1(\mathbf{X}) = (X_1 + X_2, X_3)$ minimal sufficient?

Let
$$A(\mathbf{X}) = X_1 + X_2$$
, and $B(\mathbf{X}) = X_3$.

$$\begin{aligned} f_{\mathbf{X}}(\mathbf{x}|p) &= p^{x_1+x_2}(1-p)^{2-x_1-x_2}p^{x_3}(1-p)^{1-x_3} \\ &= p^{A(\mathbf{x})}(1-p)^{2-A(\mathbf{x})}p^{B(\mathbf{x})}(1-p)^{1-B(\mathbf{x})} \\ &= p^{A(\mathbf{x})+B(\mathbf{x})}(1-p)^{3-A(\mathbf{x})-B(\mathbf{x})} \\ \frac{f_{\mathbf{x}}(\mathbf{x}|\theta)}{f_{\mathbf{x}}(\mathbf{y}|\theta)} &= \frac{p^{A(\mathbf{x})+B(\mathbf{x})}(1-p)^{3-A(\mathbf{x})-B(\mathbf{x})}}{p^{A(\mathbf{y})+B(\mathbf{y})}(1-p)^{3-A(\mathbf{x})-B(\mathbf{y})}} = \left(\frac{p}{1-p}\right)^{A(\mathbf{x})+B(\mathbf{x})-A(\mathbf{y})-B(\mathbf{y})} \end{aligned}$$

- The ratio above is constant as a function of p if (but not only if) $A({\bf x})=A({\bf y})$ and $B({\bf x})=B({\bf y})$
- Because if $A(\mathbf{x}) + B(\mathbf{x}) = A(\mathbf{y}) + B(\mathbf{y})$, even though $A(\mathbf{x}) \neq A(\mathbf{y})$ and $B(\mathbf{x}) \neq B(\mathbf{y})$, the ratio above is still constant.

く 何 ト く ヨ ト く ヨ ト

Is $\mathbf{T}_1(\mathbf{X}) = (X_1 + X_2, X_3)$ minimal sufficient?

Let
$$A(\mathbf{X}) = X_1 + X_2$$
, and $B(\mathbf{X}) = X_3$.

$$\begin{split} f_{\mathbf{X}}(\mathbf{x}|p) &= p^{x_1+x_2}(1-p)^{2-x_1-x_2}p^{x_3}(1-p)^{1-x_3} \\ &= p^{A(\mathbf{x})}(1-p)^{2-A(\mathbf{x})}p^{B(\mathbf{x})}(1-p)^{1-B(\mathbf{x})} \\ &= p^{A(\mathbf{x})+B(\mathbf{x})}(1-p)^{3-A(\mathbf{x})-B(\mathbf{x})} \\ \frac{f_{\mathbf{x}}(\mathbf{x}|\theta)}{f_{\mathbf{x}}(\mathbf{y}|\theta)} &= \frac{p^{A(\mathbf{x})+B(\mathbf{x})}(1-p)^{3-A(\mathbf{x})-B(\mathbf{x})}}{p^{A(\mathbf{y})+B(\mathbf{y})}(1-p)^{3-A(\mathbf{x})-B(\mathbf{y})}} = \left(\frac{p}{1-p}\right)^{A(\mathbf{x})+B(\mathbf{x})-A(\mathbf{y})-B(\mathbf{y})} \end{split}$$

- The ratio above is constant as a function of p if (but not only if) $A({\bf x})=A({\bf y})$ and $B({\bf x})=B({\bf y})$
- Because if $A(\mathbf{x}) + B(\mathbf{x}) = A(\mathbf{y}) + B(\mathbf{y})$, even though $A(\mathbf{x}) \neq A(\mathbf{y})$ and $B(\mathbf{x}) \neq B(\mathbf{y})$, the ratio above is still constant.

Therefore, $\mathbf{T}_1(\mathbf{X}) = (A(\mathbf{X}), B(\mathbf{X})) = (X_1 + X_2, X_3)$ is not a minimal sufficient statistic for p by Theorem 6.2.13.

Partition of sample space

X_1	X_2	X_3	$\mathbf{T}_1(X) = (X_1 + X_2, X_3)$	$T_2(\mathbf{X}) = X_1 + X_2 + X_3$
0	0	0	(0,0)	0
0	0	1	(0,1)	
0	1	0	(1 0)	1
1	0	0	(1,0)	
0	1	1	(1 1)	2
1	0	1	(1,1)	
1	1	0	(2,0)	
1	1	1	(2,1)	3

э

Assume that $a, b, c, d, a_1, \cdots, a_n$ are constants. **1** $a\theta^2 + b\theta + c = 0$ for any $\theta \in \mathbb{R}$

Assume that $a, b, c, d, a_1, \cdots, a_n$ are constants. **1** $a\theta^2 + b\theta + c = 0$ for any $\theta \in \mathbb{R}$

 $\Leftrightarrow a = b = c = 0.$

► 4 = ►

Assume that $a, b, c, d, a_1, \cdots, a_n$ are constants.

1
$$a\theta^2 + b\theta + c = 0$$
 for any $\theta \in \mathbb{R}$
 $\Leftrightarrow a = b = c = 0.$

2
$$\sum_{i=1}^{k} a_i \theta^i = c$$
 for any $\theta \in \mathbb{R}$

Assume that
$$a, b, c, d, a_1, \cdots, a_n$$
 are constants.

1
$$a\theta^2 + b\theta + c = 0$$
 for any $\theta \in \mathbb{R}$
 $\Leftrightarrow a = b = c = 0.$
2 $\sum_{i=1}^k a_i \theta^i = c$ for any $\theta \in \mathbb{R}$
 $\Leftrightarrow a_1 = \cdots = a_k = 0.$

< 47 ▶

Assume that
$$a, b, c, d, a_1, \cdots, a_n$$
 are constants.

1
$$a\theta^2 + b\theta + c = 0$$
 for any $\theta \in \mathbb{R}$
 $\Leftrightarrow a = b = c = 0.$
2 $\sum_{i=1}^k a_i \theta^i = c$ for any $\theta \in \mathbb{R}$
 $\Leftrightarrow a_1 = \cdots = a_k = 0.$
3 $a\theta_1 + b\theta_2 + c = 0$ for all $(\theta_1, \theta_2) \in \mathbb{R}^2$

э

ヨト・イヨト

< (1) × <

Assume that
$$a, b, c, d, a_1, \cdots, a_n$$
 are constants.

э

ヨト・イヨト

< 4[™] >

4 The following equation is constant

$$\frac{1+a_1\theta+a_2\theta^2+\cdots+a_k\theta_k^k}{1+b_1\theta+b_2\theta^2+\cdots+b_k\theta_k^k}$$

4 The following equation is constant

$$\frac{1+a_1\theta+a_2\theta^2+\cdots+a_k\theta_k^k}{1+b_1\theta+b_2\theta^2+\cdots+b_k\theta_k^k}$$

$$\Leftrightarrow a_1 = b_1, \cdots, a_k = b_k.$$

4 The following equation is constant

$$\frac{1+a_1\theta+a_2\theta^2+\cdots+a_k\theta_k^k}{1+b_1\theta+b_2\theta^2+\cdots+b_k\theta_k^k}$$

 $\Leftrightarrow a_1 = b_1, \cdots, a_k = b_k.$

Note that this does not hold without the constant 1, for example,

$$\frac{\theta + 2\theta^2}{2\theta + 4\theta^2} = \frac{1}{2}$$

4 The following equation is constant

$$\frac{1+a_1\theta+a_2\theta^2+\cdots+a_k\theta_k^k}{1+b_1\theta+b_2\theta^2+\cdots+b_k\theta_k^k}$$

 $\Leftrightarrow a_1 = b_1, \cdots, a_k = b_k.$ Note that this does not hold without the constant 1, for example,

$$\frac{\theta + 2\theta^2}{2\theta + 4\theta^2} = \frac{1}{2}$$

5
$$\frac{I(a < \theta < b)}{I(c < \theta < d)}$$
 is constant a a function of θ .

4 The following equation is constant

$$\frac{1+a_1\theta+a_2\theta^2+\cdots+a_k\theta_k^k}{1+b_1\theta+b_2\theta^2+\cdots+b_k\theta_k^k}$$

 $\Leftrightarrow a_1 = b_1, \cdots, a_k = b_k.$ Note that this does not hold without the constant 1, for example,

$$\frac{\theta + 2\theta^2}{2\theta + 4\theta^2} = \frac{1}{2}$$

5 $\frac{I(a < \theta < b)}{I(c < \theta < d)}$ is constant a a function of θ . $\Leftrightarrow a = c$, and b = d.

4 The following equation is constant

$$\frac{1+a_1\theta+a_2\theta^2+\cdots+a_k\theta_k^k}{1+b_1\theta+b_2\theta^2+\cdots+b_k\theta_k^k}$$

 $\Leftrightarrow a_1 = b_1, \cdots, a_k = b_k.$

Note that this does not hold without the constant 1, for example,

$$\frac{\theta + 2\theta^2}{2\theta + 4\theta^2} = \frac{1}{2}$$

J(a<θ<b)/I(c<θ<d) is constant a a function of θ. ⇔ a = c, and b = d.
θ^t is constant function of θ.

4 The following equation is constant

$$\frac{1+a_1\theta+a_2\theta^2+\cdots+a_k\theta_k^k}{1+b_1\theta+b_2\theta^2+\cdots+b_k\theta_k^k}$$

 $\Leftrightarrow a_1 = b_1, \cdots, a_k = b_k.$

Note that this does not hold without the constant 1, for example,

$$\frac{\theta + 2\theta^2}{2\theta + 4\theta^2} = \frac{1}{2}$$

J(a<θ<b)/I(c<θ<d) is constant a a function of θ. ⇔ a = c, and b = d.
θ^t is constant function of θ. ⇔ t = 0.

Example 6.2.15

- $X_1, \cdots, X_n \stackrel{\text{i.i.d.}}{\sim} \text{Uniform}(\theta, \theta + 1)$, where $-\infty < \theta < \infty$.
- Find a minimal sufficient statistic for θ .

∃ ► < ∃ ►

Example 6.2.15

- $X_1, \cdots, X_n \stackrel{\text{i.i.d.}}{\sim} \text{Uniform}(\theta, \theta + 1)$, where $-\infty < \theta < \infty$.
- Find a minimal sufficient statistic for θ .

Joint pdf of \boldsymbol{X}

$$f_{\mathbf{X}}(\mathbf{x}|\theta) = \prod_{i=1}^{n} I(\theta < x_i < \theta + 1)$$

Tryun with Kang	H	/un	Min	i Kang	
-----------------	---	-----	-----	--------	--

э

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Examine $f_{\mathbf{X}}(\mathbf{x}|\theta)/f_{\mathbf{X}}(\mathbf{y}|\theta)$

$$\frac{f_{\mathbf{X}}(\mathbf{x}|\boldsymbol{\theta})}{f_{\mathbf{X}}(\mathbf{y}|\boldsymbol{\theta})} = \frac{\prod_{i=1}^{n} I(\boldsymbol{\theta} < x_i < \boldsymbol{\theta} + 1)}{\prod_{i=1}^{n} I(\boldsymbol{\theta} < y_i < \boldsymbol{\theta} + 1)}$$

э

Examine $f_{\mathbf{X}}(\mathbf{x}|\theta)/f_{\mathbf{X}}(\mathbf{y}|\theta)$

$$\begin{split} \overset{\mathbf{f}_{\mathbf{X}}}{\overset{\mathbf{x}}{|\boldsymbol{\theta}\rangle}} &= \frac{\prod_{i=1}^{n} I(\boldsymbol{\theta} < x_{i} < \boldsymbol{\theta} + 1)}{\prod_{i=1}^{n} I(\boldsymbol{\theta} < y_{i} < \boldsymbol{\theta} + 1)} \\ &= \frac{I(\boldsymbol{\theta} < x_{1} < \boldsymbol{\theta} + 1, \cdots, \boldsymbol{\theta} < x_{n} < \boldsymbol{\theta} + 1)}{I(\boldsymbol{\theta} < y_{1} < \boldsymbol{\theta} + 1, \cdots, \boldsymbol{\theta} < y_{n} < \boldsymbol{\theta} + 1)} \end{split}$$

э

Examine $f_{\mathbf{X}}(\mathbf{x}|\theta)/f_{\mathbf{X}}(\mathbf{y}|\theta)$

$$\begin{split} f_{\mathbf{X}}(\mathbf{x}|\theta) &= \frac{\prod_{i=1}^{n} I(\theta < x_i < \theta + 1)}{\prod_{i=1}^{n} I(\theta < y_i < \theta + 1)} \\ &= \frac{I(\theta < x_1 < \theta + 1, \cdots, \theta < x_n < \theta + 1)}{I(\theta < y_1 < \theta + 1, \cdots, \theta < y_n < \theta + 1)} \\ &= \frac{I(\theta < x_{(1)} \land x_{(n)} < \theta + 1)}{I(\theta < y_{(1)} \land y_{(n)} < \theta + 1)} \end{split}$$

Hyun Min Kang

January 17th, 2013 17 / 25

э

Examine $f_{\mathbf{X}}(\mathbf{x}|\theta)/f_{\mathbf{X}}(\mathbf{y}|\theta)$

$$\begin{aligned} \frac{f_{\mathbf{X}}(\mathbf{x}|\theta)}{f_{\mathbf{X}}(\mathbf{y}|\theta)} &= \frac{\prod_{i=1}^{n} I(\theta < x_i < \theta + 1)}{\prod_{i=1}^{n} I(\theta < y_i < \theta + 1)} \\ &= \frac{I(\theta < x_1 < \theta + 1, \cdots, \theta < x_n < \theta + 1)}{I(\theta < y_1 < \theta + 1, \cdots, \theta < y_n < \theta + 1)} \\ &= \frac{I(\theta < x_{(1)} \land x_{(n)} < \theta + 1)}{I(\theta < y_{(1)} \land y_{(n)} < \theta + 1)} \\ &= \frac{I(x_{(n)} - 1 < \theta < x_{(1)})}{I(y_{(n)} - 1 < \theta < y_{(1)})} \end{aligned}$$

< 4³ ► <

э

Examine $f_{\mathbf{X}}(\mathbf{x}|\theta)/f_{\mathbf{X}}(\mathbf{y}|\theta)$

$$\begin{split} \frac{f_{\mathbf{X}}(\mathbf{x}|\theta)}{f_{\mathbf{X}}(\mathbf{y}|\theta)} &= \frac{\prod_{i=1}^{n} I(\theta < x_i < \theta + 1)}{\prod_{i=1}^{n} I(\theta < y_i < \theta + 1)} \\ &= \frac{I(\theta < x_1 < \theta + 1, \cdots, \theta < x_n < \theta + 1)}{I(\theta < y_1 < \theta + 1, \cdots, \theta < y_n < \theta + 1)} \\ &= \frac{I(\theta < x_{(1)} \land x_{(n)} < \theta + 1)}{I(\theta < y_{(1)} \land y_{(n)} < \theta + 1)} \\ &= \frac{I(x_{(n)} - 1 < \theta < x_{(1)})}{I(y_{(n)} - 1 < \theta < y_{(1)})} \end{split}$$

The ratio above is constant if and only if $x_{(1)} = y_{(1)}$ and $x_{(n)} = y_{(n)}$. Therefore, $\mathbf{T}(\mathbf{X}) = (X_{(1)}, X_{(n)})$ is a minimal sufficient statistic for θ .

17 / 25

Normal Minimal Sufficient Statistics (Example 6.2.14)

$$\frac{f_{\mathbf{X}}(\mathbf{x}|\boldsymbol{\mu},\sigma^2)}{f_{\mathbf{X}}(\mathbf{y}|\boldsymbol{\mu},\sigma^2)} = \exp\left(-\frac{\sum_{i=1}^n (x_i-\boldsymbol{\mu})^2}{2\sigma^2}\right) / \exp\left(-\frac{\sum_{i=1}^n (y_i-\boldsymbol{\mu})^2}{2\sigma^2}\right)$$

Normal Minimal Sufficient Statistics (Example 6.2.14)

$$\begin{aligned} \frac{f_{\mathbf{X}}(\mathbf{x}|\mu,\sigma^2)}{f_{\mathbf{X}}(\mathbf{y}|\mu,\sigma^2)} &= \exp\left(-\frac{\sum_{i=1}^n (x_i - \mu)^2}{2\sigma^2}\right) / \exp\left(-\frac{\sum_{i=1}^n (y_i - \mu)^2}{2\sigma^2}\right) \\ &= \exp\left[-\frac{1}{2\sigma^2} \left(\sum_{i=1}^n (x_i^2 - 2\mu x_i + \mu^2) - \sum_{i=1}^n (y_i^2 - 2\mu y_i + \mu^2)\right)\right] \end{aligned}$$

Normal Minimal Sufficient Statistics (Example 6.2.14)

$$\begin{aligned} \frac{f_{\mathbf{X}}(\mathbf{x}|\mu,\sigma^2)}{f_{\mathbf{X}}(\mathbf{y}|\mu,\sigma^2)} &= \exp\left(-\frac{\sum_{i=1}^n (x_i - \mu)^2}{2\sigma^2}\right) / \exp\left(-\frac{\sum_{i=1}^n (y_i - \mu)^2}{2\sigma^2}\right) \\ &= \exp\left[-\frac{1}{2\sigma^2}\left(\sum_{i=1}^n (x_i^2 - 2\mu x_i + \mu^2) - \sum_{i=1}^n (y_i^2 - 2\mu y_i + \mu^2)\right)\right] \\ &= \exp\left[-\frac{1}{2\sigma^2}\left(\sum_{i=1}^n x_i^2 - \sum_{i=1}^n y_i^2\right) + \frac{\mu}{\sigma^2}\left(\sum_{i=1}^n x_i - \sum_{i=1}^n y_i\right)\right] \end{aligned}$$

Normal Minimal Sufficient Statistics (Example 6.2.14)

$$\begin{aligned} \frac{f_{\mathbf{X}}(\mathbf{x}|\mu,\sigma^2)}{f_{\mathbf{X}}(\mathbf{y}|\mu,\sigma^2)} &= \exp\left(-\frac{\sum_{i=1}^n (x_i - \mu)^2}{2\sigma^2}\right) / \exp\left(-\frac{\sum_{i=1}^n (y_i - \mu)^2}{2\sigma^2}\right) \\ &= \exp\left[-\frac{1}{2\sigma^2} \left(\sum_{i=1}^n (x_i^2 - 2\mu x_i + \mu^2) - \sum_{i=1}^n (y_i^2 - 2\mu y_i + \mu^2)\right)\right] \\ &= \exp\left[-\frac{1}{2\sigma^2} \left(\sum_{i=1}^n x_i^2 - \sum_{i=1}^n y_i^2\right) + \frac{\mu}{\sigma^2} \left(\sum_{i=1}^n x_i - \sum_{i=1}^n y_i\right)\right] \end{aligned}$$

The ratio above will not depend on (μ,σ^2) if and only if

$$\begin{cases} \sum_{i=1}^{n} x_i^2 &= \sum_{i=1}^{n} y_i^2 \\ \sum_{i=1}^{n} x_i &= \sum_{i=1}^{n} y_i \end{cases}$$

Normal Minimal Sufficient Statistics (Example 6.2.14)

$$\begin{aligned} \frac{f_{\mathbf{X}}(\mathbf{x}|\mu,\sigma^2)}{f_{\mathbf{X}}(\mathbf{y}|\mu,\sigma^2)} &= \exp\left(-\frac{\sum_{i=1}^n (x_i - \mu)^2}{2\sigma^2}\right) / \exp\left(-\frac{\sum_{i=1}^n (y_i - \mu)^2}{2\sigma^2}\right) \\ &= \exp\left[-\frac{1}{2\sigma^2} \left(\sum_{i=1}^n (x_i^2 - 2\mu x_i + \mu^2) - \sum_{i=1}^n (y_i^2 - 2\mu y_i + \mu^2)\right)\right] \\ &= \exp\left[-\frac{1}{2\sigma^2} \left(\sum_{i=1}^n x_i^2 - \sum_{i=1}^n y_i^2\right) + \frac{\mu}{\sigma^2} \left(\sum_{i=1}^n x_i - \sum_{i=1}^n y_i\right)\right] \end{aligned}$$

The ratio above will not depend on (μ,σ^2) if and only if

$$\left\{\begin{array}{rrrr} \sum_{i=1}^n x_i^2 &=& \sum_{i=1}^n y_i^2 \\ \sum_{i=1}^n x_i &=& \sum_{i=1}^n y_i \end{array}\right.$$

Therefore, $\mathbf{T}(\mathbf{X}) = (\sum_{i=1}^{n} X_i, \sum_{i=1}^{n} X_i^2)$ is a minimal sufficient statistic for (μ, σ^2) by Theorem 6.2.13

Hyun Min Kang

January 17th, 2013

18 / 25

Are Minimal Sufficient Statistics Unique?

< 47 ▶

э
Are Minimal Sufficient Statistics Unique?

A short answer is "No"

Summary

Are Minimal Sufficient Statistics Unique?

- A short answer is "No"
- For example, $(\overline{X}, s_{\mathbf{X}}^2 = \sum_{i=1}^n (X_i \overline{X})^2 / (n-1))$ is also a minimal sufficient statistic for (μ, σ^2) in normal distribution.

Are Minimal Sufficient Statistics Unique?

- A short answer is "No"
- For example, $(\overline{X}, s_{\mathbf{X}}^2 = \sum_{i=1}^n (X_i \overline{X})^2 / (n-1))$ is also a minimal sufficient statistic for (μ, σ^2) in normal distribution.
- Important Facts
 - **1** If $T(\mathbf{X})$ is a minimal sufficient statistic for θ , then its one-to-one function is also a minimal sufficient statistic for θ .

Are Minimal Sufficient Statistics Unique?

- A short answer is "No"
- For example, $(\overline{X}, s_{\mathbf{X}}^2 = \sum_{i=1}^n (X_i \overline{X})^2 / (n-1))$ is also a minimal sufficient statistic for (μ, σ^2) in normal distribution.
- Important Facts
 - **1** If $T(\mathbf{X})$ is a minimal sufficient statistic for θ , then its one-to-one function is also a minimal sufficient statistic for θ .
 - 2 There is always a one-to-one function between any two minimal sufficient statistics. In other words, the partition created by a minimal sufficient statistic is unique

Theorem for Fact 1

If $T(\mathbf{X})$ is a minimal sufficient statistic for θ , then its one-to-one function is also a minimal sufficient statistic for θ .

э

Theorem for Fact 1

If $T(\mathbf{X})$ is a minimal sufficient statistic for θ , then its one-to-one function is also a minimal sufficient statistic for θ .

Strategies for Proof

- Let $T^*({\bf X})=q(T({\bf X}))$ and q is a one-to-one function. Then there exist a q^{-1} such that $T({\bf X})=q^{-1}(\,T^*({\bf X}))$
- First is to prove that $T^*(\mathbf{x})$ is a sufficient statistic.
- Next, prove that $T^*(\mathbf{x})$ is also a minimal sufficient statistic.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Because $T(\mathbf{X})$ is sufficient, by the Factorization Theorem, there exists h and g such that

$$f_{\mathbf{X}}(\mathbf{x}|\theta) = g(T(\mathbf{x}|\theta))h(\mathbf{x})$$

글 🕨 🖌 글

Because $T(\mathbf{X})$ is sufficient, by the Factorization Theorem, there exists h and g such that

$$f_{\mathbf{X}}(\mathbf{x}|\theta) = g(T(\mathbf{x}|\theta))h(\mathbf{x})$$

= $g(q^{-1}(T^*(\mathbf{x}|\theta)))h(\mathbf{x})$

글 🕨 🖌 글

Because $T(\mathbf{X})$ is sufficient, by the Factorization Theorem, there exists h and g such that

$$\begin{split} f_{\mathbf{X}}(\mathbf{x}|\theta) &= g(T(\mathbf{x}|\theta))h(\mathbf{x}) \\ &= g(q^{-1}(T^*(\mathbf{x}|\theta)))h(\mathbf{x}) \\ &= (g \circ q^{-1})(T^*(\mathbf{x}|\theta))h(\mathbf{x}) \end{split}$$

글 🕨 🖌 글

Because $T(\mathbf{X})$ is sufficient, by the Factorization Theorem, there exists h and g such that

$$f_{\mathbf{X}}(\mathbf{x}|\theta) = g(T(\mathbf{x}|\theta))h(\mathbf{x})$$

= $g(q^{-1}(T^*(\mathbf{x}|\theta)))h(\mathbf{x})$
= $(g \circ q^{-1})(T^*(\mathbf{x}|\theta))h(\mathbf{x})$

Therefore, by the Factorization Theorem, T^* is also a sufficient statistic.

・ 何 ト ・ ヨ ト ・ ヨ ト

Because $T(\mathbf{X})$ is minimal sufficient, by definition, for any sufficient statistic $S(\mathbf{X})$, there exist a function w such that $T(\mathbf{X}) = w(S(\mathbf{x}))$.

Because $T(\mathbf{X})$ is minimal sufficient, by definition, for any sufficient statistic $S(\mathbf{X})$, there exist a function w such that $T(\mathbf{X}) = w(S(\mathbf{x}))$.

 $T^*(\mathbf{x}) = q(T(\mathbf{X}))$

3 1 4 3 1

Because $T(\mathbf{X})$ is minimal sufficient, by definition, for any sufficient statistic $S(\mathbf{X})$, there exist a function w such that $T(\mathbf{X}) = w(S(\mathbf{x}))$.

$$T^*(\mathbf{x}) = q(T(\mathbf{X}))$$

= $q(w(S(\mathbf{X})))$

- 4 冊 ト 4 三 ト 4 三 ト

Because $T(\mathbf{X})$ is minimal sufficient, by definition, for any sufficient statistic $S(\mathbf{X})$, there exist a function w such that $T(\mathbf{X}) = w(S(\mathbf{x}))$.

$$T^*(\mathbf{x}) = q(T(\mathbf{X}))$$

= $q(w(S(\mathbf{X})))$
= $(q \circ w)(S(\mathbf{X}))$

Because $T(\mathbf{X})$ is minimal sufficient, by definition, for any sufficient statistic $S(\mathbf{X})$, there exist a function w such that $T(\mathbf{X}) = w(S(\mathbf{x}))$.

$$T^*(\mathbf{x}) = q(T(\mathbf{X}))$$

= $q(w(S(\mathbf{X})))$
= $(q \circ w)(S(\mathbf{X}))$

Thus, $T^*(\mathbf{X})$ is also a function of $S(\mathbf{X})$ always, and by definition, T^* is also a minimal sufficient statistic.

Theorem for Fact 2

There is always a one-to-one function between any two minimal sufficient statistics.

Theorem for Fact 2

There is always a one-to-one function between any two minimal sufficient statistics. (In other words, the partition created by minimal sufficient statistics is unique)

Theorem for Fact 2

There is always a one-to-one function between any two minimal sufficient statistics. (In other words, the partition created by minimal sufficient statistics is unique)

Examples

For normal statistics, let $T_1(\mathbf{X}) = (\sum X_i, \sum X_i^2)$ and $T_2(\mathbf{X}) = (\overline{X}, \sum (X_i - \overline{X})^2 / (n-1))$. Then, there exists one-to-one functions such that

Theorem for Fact 2

There is always a one-to-one function between any two minimal sufficient statistics. (In other words, the partition created by minimal sufficient statistics is unique)

Examples

For normal statistics, let $T_1(\mathbf{X}) = (\sum X_i, \sum X_i^2)$ and $T_2(\mathbf{X}) = (\overline{X}, \sum (X_i - \overline{X})^2 / (n-1))$. Then, there exists one-to-one functions such that

$$\sum X_i = g_1 \left(\overline{X}, \sum (X_i - \overline{X})^2 / (n-1) \right)$$

$$\sum X_i^2 = g_2 \left(\overline{X}, \sum (X_i - \overline{X})^2 / (n-1) \right)$$

Theorem for Fact 2

There is always a one-to-one function between any two minimal sufficient statistics. (In other words, the partition created by minimal sufficient statistics is unique)

Examples

For normal statistics, let $T_1(\mathbf{X}) = (\sum X_i, \sum X_i^2)$ and $T_2(\mathbf{X}) = (\overline{X}, \sum (X_i - \overline{X})^2 / (n-1))$. Then, there exists one-to-one functions such that

$$\sum X_i = g_1 \left(\overline{X}, \sum (X_i - \overline{X})^2 / (n-1) \right)$$

$$\sum X_i^2 = g_2 \left(\overline{X}, \sum (X_i - \overline{X})^2 / (n-1) \right)$$

$$\overline{X} = h_1 \left(\sum X_i, \sum X_i^2 \right)$$

$$\sum (X_i - \overline{X})^2 (n-1) = h_2 \left(\sum X_i, \sum X_i^2 \right)$$

Proof

Assume that both $T(\mathbf{X})$ and $T^*(\mathbf{X})$ are minimal sufficient. Then by the definition of minimal sufficient statistics, there exist $q(\cdot)$ and $r(\cdot)$ such that

3 1 4 3 1

Proof

Assume that both $T(\mathbf{X})$ and $T^*(\mathbf{X})$ are minimal sufficient. Then by the definition of minimal sufficient statistics, there exist $q(\cdot)$ and $r(\cdot)$ such that

$$T(\mathbf{X}) = q(T^*(\mathbf{X}))$$
$$T^*(\mathbf{X}) = r(T(\mathbf{X}))$$

Therefore, $q = r^{-1}$ holds and they are one-to-one functions.

< □ > < □ > < □ > < □ > < □ > < □ >

Summary

Today

- Recap of Factorization Theorem
- Minimal Sufficient Statistics
 - Theorem 6.2.13
 - Two sufficient statistics from binomial distribution
 - Uniform Distribution
 - Normal Distribution
 - Minimal Sufficient Statistics are not unique

Next Lecture

Ancillary Statistics